# A Simple Dual Ascent Algorithm for the Multilevel Facility Location Problem 

Adriana Bumb and Walter Kern<br>Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands<br>a.f.bumb,kern@math.utwente.nl


#### Abstract

We present a simple dual ascent method for the multilevel facility location problem which finds a solution within 6 times the optimum for the uncapacitated case and within 12 times the optimum for the capacitated one. The algorithm is deterministic and based on the primal-dual technique.


## 1 Introduction

An important problem in facility location is to select a set of facilities, such as warehouses or plants, in order to minimize the total cost of opening facilities and of satisfying the demands for some commodity (see Cornuejols, Nemhauser \& Wolsey [CNW90]).

In this paper we consider the multilevel facility location problem in which there are $k$ types of facilities to be built: one type of depots and $(k-1)$ types of transit stations. For every type of facility the opening cost is given. Each unit of demand must be shipped from a depot through transit stations of type $k-1, \ldots, 1$ to the demand points. We assume that the shipping costs are positive, symmetric and satisfy the triangle inequality. The goal of the problem is to select facilities of each type to be opened and to connect each demand point to a path along open facilities such that the total cost of opening facilities and of shipping all the required demand from depots to demand points is minimized.

Being an extension of the uncapacitated facility location problem, which is known to be Max SNP-hard (see GK98 and [S97), this problem is Max SNPhard as well. The first approximation algorithms for the multilevel facility location problem were developed by Shmoys, Tardos \& Aardal STA97] and Aardal, Chudak \& Shmoys ACS99 and were based on rounding of an LP solution to an integer one. The performance guarantees of these algorithms were 3.16, respectively 3 . The first combinatorial algorithm for the multilevel facility location problem was developed by Meyerson, Munagala \& Plotkin (MMP00], and finds a solution within $O(\log |D|)$ the optimum, where $D$ is the set of demand points.

Using an idea from [JV99, we present a simple greedy (dual ascent) method for the multilevel facility location problem that finds a solution within 6 times the optimum. The algorithm extends to a capacitated variant of the problem, when each facility can serve only a certain number of demand points, with an increase of the performance guarantee to 12 .

## 2 The Metric Multilevel Uncapacitated Facility Location Problem

Consider a complete $(k+1)$-partite graph $G=(V, E)$ with $V=V_{0} \cup \ldots \cup V_{k}$ and $E=\bigcup_{l=1}^{k} V_{l-1} \times V_{l}$. The set $D=V_{0}$ is the set of demand nodes and $F=V_{1} \cup \ldots \cup V_{k}$ is the set of possible facility locations (at level $1, \ldots, k$ ). We are given edge costs $c \in R_{+}^{E}$ and opening costs $f \in R_{+}^{F}$ (i.e., opening a facility at $i \in F$ incurs a cost $f_{i} \geq 0$ ). We assume that $c$ is induced by a metric on $V$. Without loss of generality we can assume that there are no edges of cost 0 .

Remark 1. Our results also hold in a slightly more general setting, where we require only for $e \in V_{0} \times V_{1}$ that $c(e) \leq c(p)$ for any path $p$ joining the endpoints of $e$.

Denote by $P$ the set of paths of length $k-1$ joining some node in $V_{1}$ to some node in $V_{k}$. If $j \in D$ and $p=\left(v_{1}, \ldots, v_{k}\right) \in P$, we let $j p$ denote the path $\left(j, v_{1}, \ldots, v_{k}\right)$. As usual $c(p)$ and $c(j p)$ denote the length of $p$ resp. $j p$ (with respect to $c$ ).

The corresponding facility location problem can now be stated as follows: Determine for each $j \in D$ a path $p_{j} \in P$ (along "open facilities") so as to minimize

$$
\sum_{j \in D} c\left(j p_{j}\right)+f\left(\bigcup_{j \in D} p_{j}\right) .
$$

Remark 2. In this setting we assume that each $j \in D$ has a demand of one unit to be shipped along $p_{j}$. Our results easily extend to arbitrary positive demands.

To derive an integer programming formulation of the multilevel facility location problem, we introduce the $0-1$ variables $y_{i}(i \in F)$ to indicate whether $i \in F$ is open and the $0-1$ variables $x_{j p}(j \in D, p \in P)$ to indicate whether $j$ is served along $p$.

We let

$$
c(x):=\sum_{p \in P} \sum_{j \in D} c_{j p} x_{j p}
$$

and

$$
f(y):=\sum_{i \in F} f_{i} y_{i}
$$

The multilevel facility location problem is now equivalent to

$$
\begin{align*}
& \text { minimize } c(x)+f(y) \\
& \text { subject to } \sum_{p \in P} x_{j p}=1, \quad \text { for each } j \in D  \tag{1}\\
& \sum_{p \ni i} x_{j p} \leq y_{i}, \quad \text { for each } i \in F, j \in D  \tag{2}\\
& x_{p j} \in\{0,1\}, \quad \text { for each } p \in P, j \in D \\
& y_{i} \in\{0,1\}, \quad \text { for each } i \in F
\end{align*}
$$

Constraints (1) ensure that each $j$ gets connected via some path and constraints (2) ensure that the paths only use open facilities.

The $L P$-relaxation of $\left(P_{i n t}\right)$ is given by

$$
\begin{gather*}
\operatorname{minimize} \\
\text { subject to }(x)+f(y),(2)  \tag{P}\\
x_{j p} \geq 0 \\
\\
y_{i} \geq 0
\end{gather*}
$$

Note that $x_{j p} \leq 1$ is implied by (1) and $y_{i} \leq 1$ holds automatically for any optimal solution $(x, y)$ of $(P)$.

The standard way of proving a $0-1$ solution $(x, y)$ of $\left(P_{i n t}\right)$ to be a $\rho-$ approximation is to show that

$$
\begin{equation*}
c(x)+f(y) \leq \rho C_{L P} \tag{2.1}
\end{equation*}
$$

where $C_{L P}$ is the optimum value of $(P)$.

## 3 The Primal-Dual Algorithm

The basic idea of the primal-dual approach is to exhibit a primal $0-1$ solution $(x, y)$ satisfying (2.1) by considering the dual of $(P)$. Introducing dual variables $v_{j}$ and $t_{i j}$ corresponding to constraints (1) and (2) in $(P)$, the dual becomes

$$
\begin{align*}
& \operatorname{maximize} \sum_{j \in D} v_{j} \\
& v_{j}-\sum_{i \in p} t_{i j} \leq c(j p), \text { for each } p \in P, j \in D  \tag{3}\\
& \sum_{j \in D} t_{i j} \leq f_{i}, \text { for each } i \in F  \tag{4}\\
& t_{i j} \geq 0, \text { for each } i \in F, j \in D
\end{align*}
$$

Intuitively, the dual variable $v_{j}$ indicates how much $j \in D$ is willing to pay for getting connected. The value of $t_{i j}$ indicates how much $j \in D$ is willing to
contribute to the opening cost $f_{i}$ (if he would be connected along a path through $i)$.

We aim at constructing a primal feasible $0-1$ solution $(x, y)$ and a feasible dual solution $(v, t)$ such that

$$
c(x)+f(y) \leq 6 \sum_{j \in D} v_{j},
$$

implying (2.1) for $\rho=6$.
We first describe how to construct the dual solution $(v, t)$. To this end, we introduce the following notation w.r.t. an arbitrary feasible solution $(v, t)$ of $(D)$ :

A facility $i \in F$ is fully paid when

$$
\begin{equation*}
\sum_{j \in D} t_{i j}=f_{i} . \tag{3.1}
\end{equation*}
$$

A demand point $j \in D$ reaches $i_{l} \in V_{l}$ if for some path $p=\left(i_{1}, \ldots, i_{l}\right)$ from $V_{1}$ to $i_{l}$ all facilities $i_{1}, \ldots i_{l-1}$ are fully paid and

$$
\begin{equation*}
v_{j}=c_{j p}+\sum_{i \in p} t_{i j} \tag{3.2}
\end{equation*}
$$

If, in addition, also $i_{l}$ is fully paid, we say that $j$ leaves $i_{l}$ or, in case $l=k$, that $j$ gets connected (along $p$ to $i_{k} \in V_{k}$ ).

Our algorithm for constructing the dual solution is a dual ascent method, generalizing the approach in [JV99]. We start with $v \equiv t \equiv 0$ and increase all $v_{j}$ uniformly ("with unit speed"). When some $j \in D$ reaches a not fully paid node $i \in F$, we start increasing $t_{i j}$ with unit speed, until $f_{i}$ is fully paid and $j$ leaves $i$. We stop increasing $v_{j}$ when $j$ gets connected. The algorithm maintains the invariant that at time $T$ the dual variables $v_{j}$ that are still being raised are all equal to $T$. More precisely, we proceed as described below.

```
UNTIL all }j\inD\mathrm{ are connected DO
    - Increase }\mp@subsup{v}{j}{}\mathrm{ for all j}\inD\mathrm{ not yet connected
    - Increase tij for all }i\inF,j\inD satisfying (i) - (iii)
    (i) j has reached i
    (ii) j is not yet connected
    (iii) i is not yet fully paid.
```

Let $(v, t)$ denote the final dual solution. Before constructing a corresponding primal solution $(x, y)$, let us state a few simple facts about $(v, t)$.

For each fully paid facility $i \in V_{l}, l \geq 2$, denote by $T_{i}$ the time when facility $i$ became fully paid. The predecessor of $i$ will be the facility in the level $l-1$ via which $i$ was for the first time reached by a demand point, i.e.,

$$
\operatorname{Pred}(i)=\left\{i^{\prime} \in V_{l-1} \mid i^{\prime} \text { is fully paid and } T_{i^{\prime}}+c_{i^{\prime} i}=\min _{\substack{i^{\prime \prime} \in V_{l-1} \\ i^{\prime \prime} \text { fully paid }}}\left(T_{i^{\prime \prime}}+c_{i^{\prime \prime} i}\right)\right\} .
$$

(Ties are broken arbitrarily.)
The predecessor of a fully paid facility $i \in V_{1}$ will be its closest demand point. We can define the time $T_{P r e d(i)}=0$.

For all fully paid facilities $i$ in the $k-t h$ level denote by $j_{i} p_{i}=\left(i_{1}, \ldots, i_{k}\right)$ the path through the following points:

- $i_{k}=i$
- $i_{l}=\operatorname{Pred}\left(i_{l+1}\right)$, for each $1 \leq l \leq k-1$
$\bullet j_{i}=\operatorname{Pred}\left(i_{1}\right)$.
We will call the neighborhood of $i$ the set of demand nodes contributing to $p_{i}$ i.e.,

$$
N_{i}=\left\{j \in D \mid t_{i^{\prime} j}>0 \text { for some } i^{\prime} \in p_{i}\right\}
$$

Since each $j \in D$ gets connected we may fix for each $j \in D$ a connecting path $\widetilde{p_{j}} \in P$ of fully paid facilities (ties are broken arbitrarily).

Lemma 1. (i) $c\left(j \widetilde{p}_{j}\right) \leq v_{j}$ for all $j \in D$
(ii) For all $j \in D$ and $i \in V_{k}$ fully paid such that $i \in \widetilde{p_{j}}$, either $v_{j}=T_{i}$ and $t_{i j}>0$ or $v_{j}>T_{i}$ and $t_{i j}=0$
(iii) For all fully paid facilities $i \in V_{k}$ and corresponding paths $p_{i}=\left(i_{1}, \ldots\right.$, $i_{k}$ ), the following relation holds

$$
T_{i_{1}} \leq \ldots \leq T_{i_{k}}
$$

(iv) Let $i \in V_{k}$ be a fully paid facility and $p_{i}=\left(i_{1}, \ldots, i_{k}\right)$ its associated path. For all $j \in D$ and $i_{l} \in p_{i}$ with $t_{i_{l} j}>0$, there exists a path $p$ from $V_{1}$ to $i_{l}$ such that

$$
c(j p)+\sum_{s=l}^{k-1} c_{i_{s} i_{s+1}} \leq T_{i}
$$

In particular, $c\left(j_{i} p_{i}\right) \leq T_{i}$
(v) If $i, i^{\prime}$ are two fully paid facilities in $V_{k}$ with intersecting neighborhoods then for each $j^{\prime} \in D$, such that $i^{\prime} \in \widetilde{p_{j^{\prime}}}, c_{j_{i} j^{\prime}} \leq 4 \max \left\{T_{i}, v_{j^{\prime}}\right\}$
(vi) $\sum_{i^{\prime} \in p_{i}} t_{i^{\prime} j} \leq v_{j}$ for all $j \in D$

Proof. The first claim is straightforward from (3.2) and the definition of $\widetilde{p_{j}}$.
The second claim is based on the observation that at time $T$ all the $v$-values that can be increased are equal with $T$ and that the final $v$-values reflect the times when the demand points get connected. There are two possibilities that a fully paid facility $i \in V_{k}$ is on the connecting path of a demand point $j$. One is that $j$ reached $i$ before $T_{i}$ and got connected when $i$ became fully paid. In this case $t_{i j}>0$ and $v_{j}=T_{i}$. The other possibility is that $j$ reached $i$ after $i$ was fully paid, which means that $t_{i j}=0$ and $v_{j}>T_{i}$.

The definition of a predecessor implies that for each fully paid $i \in F$

$$
\begin{equation*}
c_{\text {Pred }(i) i}+T_{\text {Pred }(i)} \leq T_{i} . \tag{3.3}
\end{equation*}
$$

The third claim follows immediately.
For the forth claim, by adding the inequalities (3.3) for $i_{l+1}, \ldots, i_{k-1}$ one obtains

$$
\sum_{s=l}^{k-1} c_{i_{s} i_{s+1}}+T_{i_{l}} \leq T_{i_{k}}
$$

Since $t_{i_{l} j}>0$, there is a path $p$ along which $j$ reached $i_{l}$ before $T_{i_{l}}$. Clearly, $c(j p) \leq T_{i_{l}}$, which implies (iv).

For proving (v), let $j \in N_{i} \cap N_{i^{\prime}}$. Since $j \in N_{i}$, there is an $i_{l} \in p_{i}$ such that $t_{i_{l} j}>0$. Then by (iv), there exists a path $q$ from $V_{1}$ to $i_{l}$ such that $c(j q) \leq T_{i}$.

Suppose $p_{i^{\prime}}=\left(i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right)$. Similarly, there is an $i_{r}^{\prime} \in p_{i^{\prime}}$ and a path $q^{\prime}$ from $V_{1}$ to $i_{r}^{\prime}$ such that $c\left(j q^{\prime}\right)+\sum_{s=r}^{k-1} c_{i_{s}^{\prime} i_{s+1}^{\prime}} \leq T_{i^{\prime}}$.

Using the triangle inequality and (ii), we obtain

$$
\begin{aligned}
c_{j_{i} j^{\prime}} & \leq c\left(j_{i} p_{i}\right)+c(j q)+c\left(j q^{\prime}\right)+\sum_{s=r}^{k-1} c_{i_{s}^{\prime} i_{s+1}^{\prime}}+c\left(j^{\prime} \widetilde{p_{j^{\prime}}}\right) \\
& \leq 2 T_{i}+T_{i^{\prime}}+v_{j^{\prime}} \\
& \leq 2 T_{i}+2 v_{j^{\prime}} \\
& \leq 4 \max \left\{T_{i}, v_{j^{\prime}}\right\} .
\end{aligned}
$$

Finally, for proving the statement in the last claim is enough to show that no demand point $j$ could increase simultaneously two values $t_{i_{l} j}, t_{i_{s} j}$, for $i_{l} \neq i_{s}$ and $i_{l}, i_{s} \in p_{i}$. This follows from the definition of $p_{i}$, which implies that whenever a demand point reaches a facility on $p_{i}$, the predecessor of that facility should have been already paid, and subsequently all the facilities of $p_{i}$ situated on inferior levels.

We now describe how to construct a corresponding primal solution $(x, y)$. Suppose there are $r$ fully paid facilities in the last level. Order them according to nondecreasing $T$-values, say

$$
T_{1} \leq \ldots \leq T_{r}
$$

Construct greedily a set $C \subseteq V_{k}$ of centers which have parewise disjoint neighborhoods and assign each $j \in D$ to some center $i_{0} \in C$ as follows:

INITIALIZE $C=\emptyset$
FOR $i=1, \ldots, r$ DO
IF $N_{i} \cap N_{i_{0}} \neq \oslash$ for some $i_{0} \leq i$, assign to $p_{i_{0}}$ all demand nodes $j \in D$ with $i \in \widetilde{p_{j}}$
ELSE $C=C \cup\{i\}$ and assign to $p_{i}$ all the demand nodes $j \in D$ with the property that $i \in \widetilde{p_{j}}$

The paths $p_{i}(i \in C)$ are called central paths.

Remark 3. Note that each demand point $j$ is assigned to one center. Furthermore, by construction of $C, j$ "contributes" to at most one central path (not necessarily the one to which it is assigned).

The primal solution $(x, y)$ is obtained by connecting all demand nodes along their corresponding central paths:

$$
x_{j p}:=\left\{\begin{array}{l}
1 \text { if } p=p_{i} \text { and } j \text { was assigned to } p_{i} \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
y_{i}:=\left\{\begin{array}{l}
1 \text { if } i \text { is on a central path } \\
0 \text { otherwise }
\end{array} .\right.
$$

The shipping cost $c(x)$ is easily bounded as follows.
If $j \in D$ is assigned to $p_{i_{0}}$ then $T_{i_{0}} \leq T_{i}$, where $\{i\}=\widetilde{p_{j}} \cap V_{k}$. Due to Lemma 1 (ii) and (v), we get $T_{i_{0}} \leq v_{j}$ and

$$
c_{j p_{i_{0}}} \leq c_{j_{i_{0}} j}+c_{j_{i_{0}} p_{i_{0}}} \leq 4 v_{j}+T_{i_{0}} \leq 5 v_{j}
$$

The cost of opening facilities along a central path $p_{i_{0}}$ can be also bounded with the help of Lemma 1(vi)

$$
\sum_{i \in p_{i_{0}}} f_{i}=\sum_{i \in p_{i_{0}}} \sum_{j \in N_{i}} t_{i j} \leq \sum_{j \in N_{i}} v_{j}
$$

Since the centers have pairwise disjoint neighborhoods, we further conclude that

$$
f(y)=\sum_{i_{0} \in C} \sum_{i \in p_{i_{0}}} f_{i} \leq \sum_{j \in D} v_{j} .
$$

We have proved
Theorem 1. The above primal solution $(x, y)$ satisfies

$$
c(x)+f(y) \leq 6 \sum_{j \in D} \nu_{j} .
$$

## 4 A Capacitated Version

The following capacitated version has been considered in the literature: Each $i \in F$ has an associated node capacity $u_{i} \in N$ which is an upper bound on the number of paths using $i$. On the other hand, we are allowed to open as many copies of $i$ (at cost $f_{i}$ each) as needed.

To formulate this, we replace the $0-1$ variables $y_{i}$ in $\left(P_{i n t}\right)$ by nonnegative integer variables $y_{i} \in Z_{+}$, indicating the number of open copies of $i \in F$. Furthermore, we add capacity constraints

$$
\begin{equation*}
\sum_{j \in D} \sum_{p \ni i} x_{j p} \leq u_{i} y_{i}, \text { for each } i \in F \tag{4.1}
\end{equation*}
$$

Again, we let $C_{L P}$ denote the optimum value of the corresponding $L P$-relaxation.
The idea to approach the capacitated case (also implicit in JV99 for the 1level case) is to move the capacity constraints to the objective using Lagrangian multipliers $\lambda_{i} \geq 0$, for each $i \in F$. This results in an uncapacitated problem

$$
\begin{aligned}
C(\lambda) & :=\operatorname{minimize} c(x)+f(y)+\sum_{i \in F} \lambda_{i}\left(\sum_{j \in D} \sum_{p \ni i} x_{j p}-u_{i} y_{i}\right) \\
& =\text { minimize } \widetilde{c}(x)+\widetilde{f}(y)
\end{aligned}
$$

with $\widetilde{f}_{i}=f_{i}-\lambda_{i} u_{i}$, for each $i \in F$ and $\widetilde{c}(e)=c(e)+\lambda_{i}$ if $i$ is the endpoint of $e \in E$. Note that each $\lambda \geq 0$ gives $C(\lambda) \leq C_{L P}$.

As in section 3. we compute a primal $0-1$ solution $(x, y)$ of $C(\lambda)$ with

$$
\widetilde{c}(x)+\widetilde{f}(y) \leq 6 C(\lambda)
$$

Note that this does not necessarily satisfy the capacity constraints (4.1). However, a clever choice of the Lagrangian multipliers $\lambda_{i}=\frac{1}{2} \frac{f_{i}}{u_{i}}(i \in F)$ yields

$$
\begin{aligned}
\widetilde{c}(x)+\widetilde{f}(y) & =c(x)+\frac{1}{2} \sum_{i \in F} \frac{f_{i}}{u_{i}} \sum_{p \ni i} \sum_{j \in D} x_{j p}+\frac{1}{2} \sum_{i \in F} f_{i} y_{i} \\
& \geq c(x)+\frac{1}{2} \sum_{i \in F} f_{i} \overline{y_{i}}
\end{aligned}
$$

where $\overline{y_{i}}:=\left\lceil\frac{1}{u_{i}} \sum_{p \ni} \sum_{j \in D} x_{j p}\right\rceil$ opens each facility $i \in F$ sufficiently many times. Hence $(x, \bar{y})$ is indeed a feasible solution of the capacitated problem satisfying

$$
c(x)+\frac{1}{2} f(\bar{y}) \leq 6 C(\lambda) \leq 6 C_{L P}
$$

hence

$$
c(x)+f(\bar{y}) \leq 12 C_{L P} .
$$

Theorem 2. Our greedy dual ascent method yields a 12 -approximation of the multilevel capacitated facility location problem.

## References

ACS99. Aardal,K.I., Chudak, F., Shmoys, D.B.: A 3-approximation algorithm for the k-level uncapacitated facility location problem. Information Processing Letters, 72, (1999), 161-167
CNW90. Cornuejols, G., Nemhauser, G. L., Wolsey, L. A.: The uncapacitated facility location problem. In P. Mirchandani and R. Francis, editors, Discrete Location Theory, John Wiley and Sons, New York, (1990), 119-171
GK98. Guha, S., Khuller,S.: Greedy strikes back: improved facility algorithms. Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, (1998), 649-657

JV99. Jain, K., Vazirani,V.V.: Primal-dual approximation algorithms for metric facility location and $k$-median problems. Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, (1999)
MMP00. Meyerson, A., Munagala, K., Plotkin S.: Cost distance: Two metric network design. Proceedings of the 41th IEEE Symposium on Foundation of Computer Science, (2000)
STA97. Shmoys, D. B., Tardos, E. Aardal, K. I.: Approximation algorithms for facility location problems. Proceedings of the 29th Annual ACM Symposium on Theory of Computing, (1997), 265-274
S97. Sviridenko, M.: Personal communication, (1997)

