
Mapping DSP algorithms to a reconfigurable

architecture

–

Adaptive Wireless Networking (AWGN)

Gerard Rauwerda
g.k.rauwerda@utwente.nl

University of Twente
faculty of Electrical Engineering, Mathematics & Computer Science

Computer Architecture, Design and Test for Embedded Systems group
P.O. Box 217, 7500 AE Enschede

the Netherlands

June, 2003

Abstract

This report will discuss the Adaptive Wireless Networking project. The vi-
sion of the Adaptive Wireless Networking project will be given. The strategy
of the project will be the implementation of multiple communication sys-
tems in dynamically reconfigurable heterogeneous hardware. An overview of
a wireless LAN communication system, namely HiperLAN/2, and a Blue-
tooth communication system will be given. Possible implementations of
these systems in a dynamically reconfigurable architecture are discussed.
Suggestions for future activities in the Adaptive Wireless Networking project
are also given.

Contents

1 Introduction 1

2 Reconfigurable computing 3
2.1 Introduction . 3

2.1.1 Adaptivity . 4
2.1.2 Reconfigurability . 4

2.2 Reconfigurable heterogeneous architectures 5
2.2.1 Fine granularity . 6
2.2.2 Medium granularity 6
2.2.3 Course granularity . 8

3 HiperLAN/2 physical layer 11
3.1 Introduction . 11
3.2 Physical layer in HiperLAN/2 11
3.3 Receiver model algorithms . 12

3.3.1 Serial to parallel conversion 13
3.3.2 Synchronization . 13
3.3.3 Prefix removal . 14
3.3.4 Frequency offset correction 15
3.3.5 Inverse orthogonal frequency division multiplexing . . 16
3.3.6 Common phase offset correction 16
3.3.7 Channel equalization 17
3.3.8 De-mapping . 17

3.4 Computational requirements 17
3.4.1 Lookup tables . 18
3.4.2 Matched filters . 18
3.4.3 Frequency offset correction 20
3.4.4 Fast Fourier Transform 21
3.4.5 Common phase offset correction 21
3.4.6 Channel equalization 22
3.4.7 De-mapping . 23

3.5 Clustering receiver algorithms 26
3.6 Conclusion and discussion . 27

Adaptive Wireless Networking (AWGN) iii

CONTENTS

4 Bluetooth physiscal layer 29
4.1 Introduction . 29
4.2 Physical layer in Bluetooth 29

4.2.1 RF layer . 31
4.2.2 Baseband layer . 31

4.3 Bluetooth communication model 32
4.3.1 Bluetooth transmitter 33
4.3.2 Bluetooth receiver . 33

4.4 Computational requirements 34
4.4.1 Receiver . 34

4.5 Implementation . 35
4.5.1 FM-discriminator . 36
4.5.2 FIR filter . 36
4.5.3 Threshold detector . 37

4.6 Clustering receiver algorithms 38
4.7 Conclusion and discussion . 39

5 Conclusion and recommendations 41
5.1 Conclusion . 41
5.2 Recommendations and future work 42

Bibliography 43

iv Mapping DSP algorithms to a reconfigurable architecture

List of Figures

2.1 Chameleon heterogeneous SoC architecture 6
2.2 Montium processor tile . 7
2.3 Montium ALU . 8

3.1 Demodulator part of the HiperLAN/2 receiver 13
3.2 Calculation of the real part of the cross-correlation with 2

ALUs in the Montium . 19
3.3 Calculation of the imaginary part of the cross-correlation with

2 ALUs in the Montium . 19
3.4 Scrambler of HiperLAN/2 physical layer 22
3.5 Calculation of the squared Euclidean distance with 2 ALUs

in the Montium . 25
3.6 Determination of the minimum Euclidean distance within 1

Montium-tile . 25

4.1 Functional blocks in the Bluetooth system 30
4.2 The Bluetooth protocol stack 30
4.3 The frequency and timing characteristics of single-slot, three-

slot, and five-slot packets . 33
4.4 The Bluetooth communication model 33
4.5 Block diagram of the FM-discriminator 34
4.6 Finite Impulse Response filter 34
4.7 FIR filter implementation with 5 ALUs and without EAST-

WEST interconnect in the Montium 37
4.8 FIR filter implementation with 5 ALUs and with EAST-WEST

interconnect in the Montium 37
4.9 Threshold detector implementation with 1 ALU in the Mon-

tium . 38

Adaptive Wireless Networking (AWGN) v

List of Tables

3.1 Size of information stored in lookup tables 18
3.2 Sizes of the matched filters that are applied in different functions 18
3.3 Requirements for a complex correlation of N samples on the

Montium architecture . 20
3.4 Requirements for 64-FFT on the Montium architecture . . . 21
3.5 Computational requirements for phase offset correction in

HiperLAN/2 . 23
3.6 Computational requirements for channel equalization in Hiper-

LAN/2 . 23
3.7 Computational requirements for full de-mapping in Hiper-

LAN/2 . 24
3.8 Computational requirements for (reduced) de-mapping in Hiper-

LAN/2 . 24
3.9 Computational requirements for de-mapping one complex value

in HiperLAN/2 . 26
3.10 Computational requirements of HiperLAN/2 receiver algo-

rithms mapped on the Montium architecture 26

4.1 Computational requirements of Bluetooth receiver algorithms
mapped on the Montium architecture 39

Adaptive Wireless Networking (AWGN) vii

Acronyms

ACL Asynchronous Connection-Less
ADC Analog-to-Digital Converter
AGU Address Generation Unit
ALU Arithmetic Logic Unit
AM Amplitude Modulation
ASIC Application specific integrated circuit
BPSK Binary Phase Shift Keying
CCU Communications and Configuration Unit
CDMA Code Division Multiple Access
CPU Central processing unit
CRC Cyclic Redundancy Check
DFT Discrete Fourier Transform
DSP Digital Signal Processor
FEC Forward Error Control
FH-CDMA Frequency-hopping-CDMA
FFT Fast Fourier Transform
FIR Finite Impulse Response
FM Frequency Modulation
FPGA Field Programmable Gate Array
FPFA Field Programmable Function Array
FSK Frequency Shift Keying
GFSK Gaussian FSK
GHZ Giga Hertz
GPP General Purpose Processor
HEC Header Error Control
ISM-band Industrial-, Scientific-, Medical-band
LPF Low Pass Filter
MAC Multiply accumulate
Mbps Mega Bit per Second
MHz Mega Hertz
MSPS Mega Samples per Second
NRZ Non-Return to Zero
OFDM Orthogonal frequency division multiplexing

Adaptive Wireless Networking (AWGN) ix

ACRONYMS

PP Processing Part
PPA Processing Part Array
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RX Receive
SCO Synchronous Connection-Oriented
SDR Software Defined Radio
SoC System-on-Chip
TDD Time-Division Duplex
TX Transmit
UMTS Universal Mobile Telecommunications System
VLIW Very Long Instruction Word

x Mapping DSP algorithms to a reconfigurable architecture

Chapter 1

Introduction

Traditionally, computations are either implemented in hardware or in soft-
ware running on processors. More recently, however, new alternatives are
introduced which mix properties of the traditional hardware and software
alternatives. The class of these new alternatives is denoted as reconfigurable
computing. This class of architectures is important because it allows the
computational capacity of the machine to be highly customized to the in-
stantaneous needs of an application while also allowing the computational
capacity to be reused in time at a variety of time scales.

Reconfigurable Computing is emerging as an important new organi-
zational structure for implementing computations. It combines the post-
fabrication programmability of processors with the spatial computational
style most commonly employed in hardware designs. The result changes
traditional ’hardware’ and ’software’ boundaries, providing an opportunity
for greater computational capacity and density within a programmable me-
dia.

This report addresses the basic issues involved in the design process for
facilitating reconfigurable computing in communication systems. We aim
at implementation of communication systems in reconfigurable hardware.
One of the tasks is to map multiple communication systems on a platform
of heterogeneous reconfigurable architectures. In chapter 2 we will give the
outline of the Adaptive Wireless Networking (AWGN) project. Basics of
reconfigurable computing will be given as well as the proposed dynamically
reconfigurable heterogeneous architecture. Once the specifications of recon-
figurable heterogeneous architecture are known, we can study the feasibility
of implementing communication systems on this architecture. In chapter 3
a wireless LAN communication system, namely the HiperLAN/2 standard,
will be discussed. The most relevant properties of the standard are given
and suggestions for implementations of the HiperLAN/2 receiver are made.
In chapter 4 a less complex communication system is considered. Also for
the Bluetooth receiver suggestions for implementations are made. Finally in

Adaptive Wireless Networking (AWGN) 1

Chapter 1. Introduction

chapter 5 a conclusion about mapping DSP algorithms to a reconfigurable
architecture will be given based on the cases of a simple and a complex
communication systems. Furthermore some recommendations and future
research will be given.

2 Mapping DSP algorithms to a reconfigurable architecture

Chapter 2

Reconfigurable computing

2.1 Introduction

Evolution of technology (e.g. in DSPs and reconfigurable computing) will al-
low to move digitization closer and closer to RF in the radio access network.
Software Defined Radio (SDR) techniques will go ahead with availability
of low-cost enabling components. SDR has a very high potential to enable
a major leap for faster provision of more flexible, advanced mobile com-
munication services. Multi-standard network elements in the radio access
network combined with advanced network management will allow dynami-
cally assigned services, QoS support for user applications, use the spectrum
and network resources more efficient and will push integration of services
and networks in the global, business and domestic environment. SDR may
change the scope and role of standardization allowing more freedom for im-
plementation of new services. For industrial companies active in this field
the main driving forces for using SDRs are: cost reduction (avoiding costly
re-designs of ASICs), flexibility (using the same hardware for different traffic
patterns and new (or revised) standards) and time to market. We expect
that the combination of high-level design tools and reconfigurable hardware
architectures will enable designers to develop highly flexible, efficient and
adaptive base stations and applications for future UMTS terminals. Perfor-
mance and power gains will be achieved by applying dynamically reconfig-
urable (heterogeneous) architectures. In this approach application-specific
chip-design (ASIC design) is replaced by dynamic reconfiguration and re-
programming. The technological challenges to realize SDR for a UMTS base
station are huge:

• Highly efficient system architectures have to be defined that are scal-
able, flexible and adaptable to applications demanding differences in
processing capacity requirements (QoS).

• The communication between the various processing entities has to be

Adaptive Wireless Networking (AWGN) 3

Chapter 2. Reconfigurable computing

high-performance, flexible and low-power.

• The middleware and (distributed) operating systems have to support
real-time requirements and (distributed) multi-tasking capability with
minor overhead.

• The mapping of the algorithms to the architecture has to be done
carefully, as this is closely related to the efficiency of the system.

2.1.1 Adaptivity

A key issue of systems that have to support future mobile networks is that
they have to be adaptive. These systems have to adapt to changing en-
vironmental conditions (e.g. more or less users in a cell or varying noise
figures due to reflections or user movements) as well as to changing user
demands (QoS). Furthermore, these architectures have to be extremely ef-
ficient as these are used in battery-operated terminals and cost effective as
they are used in consumer products as well as in base stations. Although
energy-efficiency is a major issue in terminals as they draw their energy from
small batteries, energy consumption is also an issue in base stations from
a technical (costly cooling of chips and power supplies) as well as from an
environmental point of view.

2.1.2 Reconfigurability

There are quite a number of good reasons for using reconfigurable architec-
tures in future wireless terminals and base stations:

• Although reconfigurable systems are known to be less efficient com-
pared to ASIC implementations they can have considerable benefits.
For example: wireless systems work in a very dynamic environment,
this means that depending of the distance of the receiver and transmit-
ter or cell occupation more or less processing power is needed. When
the system can adapt – at run-time – to the environment significant
savings can be obtained.

• Standards evolve quickly; this means that future systems have to have
the flexibility and adaptivity to adapt to slight changes in the stan-
dards. By using reconfigurable architectures instead of ASICs costly
re-designs can be avoided.

• 3G systems based on the UMTS standard have a QoS based transmis-
sion scheme i.e. they are highly flexible and adaptable to new services.

• Downloadable reconfigurations (long-term reconfiguration) enable new
or adapted services on existing terminals.

4 Mapping DSP algorithms to a reconfigurable architecture

2.2. Reconfigurable heterogeneous architectures

• Traditional (DSP) algorithms are rather static. The recent emergence
of new applications that require sophisticated adaptive, dynamical al-
gorithms based on signal and channel statistics to extract optimum
performance has drawn renewed attention to run-time reconfigurabil-
ity.

2.2 Reconfigurable heterogeneous architectures

In the Adaptive Wireless Networking (AWGN) project we aim at implemen-
tation of communication systems in reconfigurable embedded systems. One
of the tasks in the project is to map (different) communication systems on a
platform of heterogeneous reconfigurable architectures. The platform is het-
erogeneous in the sense that digital signal processing is performed in general
purpose processors (GPPs), bit-level reconfigurable hardware (i.e. FPGAs)
and word-level reconfigurable hardware (i.e. Montium).

Basically one can distinguish between different processor types in a het-
erogeneous architecture, based on the granularity of the operations:

• Fine grained operations in the modules that perform functions like
multiply and addition. The operations are performed on bit-level. The
processor type is denoted as reconfigurable logic, like an FPGA.

• Medium grained operations are the functions of the modules. The
functional tasks are allocated to dedicated modules. The operations
are performed on word-level. The processor type is denoted as recon-
figurable data-path.

• Course grained operations are those tasks that are not specific for a
module and that can be performed by the CPU module, or even on a
remote compute server. The processors are denoted as general-purpose
programmable units, like an GPP or DSP unit.

The granularity of the reconfigurable logic is the size of the smallest func-
tional unit that is addressed by the mapping tool. Lower granularity pro-
vides more flexibility in adapting the hardware to the computation struc-
ture. A heterogeneous system combines performance, flexibility and energy-
efficiency. It should support high performance through parallelism, should
match the computational model of the algorithm to granularity of the pro-
cessing entity, should operate at minimum supply voltage and clock fre-
quency and should provide flexibility only where needed and desirable and
at the right granularity.

In the Chameleon project [1] a dynamically reconfigurable heterogeneous
System-on-a-Chip (SoC) is being defined. The SoC contains a general pur-
pose processor, a bit-level reconfigurable part and several word-level recon-
figurable parts. The proposed heterogeneous architecture is shown in figure

Adaptive Wireless Networking (AWGN) 5

Chapter 2. Reconfigurable computing

Figure 2.1: Chameleon heterogeneous SoC architecture

2.1. The programmability of the architecture enables the system to be tar-
geted at multiple applications.

2.2.1 Fine granularity

Field programmable gate arrays (FPGAs) are useful for applications with
bit-level operations. Many reconfigurable computing systems are based on
FPGAs nowadays. Reconfigurable architectures have evolved from FPGAs.
FPGAs consist of a matrix of logic blocks and interconnection network. The
functionality of the logic blocks and the connections in the interconnection
network can be modified by downloading bits of configuration data onto the
hardware.

2.2.2 Medium granularity

The Montium architecture, also known as field programmable function ar-
ray (FPFA), is an example of a word-level reconfigurable data-path. The
architecture consists of multiple interconnected processor tiles. The algo-
rithm domain of the Montium comprises 16-bit DSP algorithms that con-
tain multiply accumulate (MAC) operations. A Montium-tile is designed
to execute highly regular computational intensive DSP kernels.

Figure 2.2 depicts a single Montium processor tile. The hardware or-
ganisation within a tile is very regular and resembles a very long instruction
word (VLIW) architecture. The five identical arithmetic and logic units
(ALU1· · ·ALU5) in a tile can exploit spatial concurrency to enhance perfor-
mance. This parallelism demands a very high memory bandwidth, which is
obtained by having 10 local memories (M01· · ·M10) in parallel. The small
local memories are also motivated by the locality of reference principle. The
ALU input registers provide an even more local level of storage. Locality of

6 Mapping DSP algorithms to a reconfigurable architecture

2.2. Reconfigurable heterogeneous architectures

reference is one of the guiding principles applied to obtain energy-efficiency
in the Montium. A vertical segment that contains one ALU together with
its associated input register files, a part of the interconnect and two local
memories is called a processing part (PP). The five processing parts together
are called the processing part array (PPA). A relatively simple sequencer
controls the entire PPA. The communication and configuration unit (CCU)
implements the interface with the world outside the tile. The Montium
has a datapath width of 16-bits and supports both integer and fixed-point
arithmetic. Each local SRAM is 16-bit wide and has a depth of 512 posi-
tions, which adds up to a storage capacity of 8 Kbit per local memory. A
memory has only a single address port that is used for both reading and
writing. A reconfigurable address generation unit (AGU) accompanies each
memory. The AGU contains an address register that can be modified using
base and modify registers.

Figure 2.2: Montium processor tile

It is also possible to use the memory as a lookup table for complicated
functions that cannot be calculated using an ALU, such as sinus or division
(with one constant). A memory can be used for both integer and fixed-
point lookups. The interconnect provides flexible routing within a tile. The
configuration of the interconnect can change every clock cycle. There are
ten busses that are used for inter-PPA communication. Note that the span
of these busses is only the PPA within a single tile. The CCU is also con-
nected to the global busses. The CCU uses the global busses to access the
local memories and to handle data in streaming algorithms. Communica-
tion within a PP uses the more energy-efficient local busses. A single ALU
has four 16-bit inputs. Each input has a private input register file that can
store up to four operands. The input register file cannot be bypassed, i.e.,
an operand is always read from an input register. Input registers can be
written by various sources via a flexible interconnect. An ALU has two 16-
bit outputs, which are connected to the interconnect. The ALU is entirely
combinatorial and consequentially there are no pipeline registers within the
ALU. The diagram of the Montium ALU in figure 2.3 identifies two differ-
ent levels in the ALU. Level 1 contains four function units. A function unit

Adaptive Wireless Networking (AWGN) 7

Chapter 2. Reconfigurable computing

implements the general arithmetic and logic operations that are available in
languages like C (except multiplication and division). Level 2 contains the
MAC unit and is optimized for algorithms such as FFT and FIR. Levels can
be bypassed (in software) when they are not needed.

Figure 2.3: Montium ALU

Neighboring ALUs can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU neighboring on the
left (the West-output of the leftmost ALU is not connected and the East-
input of the rightmost ALU is always zero). The 32-bit wide East-West
connection makes it possible to accumulate the MAC result of the right
neighbor to the multiplier result (note that this is also a MAC operation).
This is particularly useful when performing a complex multiplication, or
when adding up a large amount of numbers (up to 20 in one clock cycle).
The East-West connection does not introduce a delay or pipeline, as it is
not registered.

2.2.3 Course granularity

General purpose processors (GPPs) can be programmed to perform all kinds
of computational tasks. However, they have to pay for this flexibility with a
high energy consumption. The energy overhead in making the architecture
programmable most often dominates the energy dissipation of the intended

8 Mapping DSP algorithms to a reconfigurable architecture

2.2. Reconfigurable heterogeneous architectures

computation. However, general purpose processors are very good in control
type of applications; e.g. applications with frequent control constructs (if-
then-else or while loops).

Adaptive Wireless Networking (AWGN) 9

Chapter 3

HiperLAN/2 physical layer

3.1 Introduction

In this chapter the implementation of a software defined HiperLAN/2 phys-
ical layer model will be described shortly, based on [2]. The model should
provide insight in the demodulation functions that are necessary in Hiper-
LAN/2 and it should be useful for determining channel selection and compu-
tational requirements for the software defined radio project at the University
of Twente [3]. The model is implemented in Matlab Simulink and uses C++
as descriptive language.

Different important parts in the HiperLAN/2 receiver are considered and
implemented in the model. We will try to map these important parts of the
receiver on a Montium architecture (also known as Field Programmable
Function Array (FPFA)) [4]. Before the mapping can be performed, one
has to know the specifications of all the signals, which have to be processed.

In section 3.2 some knowledge about the physical layer in HiperLAN/2
will be given. The most important receiver algorithms will be discussed
in section 3.3. Once the receiver algorithms are known, one can investi-
gate the computational requirements of these algorithms. In section 3.4 the
computational requirements of these algorithms are studied considering the
computation time, and the number of configurations of the data path. The
consequences of mapping the receiver algorithms on the Montium architec-
ture are studied in section 3.5 of this paper. In section 3.6 we draw a little
conclusion and do some recommendations.

3.2 Physical layer in HiperLAN/2

The task of the physical layer in HiperLAN/2 is to modulate bits that origi-
nate from the data link control layer on the transmitter side and to demod-
ulate them on the receiver side. The transmission format on the physical
layer is a burst, which consists of a preamble and a data part.

Adaptive Wireless Networking (AWGN) 11

Chapter 3. HiperLAN/2 physical layer

The frequency spectrum available to HiperLAN/2 is divided into 19 so
called channels, which are referred as radio channels. Each of those radio
channels has a bandwidth of 20 MHz.

Orthogonal frequency division multiplexing (OFDM) has been chosen as
modulation technique in HiperLAN/2. OFDM is a special kind of multi-
carrier modulation. The modulation technique divides the high data rate
information in several parallel bit streams and each of those bit streams
modulates a separate subcarrier.

The physical layer transmits 52 subcarriers in parallel per radio channel.
Four of the 52 subcarriers are used to transmit pilot tones. Those pilots
assist the demodulation in the receiver.

3.3 Receiver model algorithms

The receiver not only has to convert the received signal to data bits by
performing the inverse of the transmitter, but it also has to try to inverse
distortions caused by the radio channel. The receiver can roughly be divided
into two parts, a time domain part and a frequency domain part.

In the first stage of the receiver, signal functions will be time domain
functions. In the second stage of the receiver, signal functions will be fre-
quency domain functions. Most of the operations can be performed in time
domain and in frequency domain. The location of the functions in the re-
ceiver architecture in [2] is based upon a trade-off between the necessary
resolution that must be reached for a certain correction and the solution
with the minimum number of operations. One also tried to keep the cor-
rections independent of each other by deciding the execution order of the
functions.

A HiperLAN/2 receiver should at least contain the following functions:

• synchronization function

• Frequency offset corrector

• Phase offset corrector

• Channel equalizer

• Inverse OFDM

• De-mapping

• De-interleaving *

• Viterbi-decoder *

• De-scrambling *

12 Mapping DSP algorithms to a reconfigurable architecture

3.3. Receiver model algorithms

Serial to parallel
conversion Prefix removal Inverse OFDM

Phase Offset
Correction

Channel
equalization

Freq. Offset
Correction

Demapping

Synchronization Control Receiver
parameters

Figure 3.1: Demodulator part of the HiperLAN/2 receiver

In [2] one has implemented a HiperLAN/2 receiver with the functions as
given in Figure 3.1. Those functions are being subjected to further research,
in order to map the functions on a Montium architecture. The functions
in the list above that are denoted with an asterisk * are not implemented.
The channel equalization function is partly implemented in the model, in
that it is not adaptive.

3.3.1 Serial to parallel conversion

One OFDM symbol is represented by 80 complex input samples, so once
per 80 samples the receiver will have enough information to demodulate the
received samples and output the resulting bits. The sample rate of the input
signal is 20 MHz, so the duration of an OFDM symbol is 4 µs. The main
modulation part of the receiver, the inverse OFDM, works with parallel
data instead of serial data. Hence a vector of at least 80 samples will be
created, containing the oldest sample at the top of the vector and the newest
sample at the bottom. A cyclic buffer can perform this function efficiently.
We assume that each input sample represents a 16-bit fixed point number.
From [2] however, it is known that 16-bit fixed point samples suffer large
quantization noise, especially while 64-QAM modulation is applied.

3.3.2 Synchronization

A HiperLAN/2 burst is always preceded by a known sequence of special
OFDM symbols, which is called preamble. This preamble can be used to
detect the beginning of an OFDM burst. The synchronization function

Adaptive Wireless Networking (AWGN) 13

Chapter 3. HiperLAN/2 physical layer

signals the controller of the receiver in which operation state the receiver
is. Different states are defined: START, PREAMBLE A, PREAMBLE B,
PREAMBLE C and DATA. These states are indicated by different pream-
bles: PREAMBLE A, PREAMBLE B SHORT, PREAMBLE B LONG and
PREAMBLE C. The patterns of the preambles are known at the receiver
through lookup tables. For each preamble a lookup vector of 64 elements is
defined. Two mechanisms are actually implemented in the synchronization
function:

• Detection of transmission:
the average power of the last 16 input samples is determined.

• Detection of different preambles:
Preamble A and Preamble B are detected using a matched filter of 16
samples. For Preamble A and Preamble B, all 80 samples are used
to detect the preamble. Hence 5 peaks are detected after convolution
(5 × 16 = 80). Preamble C is detected using a filter of 32 samples.
During Preamble C detection only 96 (3× 32 = 96) samples are used,
so only 3 peaks are detected after convolution. The remainder of
Preamble C is used for channel estimation by the channel equalizer.

The output from a matched filter with N samples and two complex
inputs x and y is

output[l] =
1
N

N∑
i=1

x[i]y[l + i]∗ (3.1)

where y∗ denotes the complex conjugate of y.

3.3.3 Prefix removal

The function prefix removal can be divided into several functions:

• Tracking the symbol

• Removing the prefix part from the symbol

The cyclic prefix of a data OFDM symbol contains a copy of the last
16 samples of the useful data part of that symbol. Hence this redundant
information can be used to find the beginning of the symbol. Therefore
the correlation is calculated between 16 samples and 16 samples received 64
samples earlier.

In order to avoid a waste of calculation power to calculate this correlation
for each incoming sample, an estimate is made for the location of the symbol
start. During the search for the symbol start, the length of the cyclic buffer
is set to 96 samples. This gives the symbol window the opportunity to move
eight samples in both directions, since a symbol is only 80 samples long.
The following information is provided to the controller of the receiver:

14 Mapping DSP algorithms to a reconfigurable architecture

3.3. Receiver model algorithms

• Start of symbol:
Index in the cyclic buffer that contains the first sample of the prefix
of the OFDM symbol.

• Decode stop:
Tells the receiver when the next demodulation cycle is due, which is
also an estimate for the start of the next symbol.

• Difference:
The difference between estimate start and found start of symbol. Large
differences tell the controller that synchronization failed.

Because the symbol window is 16 samples larger than the actual symbol,
the outcome of the matched filter has to be determined sixteen times, each
time advancing one sample. A peak in the output of the matched filter
indicates the (temporary) start of the symbol. The expected start of the
next symbol, or decode stop, is set to 88 samples from the start of the
current symbol.

Now the start of the symbol is found, the first 16 samples of the OFDM
symbol can be removed. Those 16 samples are also denoted as prefix and
contain no useful information for the decoding. The last 64 samples in the
useful part of the OFDM symbol are copied to a length 64 cyclic buffer. All
functions after the prefix removal function will operate on the new cyclic
buffer, since it is a waste of calculation power to correct errors in the prefix.

3.3.4 Frequency offset correction

There exists a difference in mix frequencies between transmitter and re-
ceiver, which causes inter-subcarrier interference. Using information that
can be retrieved from the received preamble sections, the receiver can com-
pensate for frequency offsets. The frequency offset is determined in the time
domain. In the time domain a frequency offset causes a phase-shift. Hence
the frequency offset can be determined by taking the phase-shift between a
known and a received signal.

Θ(a, b) = arctan
(<(a)
=(a)

)
− arctan

(<(b)
=(b)

)
(3.2)

The angle between the input samples and known Preamble A is used
to determine the frequency offset, as shown in equation 3.2. For almost
the entire preamble section, the average rotation per sample is calculated
according to the regression line. Only 64 samples of the preamble section
are utilized for determining the rotation per sample.

The frequency offset is corrected by calculating the current rotation of
a sample. The complex samples are then rotated with a negative amount of

Adaptive Wireless Networking (AWGN) 15

Chapter 3. HiperLAN/2 physical layer

that rotation similar to equation 3.3.

<(xcorrected) = <(x) cos(φ)−=(x) sin(φ)
=(xcorrected) = =(x) cos(φ)−<(x) sin(φ)

(3.3)

3.3.5 Inverse orthogonal frequency division multiplexing

64 time domain samples represent the useful data part of the OFDM sym-
bol that has to be demodulated. Before demodulation can take place, the
subcarrier values must be retrieved from the useful data part. This can be
done by applying a fast Fourier transform (FFT) to the vector containing
the 64 samples. The FFT efficiently implements a discrete Fourier transform
(DFT), given in equation 3.4.

f̂n[x] =
N−1∑
m=0

s̃n[m]e−j2π xm
N (3.4)

with x = 0, ..., 63 and

f̂n =
[
0 Ĉn,1 Ĉn,2 ... Ĉn,26 00000000000 Ĉn,−26 ... Ĉn,−2 Ĉn,−1

]
From this vector the 52 subcarrier values can be extracted. In the imple-

mentation of the receiver [2], an in-place FFT has been implemented with
the advantage that the same vector is used for both input and output.

3.3.6 Common phase offset correction

Common phase offset occurs when mixers in transmitter and receiver do
not have the same phase at a given time, under assumption that there is no
frequency offset. The common rotation of the subcarriers can be determined
by calculating the mean rotation of the pilot carriers compared to their
expected values.

Offset =
1
4

(
Ĉnormalized,57

PilotV alue
+

Ĉnormalized,43

PilotV alue
+

Ĉnormalized,7

PilotV alue
+

Ĉnormalized,21

PilotV alue

)
(3.5)

In equation 3.5 the process of determining the common phase offset is
shown. The received subcarrier values Ĉ of the pilots are normalized and
their rotation according to the expected pilot value is determined. normal-
ization is normally performed in the Analog-to-Digital Converter (ADC).
The common rotation is the averaged result over all four pilot tones. Once
the common phase offset is known, one can apply phase offset correction to
all received subcarrier values.

Ĉinput,corrected[l] =
Ĉinput,uncorrected[l]

Offset
(3.6)

16 Mapping DSP algorithms to a reconfigurable architecture

3.4. Computational requirements

In contrast with the frequency offset correction (equation 3.2 and 3.3),
one does not determine the phase offset rotation. Instead of determining
the rotation, one determines a complex scaling factor. Advantage of this
approach is that there are no arctan(), cos() and sin() calculations involved
in the common phase corrections.

3.3.7 Channel equalization

The channel estimator in the receiver model uses Preamble C to determine
an estimation of the channel. The estimate of the channel is determined by
comparing the known Preamble C and the received subcarrier values. The
channel is estimated for 64 samples, which equals the length of the useful
data part.

1
Ĥl

=
−→
C preamble[l]

f̂n[l]
(3.7)

Before de-mapping each subcarrier value is corrected.

Ĉγ =
Ĉγ

Ĥγ

(3.8)

3.3.8 De-mapping

In HiperLAN/2 there are four mapping techniques available: BPSK, QPSK,
16-QAM and 64-QAM. Each of these techniques has a different number of
bits per complex symbol. By way of a lookup table the output bits are
determined. In the lookup table, all possible subcarrier values for a certain
mapping scheme are defined. The most likely symbol that was transmitted
is probably the symbol to which the Euclidian distance in the lookup table
is smallest. In equation 3.9 the definition of the Euclidean distance is given.

|a− b| ≡
√

(<(a)−<(b))2 + (=(a)−=(b))2 (3.9)

To find the nearest subcarrier value to the received subcarrier value,
one compares the received subcarrier value with all subcarrier values in the
lookup table. To each subcarrier value in the lookup table a certain bit
pattern is associated.

For BPSK 2 subcarrier values are stored in the lookup table, for QPSK,
16-QAM and 64-QAM there are stored 4, 16 and 64 subcarrier values, re-
spectively. This method of de-mapping is called hard decision de-mapping.

3.4 Computational requirements

In this section we will give the computational requirements in order to exe-
cute the functions that are given before. We consider the Montium archi-

Adaptive Wireless Networking (AWGN) 17

Chapter 3. HiperLAN/2 physical layer

tecture [4] and assume that the clock frequency of the Montium-tiles is 100
MHz. So one clock cycle has a duration of 10 ns.

3.4.1 Lookup tables

First of all we will look to the size of the lookup tables, which are nec-
essary for the synchronization, frequency offset correction and de-mapping
functions.

Information in lookup table Entries in lookup table
Preamble A 64 complex numbers
Preamble B 64 complex numbers
Preamble C 64 complex numbers

Carrier values BPSK 2 complex numbers
Carrier values QPSK 4 complex numbers

Carrier values 16-QAM 16 complex numbers
Carrier values 64-QAM 64 complex numbers

Table 3.1: Size of information stored in lookup tables

In table 3.1 it is seen that a large lookup table has to be present. Most
lookup tables use 64 complex entries, hence 128 positions in the lookup
table are actually in use. However, the lookup table can be split in a table
containing the real data-part and one containing the imaginary data-part.

3.4.2 Matched filters

In the synchronization and prefix removal functions the preambles are de-
tected with matched filters. In table 3.2 the sizes of the matched filters that
are applied in the different functions are shown.

Detection of Size of matched filter
Preamble A 16 complex samples
Preamble B 16 complex samples
Preamble C 32 complex samples

Prefix 16 complex samples

Table 3.2: Sizes of the matched filters that are applied in different functions

Because the window is 16 samples larger than the actual symbol, the
outcome of the matched filter during prefix-detection has to be determined
16 times, each time advancing one sample. A peak in the consecutive outputs
of the matched filter indicates the start of the OFDM symbol. During the
detection of the prefix a cyclic buffer of length 96 samples is used. After the

18 Mapping DSP algorithms to a reconfigurable architecture

3.4. Computational requirements

CAWEST

ildC

ibA

BZOUT

DZBZ

EASTCAZ

sumD

ilcC

iaA

reallocal

∗=
+=

=
−
=

+=
+∗=

=
+=

=
−

:
][:

][:
2ALU

3:
2:3

:2

:
][:

][:
1ALU

,

Figure 3.2: Calculation of the real part of the cross-correlation with 2 ALUs
in the Montium

CAWEST

ildC

iaA

BZOUT

DZBZ

EASTCAZ

sumD

ilcC

ibA

imaginarylocal

∗=
+=

=
−
=

+=
+∗=

=
+=

=
−

:
][:

][:
4ALU

3:
2:3

:2

:
][:

][:
3ALU

,

Figure 3.3: Calculation of the imaginary part of the cross-correlation with
2 ALUs in the Montium

prefix is detected, the useful part of the OFDM symbol is copied to a cyclic
buffer of length 64.

In equation 3.1 the cross-correlation between two complex vectors is de-
fined. During matched-filtering the cross-correlation is determined in order
to detect preambles and prefixes. One possible way to implement the cross-
correlation function in the Montium-structure is a separate approach of
calculating the real-part and the imaginary-part of the correlation, which is
shown in figure 3.2 and 3.3.

We assume x[i] = a[i] + jb[i] and y[i] = c[i] + jd[i]. So with 4 ALUs one
can determine the real and imaginary part of the complex cross-correlation.
In order to result in one valuable output, one has to determine the absolute
value of the complex cross-correlation and also a scaling factor 1/N has to be
applied. Since square root calculations are computationally complex, we will
determine the squared absolute value of the cross-correlation instead of the
absolute value. Hence the square root calculation is avoided. Scaling with

Adaptive Wireless Networking (AWGN) 19

Chapter 3. HiperLAN/2 physical layer

1/N is also neglected, since it only scales the output of the cross-correlation
calculation. However, the shape of the correlation function will remain the
same, so peaks can still be detected.

Considering the complex cross-correlation one can conclude that 4 ALUs
are utilized in order to perform a cross-correlation calculation of one sample.
When the complex cross-correlation of N samples has to be calculated, this
calculation will spend N + 1 clock cycles. The real part and the imaginary
part of the sum can be calculated in parallel using 4 ALUs. When the entire
sum for all N samples is calculated, one has to change the configuration of
the ALUs in order to calculate the squared absolute value of the complex
correlation. This operation will absorb an extra clock cycle. In total 2
different ALU configurations are used to perform the complex correlation.
A summary of the requirements for complex cross-correlation is given in
table 3.3.

clock cycles N + 1
ALU configurations 2
tiles 1

Table 3.3: Requirements for a complex correlation of N samples on the
Montium architecture

3.4.3 Frequency offset correction

The estimation function of the frequency offset utilizes 64 samples of Pream-
ble A to determine the average rotation per sample. Hence the phase shift
between the received sample and the known preamble sample has to be de-
termined 64 times. When the average rotation per sample is determined,
each sample can be corrected with a certain phase-rotation. Disadvantage
of this approach is that arctan(), sin() and cos() calculations are applied.

The regression slope is defined as:

N
N−1∑
i=0

x[i]y[i]−
N−1∑
i=0

x[i]
N−1∑
i=0

y[i]

N
N−1∑
i=0

x2[i]−
(

N−1∑
i=0

x[i]

)2

Herein y[i] is the measured rotation between the received sample and
the expected preamble value, Θ (−→v preamble[i],−→v input[i]). x[i] is the sample
index and N is the number of samples that are used. The equation can be
simpflified to:

20 Mapping DSP algorithms to a reconfigurable architecture

3.4. Computational requirements

64
63∑
i=0

iΘ(−→v preamble[i],−→v input[i])− 2016
63∑
i=0

Θ(−→v preamble[i],−→v input[i])

1397760

Not the entire preamble section is used for estimating the frequency
offset. The first 16 samples of the preamble are neglected, while they can
contain inter-preamble interference.

One should investigate if the complex divisions can be performed with
lookup tables. Furthermore one has to know how these lookup tables can
be used. We have to compare lookup tables that are initialized with in-
verse complex numbers or with angle information. In this way we assume a
complex division as a multiplication with the inverse of the complex number.

3.4.4 Fast Fourier Transform

The inverse orthogonal frequency division multiplexing is just a 64-FFT
operation. This operation is performed by radix-2 butterflies and consumes
64 log2(64) complex multiplications. On the Montium structure the 64-
FFT can be performed in

(
64
2 + 1

)
log2(64) clock cycles.

log2(64) + 4 different memory configurations are used to perform the
64-FFT on the Montium and 8 different crossbar configurations have to be
used. There is only 1 ALU configuration required, since for each operation
the same radix-2 structure (butterfly) is used.

The FFT algorithm can be performed with 4 ALUs and 10 memory
banks, which corresponds to one Montium-tile, as given in table 3.4. From
[4] we know that there can exist 64 possible memory configurations and 64
possible crossbar configurations in one design.

clock cycles 198
crossbar configurations 8
memory configurations 10
ALU configurations 1
tiles 1

Table 3.4: Requirements for 64-FFT on the Montium architecture

3.4.5 Common phase offset correction

In order to estimate the common phase offset, one determines the mean
rotation of the pilot carriers compared to their expected values. For every
OFDM symbol the expected pilot values can be calculated. The pilot se-
quence can be created with the generation polynomial:

Adaptive Wireless Networking (AWGN) 21

Chapter 3. HiperLAN/2 physical layer

X7 ⊕X4 ⊕ 1

⊕ denotes a modulo two adder, which is also known as an “exclusive or”.
X1...7 represents the state of the scrambler.

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

Output bit

Input bit

X[1] X[2] X[3] X[4] X[5] X[6] X[7]

modulo two adder

Figure 3.4: Scrambler of HiperLAN/2 physical layer

The scrambler should be initialised with all 1’s and a 1 in the output
should be replaced by ’-1’ and a 0 should be replaced with ’1’. The replace-
ment of 1 and 0 can be characterised by a function:

pilot = −2× output + 1

During each OFDM symbol, the internal state of the scrambler has to
be stored in memory, which requires 7 entries in the memory. It is certainly
preferred to perform the pilot generation in a FPGA, because only single
bits are involved in the process instead of complete words.

For each received pilot value the rotation is derived by dividing the
normalized complex received value by the expected value. Where the nor-
malization of a complex value is defined as:

z = a + jb ⇐⇒ znorm =
z

|z|
=

a + jb√
a2 + b2

Normally the normalization is performed by the ADC, which translates the
signal value from the analog to the digital domain.

The expected value can be 1 or -1. The average of all four rotations is
determined and used for correction. Now every of the 64 complex values
is compensated, whereby every value is divided by a scaling factor (as seen
in equation 3.6). Just like frequency offset correction, one has to deal with
complex divisions. In table 3.5 a summary of the requirements is given.

3.4.6 Channel equalization

The channel equalization function determines the inverse channel transfer of
every sample independently. Each complex value of the received Preamble
C is divided by the corresponding expected Preamble C value, which results
in a scaling factor. So the scaling factor is different for each index. Each

22 Mapping DSP algorithms to a reconfigurable architecture

3.4. Computational requirements

Common phase offset # complex divisions
normalization of input samples 4
Phase offset estimation per OFDM symbol 4
Phase offset correction per OFDM symbol 64

Table 3.5: Computational requirements for phase offset correction in Hiper-
LAN/2

complex value of the useful part of the OFDM value is corrected with the
scaling factor that corresponds to its index.

For each OFDM burst one has to calculate 64 scaling factors, which is in
fact the inverse transfer function of the channel. Furthermore each complex
value of the useful part of the OFDM symbol has to be divided by the scaling
factor, which requires 64 complex divisions.

Channel equalization # complex divisions
Channel estimation per burst 64
Channel correction per OFDM symbol 64

Table 3.6: Computational requirements for channel equalization in Hiper-
LAN/2

3.4.7 De-mapping

The de-mapping in the model is implemented as hard decision de-mapping.
In HiperLAN/2 there are four modulation schemes available: BPSK, QPSK,
16-QAM and 64-QAM. The hard output bits are determined by comparing
the soft output values with values in a lookup table. In table 3.1 the size
of the lookup table for the different modulation schemes is given. The most
likely symbol that was transmitted is probably the symbol to which the
Euclidean distance in the lookup table is smallest.

Depending on the used modulation scheme, one has to determine the
Euclidean distance 2, 4, 16 or 64 times for BPSK, QPSK, 16-QAM or 64-
QAM, respectively. From these Euclidean distances one has to determine
the minimum value (table 3.7). The hard output bits are equal to the index
of the minimum value in the lookup table (when the lookup table is well
initialised).

The consumption time of the de-mapping function can however be re-
duced, while one first determines in which quadrant the received soft-value
is situated. After that one has only to determine the Euclidean distances in
that corresponding quadrant. Hence, the time during calculation is reduced
by a factor 4 as seen in table 3.8.

Adaptive Wireless Networking (AWGN) 23

Chapter 3. HiperLAN/2 physical layer

Modulation scheme # Euclidean distance # minimum
calculations calculations

BPSK 2 2
QPSK 4 4
16-QAM 16 16
64-QAM 64 64

Table 3.7: Computational requirements for full de-mapping in HiperLAN/2

Modulation scheme # Euclidean distance # minimum
calculations calculations

BPSK 1 1
QPSK 1 1
16-QAM 4 4
64-QAM 16 16

Table 3.8: Computational requirements for (reduced) de-mapping in Hiper-
LAN/2

In equation 3.9 the definition for calculating the Euclidean distance is
given. Calculating the Euclidean distance requires a square root calculation.
Since the Euclidean distance is only calculated for determining the minimum
Euclidean distance, it is also allowed to determine the minimum value of
the squared Euclidean distance. In this way the square root calculation is
overruled.

Using 2 ALUs one can calculate the squared Euclidean distance between
the known complex value and the soft output of the FFT function. When all
these distances are determined, one has to determine a minimum distance,
which can be performed with 1 ALU that is comparing all distances in a
certain amount of clock cycles. However, the translation from the minimum
distance to the memory address will generate heavy problems. Hence, the
memory address corresponds to the hard output bits.

During one clock cycle one can perform two Euclidean distance calcula-
tions using one tile at the Montium-architecture.

In figures 3.5 and 3.6 a possible mapping of finding the smallest local,
squared Euclidean distance is shown. Within one Montium-tile one can
determine two squared Euclidean distances in parallel using 4 ALUs. The
fifth ALU in the Montium-tile can be used to determine the minimum of
the calculated distances. First the minimum from the outputs of ALU-1
and ALU-3 is determined. Hereafter this obtained minimum is compared
to the local minimum, which is obtained in foregoing clock cycles. Using
the mapping, given above, one can perform the searching for minimum Eu-

24 Mapping DSP algorithms to a reconfigurable architecture

3.4. Computational requirements

32

133

122

11

32

133

122

11

:

::

::

)()(::
2ALU

:

::

::

)()(::
1ALU

zzWEST

zzf

zzf

bazf

EASTzzOUT

zzf

zzf

bazf

∗=
=
=

ℑ−ℑ=
−

+∗=
=
=

ℜ−ℜ=
−

Figure 3.5: Calculation of the squared Euclidean distance with 2 ALUs in
the Montium

3

2133

mumlocal_mini22

2111

2

1

:

),min(::

::

),min(::
5ALU

:
3ALU

:
1ALU

zOUT

zzzf

dzf

ddzf

dOUT

dOUT

=
=

=
=

−
=

−
=

−

Figure 3.6: Determination of the minimum Euclidean distance within 1
Montium-tile

Adaptive Wireless Networking (AWGN) 25

Chapter 3. HiperLAN/2 physical layer

clidean distance in 1, 2, 8 or 32 clock cycles for BPSK, QPSK, 16-QAM or
64-QAM, respectively. When the quadrant of the complex plane is consid-
ered, the computation time can be reduced by a factor 4. The requirements
for de-mapping one complex value while considering the quadrant in the
complex plane is shown in table 3.9. Since each OFDM symbol consists of
48 complex values, the computation time of the entire OFDM symbol is 48
times larger than the numbers given above.

Modulation scheme # clock cycles
BPSK 1
QPSK 1
16-QAM 2
64-QAM 8

Table 3.9: Computational requirements for de-mapping one complex value
in HiperLAN/2

3.5 Clustering receiver algorithms

Mapping the HiperLAN/2 receiver algorithms on the Montium architecture
requires knowledge of the typical HiperLAN/2 symbol durations. In section
3.4 we have discovered the typical computational requirements of these al-
gorithms. Furthermore we discovered that all algorithms can be mapped
on one tile. In table 3.10 we will summarize the time consumption of all
the algorithms, while they are performed on a single tile and the number of
ALU configurations that are utilized.

Functional block # clock cycles # ALU Computation time
configurations @ 100 MHz [µs]

Prefix removal 272 2 2.72
Frequency offset correction 64 2? 0.64
Inverse OFDM 198 1 1.98
Phase offset correction 128 2? 1.28
Channel equalization 64 2? 0.64
De-mapping 48 – 384 1 0.48 – 3.84
synchronization and control ? ? ?

Table 3.10: Computational requirements of HiperLAN/2 receiver algorithms
mapped on the Montium architecture

One major property of signaling in HiperLAN/2 physical layer is the as-
pect of OFDM symbols. All operations in the physical layer are performed

26 Mapping DSP algorithms to a reconfigurable architecture

3.6. Conclusion and discussion

on these OFDM symbols. An OFDM symbol has a fixed length of 80 sam-
ples. Hence, at a sample rate of 20 MHz the duration corresponds to 4 µs.
One should assure that each 4 µs a new OFDM symbol can be processed.

In the foregoing part we already discovered that the receiver algorithms
need 2 ALU configurations at most, when performed on a single tile. The
complete receiver processing would require about 11 µs excluding the syn-
chronization and control processing. Hence, one OFDM symbol can not
completely be processed by all receiver algorithms within its duration of 4
µs. So scheduling of tasks on different tiles has to be performed. From
the table can be seen that only 10 ALU configurations are required for per-
forming all receiver algorithms. Based on the information of the Montium
architecture [4], the complete HiperLAN/2 receiver can be mapped on a sin-
gle tile; up to 64 ALU configurations can be stored in the ALU configuration
register. Because of timing constraints, while each 4 µs an OFDM symbol
has to be processed, 3 Montium-tiles are required in order to perform all
receiver processing. Different tasks have to be scheduled over these 3 tiles.
Extra tiles have to be used in order to perform the synchronization and
control part of the receiver.

3.6 Conclusion and discussion

We have analysed the receiver part of the HiperLAN/2 physical layer. Differ-
ent functions in the receiver are considered. The description in this chapter
is all based on a model. For each function we tried to describe the char-
acteristics that are important while mapping onto reconfigurable hardware.
During the mapping of the functions, we have only considered the Montium
architecture. For each function we tried to give some general rules in order
to map that function onto the architecture.

There are some foreseen problems, mostly with square root calculations
that are involved in the magnitude calculations of complex values. More-
over the mapping of divisions can be difficult. Especially the frequency
offset correction and phase offset correction could suffer from this, so maybe
these functions could be better performed in General purpose processors
completely or partly. Another possibility of performing (complex) divisions
is utilization of lookup-table functionality in the Montium-tile.

Adaptive Wireless Networking (AWGN) 27

Chapter 4

Bluetooth physiscal layer

4.1 Introduction

In this chapter we will study the Bluetooth communication system. We
will discover the typical functional blocks in the communication system and
investigate the requirements for implementing the receiver of this system in
reconfigurable hardware. The discussion in this paper will be partly based on
the results of the SDR project of the University of Twente [3], furthermore
the design approach of the Chameleon project will be used [1].

In section 4.2 the behaviour of the Bluetooth physical layer will be dis-
cussed. The Bluetooth protocol stack will be shown and for the lower rel-
evant layers the most relevant properties will be shown. We are mostly
interested in the Radio processing layer, but to understand its functioning
one also has to known the most important properties of the higher layers.
Therefore the Baseband layer is also discovered. In section 4.3 the Blue-
tooth communication model is shown with all its processing mechanisms in
the receiver. Once we know which functions have to be performed, we will
go into detail and focus on the computational requirements of these receiver
functions in section 4.4. The implementation of an Bluetooth receiver in
the Montium architecture is studied in section 4.5. Based on the compu-
tational requirements, like sample rate, possible implementations show that
a Bluetooth receiver can be implemented on a Montium-tile. Finally the
achieved results, like processing delay and number of ALU configurations,
are discussed in section 4.6. In section 4.7 a concluding summary is given.

4.2 Physical layer in Bluetooth

The task of the physical layer in Bluetooth is to modulate bits that origin
from the data layer on the transmitter side and to demodulate them on the
receiver side, and vice versa.

The Bluetooth system consists of a radio unit, a link control unit and

Adaptive Wireless Networking (AWGN) 29

Chapter 4. Bluetooth physiscal layer

a support unit for link management and host terminal interface functions
(figure 4.1). All radio processing is performed in the radio unit. The link
controller carries out the baseband protocols and low-level link routines.
Link layer messages for link set-up and control are handled by the link
manager.

Bluetooth
Radio

Bluetooth
Link

Controller

Bluetooth
Link

Manager

Figure 4.1: Functional blocks in the Bluetooth system

Figure 4.2: The Bluetooth protocol stack

In figure 4.2 the Bluetooth protocol stack is shown. We are especially
interested in the two lower layers:

• The RF layer, specifying the radio parameters:

– air interface
– modulation

• The Baseband layer, specifying the lower-level operations at the bit
and packet levels:

30 Mapping DSP algorithms to a reconfigurable architecture

4.2. Physical layer in Bluetooth

– speech coding

– HEC-, FEC-operations

– CRC calculations

– scrambling, descrambling

– encryption, decryption

– sequencing of frequency hopping

4.2.1 RF layer

The frequency spectrum available to Bluetooth is positioned in an unlicensed
radio band that is globally available. This band, the Industrial, Scientific,
Medical (ISM) band, is centered around 2.45 GHz. In most countries of
the world1, free spectrum is available from 2400 MHz to 2483.5 MHz. The
frequency spectrum is divided into 79 so called channels, which are referred
as radio channels. Each of those radio channels occupies a bandwidth of
1 MHz.

In the ISM band, the signal bandwidth of the Bluetooth system is limited
to 1 MHz. For robustness, a binary modulation scheme was chosen. With
the mentioned bandwidth restriction, the data rates are limited to about
1 Mbps. Bluetooth uses Gaussian-shaped frequency shift keying (GFSK)
modulation with a nominal modulation index of k = 0.32. Logical ones
are sent as positive frequency deviations, logical zeros as negative frequency
deviations. Demodulation can simply be accomplished by a limiting FM
discriminator. This modulation scheme allows the implementation of low-
cost radio units.

4.2.2 Baseband layer

Frequency Hopping Spread Spectrum

Bluetooth is based on Frequency-hopping(FH)-CDMA, which is also known
as Frequency Hopping Spread Spectrum. In the 2.45 GHz ISM band, a
set of 79 hop carriers has been defined at a 1 MHz spacing2. The channel
is a hopping channel with a nominal hop dwell time of 625 µs. In the
time domain, the channel is divided into slots. The minimum dwell time of
625 µs corresponds to a single slot. To simplify implementation, full-duplex
communication is achieved by applying time-division duplexing (TDD). This
mean that a unit alternately transmits and receives data. The transmission
and reception of data takes place at different hop carriers. The master
starts data transmission only in even numbered slots, while slaves start
transmitting in odd numbered slots.

1In France and Spain the bandwidth of the free spectrum is smaller.
2Currently, for France and Spain a reduced set of 23 hop carriers has been defined [5].

Adaptive Wireless Networking (AWGN) 31

Chapter 4. Bluetooth physiscal layer

Packet-based communications

The Bluetooth system uses packet-based transmission: the information stream
is fragmented into packets. In each slot, only a single packet can be sent.
All packets have the same format, starting with an access code, followed by
a packet header, and ending with the user payload.

There are different types of packets that are used to define packets for
synchronous and asynchronous services, which are divided in segments:

• Segment 1, specifies packets that fit into a single slot

• Segment 2, specifies 3-slot packets

• Segment 3, specifies 5-slot packets

Multi-slot packets are sent on a single-hop carrier. The hop carrier that
is valid in the first slot is used for the remainder of the packet; therefore there
is no frequency switch in the middle of the packet. After the packet has been
sent, the hop carrier as specified by the current master clock value is used,
as seen in figure 4.3. Note that only an odd number of multi-slot packets
has been defined, which guarantees that the TX/RX timing is maintained.

The Bluetooth link supports both synchronous communication, such as
voice traffic, and asynchronous communication, such as bursty data traffic.
Two physical link types have been defined:

• Synchronous connection-oriented (SCO) link

• Asynchronous connection-less (ACL) link

The SCO link is a point-to-point link between the master and a single
slave. The link is established by reservation of duplex slots at regular inter-
vals. The ACL link is a point-to-multi-point link between the master and
all the slaves. The slotted structure of the radio channels allows effective
mixing of synchronous and asynchronous links.

4.3 Bluetooth communication model

The baseband communication in the Bluetooth system is very simple. The
data to be transmitted is stored in a buffer, and in the radio interface the
Baseband processing and radio processing are done. In the receiver similar
processing has to be done, radio processing and Baseband processing are
done and afterward the information is stored in a buffer. So the RF layer
and the Baseband layer are covered by the radio interface. In for example
[6] is seen that in a Software Defined Radio system the Radio Frequency
(RF) processing is performed in analog hardware. Modulation and channel
filtering is however performed in the digital domain. Channel selection is

32 Mapping DSP algorithms to a reconfigurable architecture

4.3. Bluetooth communication model

Figure 4.3: The frequency and timing characteristics of single-slot, three-
slot, and five-slot packets

not yet discussed in this chapter, however it should be implemented since it
conveys the aspects adaptability and reconfigurability in SDR environments
[7].

b
u
ff
e

r

radio

interface

radio

channel

radio

interface b
u
ff
e

r

Figure 4.4: The Bluetooth communication model

4.3.1 Bluetooth transmitter

In the transmitter part, the binary signal is pulse-shaped by using a Gaussian
filter. The train of Gaussian pulses is afterward Frequency Modulated. The
resulting transmitted signal conveys all its information in the frequency
deviation of the signal.

4.3.2 Bluetooth receiver

In the receiver part, the transmitted radio signal is converted back into a
binary NRZ signal. The radio signal, which is received, conveys all its in-
formation in the frequency deviation of the signal. One possible way to
demodulate a FM signal is by way of FM-to-AM conversion, which is also
called a FM-discriminator. The FM-discriminator allows the implementa-
tion for low-cost radio units, which is essential for Bluetooth systems. In
the FM-discriminator, which is shown in figure 4.5, the received signal is
multiplied with its delayed version. After FM-to-AM conversion, the signal

Adaptive Wireless Networking (AWGN) 33

Chapter 4. Bluetooth physiscal layer

is passed through a Low Pass Filter and finally the consecutive bits are de-
tected by a threshold detector. The threshold detector is not shown in figure
4.5. The Low Pass Filter is just a FIR (Finite Impulse Response) filter. The
FIR filter applies multiply and accumulate operations as seen in figure 4.6.

ô

LPF
x(t) y(t) d(t)

Figure 4.5: Block diagram of the FM-discriminator

z-1 z-1 z-1

c0 c1 c2 cn

yk

dk

Figure 4.6: Finite Impulse Response filter

4.4 Computational requirements

In this section we will give the computational requirements in order to exe-
cute the functions in the receiver of the RF layer and Baseband layer. The
requirements are partially extracted from the results of the SDR project [3].

4.4.1 Receiver

The operations in the FM-receiver can be divided into three processes. The
operations are performed on a Bluetooth signal (x(t) in figure 4.5) with a
sample rate of 10 MSPS [7]:

• a multiplication process, wherein the Bluetooth signal is multiplied
with a delayed version. The signal has to be delayed τ = 1

4fc
seconds

[8]. When the center frequency, fc, of the Bluetooth signal is 2.5 GHz,
one has to set the delay, τ , to 100 ns. The sample rate of the Bluetooth
signal in the SDR testbed is equivalent to 10 MSPS. Consequently, the
signal has to be delayed by 1 sample time.

34 Mapping DSP algorithms to a reconfigurable architecture

4.5. Implementation

• a multiply and accumulate process, wherein FIR filtering is performed.
The FIR filter is applied in order to pass the slowly varying AM signal
with a frequency of 1 MHz and to block all high frequencies that occur
due to multiplication. Actually the FIR filter, as depicted in figure
4.5, operates at a sampling rate of 10 MSPS, however it is sufficient
to operate at a sample rate of 1 MSPS.

• a decision process, wherein decisions about the received bit value are
taken. For the threshold detector it is sufficient to operate at a sample
rate of 1 MSPS, since the bit rate of the Bluetooth communication
system is 1 Mbps. As a consequence, the threshold detector has to
perform its bit decisions dependent on only 1 sample per bit, while at
a sample rate of 10 MSPS 10 samples can be used to make a decision
of bit value.

Oversampling of the Bluetooth signal, x(t) in figure 4.5, has only been
done to obtain an accurate delay for the first multiplication process. After
that process, the higher sample rate is not necessary anymore and decima-
tion of the sample rate could be applied. The sample rate of the signals
after multiplication, y(t) and d(t), could be reduced by a factor 10, since
the bit rate of the Bluetooth system is 1 Mbps. However, decimation of the
Bluetooth signal, y(t) or d(t) yields large consequences:

• Decimation of y(t)
yields less multiply and accumulate operations for the FIR filter in
a certain time interval. When decimation of y(t) is performed, the
real-time performance in terms of time consumption improves. After
decimation by a factor 10, one can increase the number of filter coeffi-
cients by a factor 10 and consequently the computation time remains
the same.

• Decimation of d(t)
yields less samples per bit in order to make a decision about the bit
value. The FIR filtering is performed at the oversampled rate, for
real-time performance however, less filter coefficients can be applied
in the same real-time computation interval.

4.5 Implementation

We will now focus on the implementation of the receiver functions in a Mon-
tium architecture [4]. However, the Bluetooth receiver can be implemented
in other embedded architectures, like FPGA or General Purpose Processors,
as well.

Adaptive Wireless Networking (AWGN) 35

Chapter 4. Bluetooth physiscal layer

4.5.1 FM-discriminator

In the FM-discriminator (figure 4.5) the incoming FM signal is multiplied
with its delayed version. Since the incoming signal is sampled at a frequency
of 10 MHz, the signal only has to be delayed with one sample time under
the assumption that the center frequency of the incoming signal is 2.5 GHz.

In one Montium-tile one can perform 5 multiplications in parallel. An
advantage of the Bluetooth FM signals is that all sample values represent
real numbers. Consequently, 5 real multiplications can be calculated in one
clock-cycle.

The processing time of the FM-discriminator depends on the amount of
samples that has to be processed at the initialization phase; the FIR filter
has to be initialized with an amount of samples that is equal to the number
of taps.

Suppose that a FIR filter with 10 taps is employed, so 10 sample values
have to be generated by the FM-discriminator, before the FIR filter is ini-
tialized. Since the incoming FM modulated signal has to be delayed with
one sample time, 10 + 1 samples have to be loaded in the local memory
before the signal processing can start.

4.5.2 FIR filter

The length of the FIR filter, used in the FM-discriminator, is not variable.
However, in a Montium-tile one can perform a FIR filter with a maximum of
2560 taps. In all ALUs multiply and accumulate operations are performed.
In figure 4.7 and 4.8 possible mappings of a FIR filter onto a Montium-tile
are shown. Both implementations of the FIR filter yield identical results,
but the computation delay of both alternatives differs. Utilizing the EAST-
WEST interconnect between the ALUs gains 1 clock cycle while performing
FIR filtering. However, the impact of utilizing the EAST-WEST intercon-
nect is not known, but it is suggested that the interconnect can affect the
overall clock frequency of the Montium-tile.

When there are no EAST-WEST interconnects applied, each ALU has
to store its temporary result (sumx). When the multiply and (partially)
accumulate process is finished, the temporary results of all ALUs have to be
collected and summed. This addition of the temporary accumulated results
requires one extra clock cycle. Depending on the implementation without
or with EAST-WEST interconnect, FIR filtering with N coefficients can be
performed in N

5 + 2 or N
5 + 1 clock cycles, respectively.

Both implementations of the FIR filter can be applied in ’streaming
mode’ or in ’block mode’.

• In ’streaming mode’ the FIR filtering is applied onto an information
flow. The coefficients of the FIR filter are stored in memory, and also

36 Mapping DSP algorithms to a reconfigurable architecture

4.5. Implementation

BZOUT

DZBZ

CAZ

sumD

icC

ixA

3:

2:3

:2

:

][:

][:

1ALU

1

=

+=

*=

=

=

=

-

Figure 4.7: FIR filter implemen-
tation with 5 ALUs and without
EAST-WEST interconnect in the
Montium

CAW E ST

icC

ixA

E A STCAW E ST

icC

ixA

BZO U T

DZBZ

E A STCAZ

sumD

icC

ixA

*=

=

=

-

+*=

=

=

-

=

+=

+*=

=

=

=

-

:

][:

][:

5A L U

:

][:

][:

2 /3 /4A L U

3:

2:3

:2

:

][:

][:

1A L U

1

Figure 4.8: FIR filter implementa-
tion with 5 ALUs and with EAST-
WEST interconnect in the Mon-
tium

the corresponding input samples of the information flow are stored in
memory.

• In ’block mode’ the FIR filtering is applied onto a block of information
samples, this block can have a maximum length of 5 × 512 = 2560
values.

4.5.3 Threshold detector

In the threshold detector one has to decide if a ’0’ or ’1’ is received. The
output of the FIR filter depends on the frequency deviation in the received
Bluetooth signal. The signal at the output of the FIR filter varies between
−1 and +1. This signal has to be translated into ’received’ bits, by applying
these rules:

if x > 0 then bit:=1
if x ≤ 0 then bit:=0

Adaptive Wireless Networking (AWGN) 37

Chapter 4. Bluetooth physiscal layer

These rules are implemented in the Montium architecture using the
code in figure 4.9. A decision of a bit value is performed using one ALU
and takes only one clock cycle. The actual bit output is determined by the
status information of the function unit.

Azf

idA

=

=

-

::

][:

1ALU

11

Figure 4.9: Threshold detector implementation with 1 ALU in the Montium

4.6 Clustering receiver algorithms

Mapping the Bluetooth receiver algorithms on the Montium architecture
requires knowledge about the typical Bluetooth symbol timing. In section
4.2.2 we have seen that there are defined single slot, 3-slot and 5-slot packets,
which have a duration of 625 µs, 1.875 ms and 3.125 ms, respectively.
Actually the slots are not completely occupied by the packets. A single slot
packet has a length of 366 bits at maximum, and therefore has a duration of
366 µs. The length of a 3-slot packet is at most 1626 bits, which corresponds
to 1.626 ms, and for a 5-slot packet the length is 2870 bits at maximum,
which is equal to a duration of 2.87 ms.

From these values of the packet lengths, one can conclude that it should
be useful to perform the receiver functions in ’streaming’ mode. This means
that the processing of the receiver functions starts immediately, and does not
wait till a complete packet has been loaded into the local memory. Especially
when the incoming Bluetooth signal is oversampled, one has to process large
amounts of samples, which requires a large initialization phase in order to
load all data in the local memory of the processors. Secondly, a 10 times
oversampled 5-slot packet requires 28700 memory positions to store all bits.
As a consequence at least 6 Montium-tiles have to be used in order to store
the complete 5-slot packet in memory. This approach will be extremely
inefficient in multiple ways.

In table 4.1 we will summarize the time consumption of all the algo-
rithms, while they are performed on a single tile and the number of ALU
configurations that are utilized. The processing delays in the table are given
while processing is done for a single sample. During initialization of the
receiver one has to load N + 1 samples in the local memory before the
processing can start. This initialization phase will consume ceil{N

5 } + 1
clock cycles extra (the ceiling value function, ceil{x}, computes the smallest

38 Mapping DSP algorithms to a reconfigurable architecture

4.7. Conclusion and discussion

integer not less than x).

Functional block # clock cycles # ALU Computation time
configurations @ 100 MHz [ns]

FM-discriminator 1 1 10
N-taps FIR filter ceil{N

5 }+ 2 2 ceil{N
5 } × 10 + 20

ceil{N
5 }+ 1 2 ceil{N

5 } × 10 + 10
Threshold detector 1 1 10

Table 4.1: Computational requirements of Bluetooth receiver algorithms
mapped on the Montium architecture

4.7 Conclusion and discussion

We have analysed the receiver part of the Bluetooth physical layer. Differ-
ent functions in the receiver are considered. For each function we tried to
describe the characteristics that are important while mapping onto reconfig-
urable hardware. During the mapping of functions, we have only considered
the Montium architecture. For each function we tried to give some general
rules in order to map that function onto the architecture.

The Bluetooth receiver showed to be a fairly simple signal processing
part, which can be implemented in a Montium architecture quite well.
When the signal processing is applied in ’streaming’ mode, the computation
delays of the different receiver parts seem to be some clock cycles.

During analysis of the Bluetooth receiver we have assumed that channel
selection of the right Bluetooth channel was already performed. Since chan-
nel selection conveys both adaptivity and reconfigurability, we have to study
the channel selection mechanisms in Bluetooth receivers as well. Channel
selection is extremely dynamic while for each slot a different subcarrier has
to be selected. Consequently, one has to adapt the local oscillator and band-
pass filter every 625 µs [7].

Adaptive Wireless Networking (AWGN) 39

Chapter 5

Conclusion and
recommendations

5.1 Conclusion

In this report we have analysed the feasibility of implementing communica-
tion systems in reconfigurable hardware. In the Adaptive Wireless Network-
ing (AWGN) project we will utilize a dynamically reconfigurable heteroge-
neous architecture for implementation of multiple communication systems.
The architecture is heterogeneous is this sense that digital signal process-
ing is performed in general purpose processors, bit-level reconfigurable parts
and word-level reconfigurable parts.

Two different communication systems have been examined. A rather
complex wireless LAN communication system, the HiperLAN/2 standard,
and a less complex communication system, the Bluetooth standard.

The physical layer of the HiperLAN/2 system is discussed and the func-
tionality of an HiperLAN/2 receiver is described using a Software Defined
Radio (SDR) view. For all functions in the receiver we described the char-
acteristics that are important while mapping onto reconfigurable hardware.
During the mapping of the functions, we have only considered the Mon-
tium architecture. In order to perform all receiver processing (excluding
the synchronization and control processing part), 3 Montium-tiles are re-
quired, when we assume the tiles to run at a clock frequency of 100 MHz.
We estimated the processing delay in the receiver of one OFDM symbol to
be about 11 µs.

For the Bluetooth communication system we have also analysed the re-
ceiver’s functionality in the physical layer. The Bluetooth receiver showed
to be a fairly simple signal processing part, which can be implemented in a
Montium architecture quite well. The computation delays of the different
receiver parts seem to be a few clock cycles. The processing of one received
bits takes about 130 ns, when a FIR filter with 50 coefficients is applied and

Adaptive Wireless Networking (AWGN) 41

Chapter 5. Conclusion and recommendations

the clock frequency of the Montium-tile is 100 MHz.

5.2 Recommendations and future work

While studying the feasibility of implementing the HiperLAN/2 receiver in
the Montium architecture, we discovered some problems. The problems
concern mostly square root calculations that are involved in the magnitude
calculations of complex values. Moreover the mapping of divisions can be
difficult. However, either in software running on a general purpose processor
performing divisions should be rather computational complex and intensive.
We have to do more research on the functionality needed for divisions and
square root calculations. Possible solutions of applying divisions and square
root calculations can be the use of lookup tables or the use of general purpose
processors. While suggesting implementations of the Bluetooth receiver, we
have not considered the channel selection functionality in the physical layer.
However the channel selection mechanism is very dynamic, while the sub-
carrier that contains the information is changing at most every 625 µs, and
therefore it would show a perfect example of adaptivity and reconfigurabil-
ity in reconfigurable hardware. The channel selection mechanism should be
studied in detail and implementations should be suggested in order to make
the dynamically reconfigurable Bluetooth receiver complete.

Although we have studied some communication systems in a Software
Defined Radio perspective, we have not focused on all details.

• First of all, only two different communication standards are subjected
to our study. Those two communication standard have been selected,
because they are already part of ongoing research at the University
of Twente [3]. The output of this research is used to get an idea
of all functionality needed in the reconfigurable architecture. How-
ever, in future we will also subject a UMTS communication system
to our study with typical functions like RAKE-receivers and Turbo-
encoders/decoders. Such a communications system is already under
research at the University of Twente [1].

• On the other hand, some rough estimations about the number of uti-
lized processing parts are being made. However, the estimations only
yield for a specific case with fixed parameters. It would be useful
to develop a simulator that can be used to simulate different map-
ping strategies. This simulator should model the dynamically recon-
figurable heterogeneous architecture. The specifications of the hetero-
geneous architecture like clock frequency, number of processing parts,
et cetera, can be controlled by the simulator. In this case one can do
better estimations about the number of processing parts needed at a
certain clock frequency and the processing delay.

42 Mapping DSP algorithms to a reconfigurable architecture

Bibliography

[1] Chameleon project - Reconfigurable computing in hand-held multimedia
computers, http://chameleon.ctit.utwente.nl.

[2] L.F.W. van Hoesel, Design and implementation of a software defined
HiperLAN/2 physical layer model for simulation purposes, Master of
Science Thesis, University of Twente, Enschede, August 2002.

[3] Software-Defined-Radio project - A Bluetooth-HiperLAN/2 SDR re-
ceiver, http://www.sas.el.utwente.nl/home/SDR/.

[4] P.M. Heysters, The Montium architecture specification, draft, 25
September 2002.

[5] Bluetooth SIG, Specification of the Bluetooth System - Core, Technical
Specification Version 1.1, 22 February 2001.

[6] Vincent Arkesteijn, Roel Schiphorst, Fokke Hoeksema, Eric
Klumperink, Bram Nauta, Kees Slump, A Software Defined Radio Test-
bed for WLAN Front Ends, PROGRESS workshop, 24 October 2002,
Utrecht, the Netherlands.

[7] Lars van Mourik, Roel Schiphorst, Fokke Hoeksema, Kees Slump,
Performance evaluation of a combined Hiperlan/2-Bluetooth digital
front-end, PRORISC workshop, 28-29 November 2002, Veldhoven, the
Netherlands.

[8] Roel Schiphorst, Fokke Hoeksema, Kees Slump, Bluetooth demodulation
algorithms and their performance, 2nd Karlsruhe Workshop on Software
Radios, pages 99–106, March 2002.

Adaptive Wireless Networking (AWGN) 43

