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Abstract

The contribution of this work is to provide a three-stage ar-
chitecture for sequential attention to provide a system being
capable of sensorimotor object detection in real world envi-
ronments. The first processing stage provides selected foci
of interest in the image based on the extraction of informa-
tion theoretic saliency of local image descriptors (i-SIFT).
The second stage investigates the information in the local
attention window using a codebook matcher, providing lo-
cal weak hypotheses about the identity of the object under
investigation. The third stage then proposes a shift of at-
tention to a next attention window. The working hypothesis
is to expect a better discrimination from the integration of
both the individual local FOA patterns and the geometric
relation between them, providing a model of more global
information representation, and feeding into a recognition
state in the Markov Decision Process (MDP). A reinforce-
ment learner (Q-learner) performs then explorative search
on useful actions, i.e., shifts of attention, towards locations
of salient information, developing a strategy of useful ac-
tion sequences being directed in state space towards the op-
timization of discrimination by information maximization.
The method is evaluated in experiments using the COIL-20
database (indoor imagery) and the TSG-20 database (out-
door imagery) to demonstrate efficient performance in ob-
ject detection tasks, proving the method being more accu-
rate and computationally much less expensive than stan-
dard SIFT based recognition.

1. Introduction

Recent research in neuroscience [1, 2] and experimental
psychology [3, 4, 5] has provided evidence that decision
behavior plays a dominant role in human selective attention
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for object and scene recognition . E.g., there is psychophys-
ical evidence that human observers represent visual scenes
not by extensive reconstructions but merely by purposive
encodings via meaningful attention patterns [6, 7] probing
only few relevant features from a scene. This leads on the
one hand to the assumption of transsaccadic object memo-
ries [5], and supports theories about the effects of sparse in-
formation sampling due to change blindness when humans
cannot compare dynamically built sparse representations of
a scene under impact of attentional blinks [8]. Current bio-
logically motivated computational models on sequential at-
tention identify shift invariant descriptions of sampling se-
quences [9], and reflect the encoding of scenes and relevant
objects from sequential attention in the framework of neural
network modeling [7] and probabilistic decision processes
[10, 11].

In computer vision, recent research has been focusing on
the integration of information received from single local de-
scriptor responses into a more global analysis with respect
to object recognition [13, 14]). State-of-the-art solutions,
such as, (i) identifying the MAP hypothesis from proba-
bilistic histograms [15], (ii) integrating responses in a statis-
tical dependency matrix [13], and (iii) collecting evidence
for object and view hypotheses in parametric Hough space
[14], provide convincing performance under assumptions,
such as, statistical independence of the local responses, ex-
cluding segmentation problems by assuming single object
hypotheses in the image, or assuming regions with uni-
formly labelled operator responses. An integration strat-
egy closing methodological gaps when above assumptions
are violated should therefore (i) cope with statistical depen-
dency between local features of an object, (ii) enable to seg-
ment multiple targets in the image and (iii) provide convinc-
ing evidence for the existence of object regions merely on
the geometry than on the relative frequency of labelled local
responses.

The original contribution of this work is to provide a
scalable framework for cascaded sequential attention in
real-world environments. Firstly, it proposes to integrate
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Figure 1: Concept of the proposed perception-action system for object recognition. A module for early vision extracts
informative SIFT descriptors [12] from the input image and associates codebook vectors. Sequential attention operates on
the geometry between these vectors and statistically reinforces promising feature-action configurations.

local information only at locations that are relevant with re-
spect to an information theoretic saliency measure. Sec-
ondly, it enables to apply efficient strategies to group infor-
mative local descriptors using a decision maker. The de-
cision making agent used Q-learning to associate shift of
attention-actions to cumulative reward with respect to a task
goal, i.e., object recognition. Objects are represented in a
framework of perception-action, providing a transsaccadic
working memory that stores useful grouping strategies of a
kind of hypothesize and test behavior.

In object recognition terms, this method enables to match
not only between local feature responses, but also taking
the geometrical relations between the specific features into
account, thereby defining their more global visual config-
uration. The proposed method is outlined in a perception-
action framework, providing a sensorimotor decision maker
that selects appropriate saccadic actions to focus on target
descriptor locations. The advantage of this framework is to
become able to start interpretation from a single local de-
scriptor and, by continuously and iteratively integrating lo-
cal descriptor responses ’on the fly’, being capable to eval-
uate the complete geometric configuration from a set of few
features.

The saccadic decision procedure is embedded in a cas-
caded recognition process (Fig. 1) where visual evidence is
probed exclusively at salient image locations. In a first pro-
cessing stage, salient image locations are determined from
an entropy based cost function on object discrimination.
Local information in terms of code book vector responses
determine the recognition state in the Markov Decision Pro-
cess (MDP). In the training stage, the reinforcement learner
performs trial and error search on useful actions towards
salient locations within a neighborhood, receiving reward
from entropy decreases. In the test stage, the decision maker
demonstrates feature grouping by matching between the en-

countered and the trained saccadic sensorimotor patterns.
The method is evaluated in experiments on object recog-
nition using the reference COIL-20 (indoor imagery) and
the TSG-20 object (outdoor imagery) database, proving the
method being computationally feasible and providing rapid
convergence in the discrimination of objects.

2 InformativeFoci of I nterest for Ob-
ject Detection

In the propopsed method, attention on informative local im-
age patterns is shifted between the largest local maxima
derived from a local feature saliency map (Fig. 4). Infor-
mative features are selected using an information theoretic
saliency measure on local descriptor patterns as described
in detail. The following sections describe the informative
feature method from [15] and relate the resulting saliency
map to the sequential attention approach.

2.1 Saliency Maps from Local |Information
Content

We determine the information content from a posterior dis-
tribution with respect to given task specific hypotheses. In
contrast to costly global optimization, we expect that it is
sufficiently accurate to estimate a local information con-
tent, by computing it from the posterior distribution within
a sample test point’s local neighborhood in feature space
[15].

The object recognition task is applied to sample local de-
scriptors f; in feature space F, f; € RIZ!, where o; denotes
an object hypothesis from a given object set Q2. We need
to estimate the entropy H (O|f;) of the posteriors P(o|f;),
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Figure 2: Extraction of FOI (focus of interest) from an information theoretic saliency measure map. (a) Saliency map from
the entropy in the local appearances (9 x 9 pixel window). (b) Binary mask from a thresholded entropy map representing most
informative regions (He = 0.2, H < Hg White pixels). (c) Distance transform on most informative regions. (d) Inhibition of
return for the first 2 FOIs (black regions in informative areas) for maximum saliency extraction from WTA (winner-takes-all)

computation [16].

k=1...Q, Qis the number of instantiations of the object
class variable O. Shannon conditional entropy denotes

H(OIf;) = = > Plok|fi) log P(ox|f:). (1)
k

We approximate the posteriors at f; using only samples g;
inside a Parzen window of a local neighborhood e,

[[fi — £5]] <e, (2

j = 1...J. We weight the contributions of specific sam-
ples f; ;. - labeled by object o, - that should increase the
posterior estimate P(og|f;) by a Gaussian kernel function
value N (p, o) in order to favor samples with smaller dis-
tance to observation f;, with . = f; and 0 = ¢/2. The es-
timate about the conditional entropy H (O|f;) provides then
a measure of ambiguity in terms of characterizing the infor-
mation content with respect to object identification within a
single local observation f;.

We receive sparse instead of extensive object representa-
tions, in case we store only selected descriptor information
that is relevant for classification purposes, i.e., discrimina-
tive f; with 2 (O|f;) < ©. A specific choice on the thresh-
old © consequently determines both storage requirements
and recognition accuracy. For efficient memory indexing
of nearest neighbor candidates we use the adaptive K-d tree
method.

The local patterns are projected into eigenspace, a Parzen
window approach is used to estimate the local posterior dis-
tribution P(ox|g;), given eigencoefficient vector g; and ob-
ject hypothesis ox. The information content in the pattern is
computed from the Shannon entropy in the posterior. These
features support focus of attention on most salient, i.e., in-
formative image regions for further investigation [17].

22 Foci of Interest from Informative

Saliency Maps

Attention on informative local image patterns is shifted be-
tween largest local maxima derived by the information the-
oretic saliency measure. Saccadic actions originate from
a randomly selected maximum and target towards one of
n-best ranked maxima — represented by a focus of interest
(FOI) — in the saliency map. At each local maximum, the
extracted local pattern is associated to a codebook vector of
nearest distance in feature space.

Fig. 2 depicts the principal stages in selecting the FOls.
From the saliency map (a), one computes a binary mask (b)
that represents the most informative regions with respect
to the conditional entropy in Eq. 1, by selecting each pix-
els contribution to the mask from whether its entropy value
H is smaller than a predefined entropy threshold He, i.e.,
H < Hg. (c) applying a distance transform on the binary
regions of interest results mostly in the accurate localization
of the entropy minimum. The maximum of the local dis-
tance transform value is selected as FOI. Minimum entropy
values and maximum transform values are combined to give
a location of interest for the first FOI, applying a "Winner-
takes-it-all” (WTA) principle [16]. (d) Masking out the se-
lected maximum of the first FOI, one can apply the same
WTA rule, selecting the maximum saliency. This masking
is known as ’inhibition of return’ in the psychology of vi-
sual attention [18].

3 Sensory-motor Patterns of
Sequential Attention

Sequential attention shifts the focus of attention in the
ranked order of maximum saliency, providing an integration
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Figure 3: Set of codebook patterns that represent the space
of all informative patterns. The patterns have been found by
k-means clustering.
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Figure 4: Saccadic attention pattern. (a) Saccadic actions
originating in a FOE, directed towards 4 possible target
FOls. (b) Learned attention pattern (scanpath) to recognize
the object.

of the visual information in the sampled focused attention
windows. In the proposed method, saccadic actions operate
on n best-ranked maxima (e.g., n=5 in Fig. 4a) of the infor-
mation theoretic saliency map. At each local maximum, the
extracted local pattern g; is associated to a codebook vector
I'; of nearest distance

d = argmin,||gi — T 3)

in feature space. The codebook vectors were estimated from
k-means clustering of a training sampleset G = g1, -+, gn
of size N (k = 20 in the experiments, see Fig. 3). The fo-
cused local information patterns (in Fig. 4b: the appearance
patterns) are therefore associated and thereby represented
by prototype vectors, gaining discrimination mainly from
the geometric relations between descriptor encodings (i.e,
the label of the associated codebook vector) to discriminate
saccadic attention patterns. Saccadic actions originate from
a randomly selected local maximum of saliency and target

Figure 5: Discretization of the angular encoding for shifts
of attention.

towards one of the remaining (n-1) best-ranked maxima via
a saccadic action a € A (Fig. 4a). The individual action
and its corresponding angle «(z,y, a) is then categorized
into one out of |A| = 8 principal directions (Aa = 45°)
(Fig. 5).

An individual state s; of a saccadic pattern of length N is
finally represented by the sequence of descriptor encodings
I'; and actions a € A4, i.e.,

S; = (anN;aanfla"'7Fn71;anal—‘n)- (4)

Within the object learning stage, random actions will
lead to arbitrary descriptor-action sequences. For each se-
quence pattern, we protocol the number of times it was
experienced per object in the database. From this we are
able to estimate a mapping from states s; to posteriors, i.e.,
s; — P(og]|si), by monitoring how frequent states are vis-
ited under observation of particular objects. From the pos-
terior we compute the conditional entropy H, = H(O|s;)
and the information gain with respect to actions leading
from state s;; t0 sj441 by AHyp1 = Hy — Hip1o An
efficient strategy aims then at selecting in each state s; ;
exactly the action «* that would maximize the informa-
tion gain AH,y1(si, ax,¢+1) received from attaining state
Sjt+1s i.e.,

a* = argmare AHii11(Sit, Gk t+1)- (5)

4 Q-Learning of Attentive Saccades

In each state of the sequential attention process, a decision
making agent is asked to select an actin to drive its classifier
towards a reliable decision. Learning to recognize objects
means then to explore different descriptor-action sequences,
to quantify consequences in terms of a utility measure, and
to adjust the control strategy thereafter.
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Figure 6: Performance evaluation. (a) Rapid information gain from learned attention shift policy in contrast to random
action selections. (b) The learned strategy requires shorter shift sequences to pass a given threshold on conditional entropy

(threshold Hgoqr = 1.2).

The Markov decision process (MDP [19]) provides the
general framework to outline sequential attention for ob-
ject recognition in a multistep decision task with respect
to the discrimination dynamics. A MDP is defined by a
tuple (S, A, 6, R) with state recognition set S, action set
A, probabilistic transition function ¢ and reward function
R : Sx.A — II(S) describes a probability distribution over
subsequent states, given the attention shai8ft action a € A
executable in state s € S. In each transition, the agent re-
ceives reward accordingto R : S x A — R, R; € R.
The agent must act to maximize the utility Q(s, a), i.e., the
expected discounted reward

Q(s;a)

U(s,a) = E | > 4" Resn(Stin, arin)) |

n=0
(6)
where v € [0, 1] is a constant controlling contributions of
delaxed reward.

We formalize a sequence of action selections
ai,as,---,a, in sequential attention as a MDP and
are searching for optimal solutions with respect to the
object recognition task. In the posterior distribution on
object hypotheses, the information gain received from
attention shift a

R(s,a) := AH. )

Since the probabilistic transition function II(-) cannot be
known beforehand, the probabilistic model of the task is es-
timated via reinforcement learning, e.g., by Q-learning [20]
which guarantees convergence to an optimal policy apply-
ing sufficient updates of the Q-function Q(s, a), mapping
recognition states s and actions a to utility values.

The Q-function update rule is

Q(s,a) = Q(s,a)+a[R+ y(mazra Q(s', a') — Q(s,a))] ,
©)

where « is the learning rate,  controls the impact of a cur-

rent shift of attention action on future policy return values.

The decision process in sequential attention is deter-
mined by the sequence of choices on shift actions at spe-
cific focus of interest (FOI). In response to the current vi-
sual observation represented by the local descriptor and the
corresponding history, i.e., represented by the recognition
state, the current posterior is fused to a an integrated poste-
rior. The agent selects then the action a € A with largest

Q(s,a),i.e.,

ar = argmazq Q(st,a’). 9)

5 Experimental Results

The proposed methodology for cascaded sequential atten-
tion was applied to (i) an experiment with indoor imagery
(i.e., the COIL-20 database), and to (ii) an experiment with
outdoor imagery (i.e.m, the TSG-20 database) on the task of
object recognition. The experimental results demonstrate
that the informative descriptor method is robustly leading
to similar saliency results under various environment con-
ditions, and that the recursive integration of visual infor-
mation from the informative foci of interest can find good
matches to the stored perception-action object representa-
tion.
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Figure 7: Informative descriptors for saliency.

5.1 Indoor Experiments Using
I nfor mative L ocal Appearances

The indoor experiments were performed on 1440 images of
the COIL-20 database (20 objects and 72 views by rotating
each object by 5° around its vertical rotation axis), investi-
gating up to 5 FOIs in each observation sequence, associat-
ing to & = 20 codebook vectors from informative appear-
ance patterns, in order to determine the recognition state,
and deciding on the next saccade action to integrate the in-
formation from successive image locations. Fig. 6a repre-
sents the learning process, illustrating more rapid entropy
decreases from the learned in contrast to random action se-
lection policy. Fig. 6b visualizes the corresponding progress
in requiring less actions to attain more informative recogni-
tion states. The recognition rate after the second action was
92% (learned) in contrast to 75% (random). A characteristic
learned attention scanpath is depicted in Fig. 4b.

| Method || Accuracy [%] | Processing time [ms] |
i-SIFT 97.5 2800
Sequ. Attention 98.8 1500

Table 1: Sequential attention provides improved perfor-
mancer with respect to a tuned SIFT recognition method.

5.2 Outdoor Experiments Using
Informative SIFT descriptors

In the outdoor experiments, we decided to use a local de-
scriptor, i.e., the SIFT descriptor ([14] Fig. 7) that can be
robustly matched to the recordings in the database, despite
viewpoint, illumination and scale changes in the object im-
age captures.

Fig. 7 depicts the principal stages in selecting the FOIs.
(a) depicts the original training image. and SIFT descriptor
locations are overlaid with squares filled with color-codes of
associated entropy values, from corresponding low (red) to
high (blue) information values. c) describes a correspond-
ing posterior distribution over all object hypotheses from
the MAP hypotheses in the informative SIFT descriptors (i-
SIFTs). (d) depicts all selected i-SIFTs in the test image.
Fig. 8 illustrates (b) descriptor selection by action and (c) a
sample learned sequential attention sequence using the SIFt
descriptor.

The experimental results were obtained from the images
of the TSG-20 database® (20 objects and 2 views by ap-
prox. 30° viewpoint change), investigating up to 5 FOIs in
each observation sequence, associating to & = 20 codebook
vectors to determine the recognition state, and deciding on
the next saccade action to integrate the information from
successive image locations. Fig. 9a visualizes the progress
gained from the learning process in requiring less actions to
attain more informative recognition states. Fig. 9b reflects
the corresponding learning process, illustrating more rapid
entropy decreases from the learned in contrast to random
action selection policy. The recognition rate after the sec-
ond action was ~ 98.8% (learned) in contrast to ~ 96%
(random). A characteristic learned attention scanpath is de-
picted in Fig. 4b.

6 Conclusions and Future Work

The proposed methodology significantly extends previous
work on sequential attention and decision making by pro-
viding a proof of concept of a scalable framework for real
world object recognition. The three-stage process of deter-
mining information theoretic saliency and integrating local

1The TSG-20 (Tourist Sights Graz, Fig. 8a) database can be down-
loaded at the URL http://dib.joanneum.at/cape/T SG-20.
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Figure 8: (a) The TSG-20 database, consisting of images from 20 buildings in the city of Graz, displayed images were
used for training (Sec. 5). (b) Saccadic actions originating in a FOI, directed towards 9 potential target FOIs, depicting angle
values of corresponding shifts of attention starting in the center SIFT descriptor. (c) Learned descriptor-action based attention
pattern (scanpath) to recognize an object.
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Figure 9: Performance evaluation. (a) Accuracy improvement from learned attention shift policy in contrast to random action
selections. (b) Information gain achieved by learned strategy with each additional perception-action cycle.



descriptive information in a perception-action recognition
dynamics is robust with respect to viewpoint, scale, and il-
lumination changes, and provides rapid attentive matching
by requiring only very few local samples to be integrated
for object discrimination.

Future work will be directed towards hierarchical re-
inforcement learning in order to provide local grouping
schemes that will be integrated by means of a global in-
formation integration process from sequential shifts of at-
tention.
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