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Abstract. We present a simple dual ascent method for the multilevel
facility location problem which finds a solution within 6 times the op-
timum for the uncapacitated case and within 12 times the optimum for
the capacitated one. The algorithm is deterministic and based on the
primal-dual technique.

1 Introduction

An important problem in facility location is to select a set of facilities, such as
warehouses or plants, in order to minimize the total cost of opening facilities
and of satisfying the demands for some commodity (see Cornuejols, Nemhauser
& Wolsey [CNW90]).

In this paper we consider the multilevel facility location problem in which
there are k types of facilities to be built: one type of depots and (k − 1) types
of transit stations. For every type of facility the opening cost is given. Each
unit of demand must be shipped from a depot through transit stations of type
k−1, . . . , 1 to the demand points. We assume that the shipping costs are positive,
symmetric and satisfy the triangle inequality. The goal of the problem is to select
facilities of each type to be opened and to connect each demand point to a path
along open facilities such that the total cost of opening facilities and of shipping
all the required demand from depots to demand points is minimized.

Being an extension of the uncapacitated facility location problem, which is
known to be Max SNP-hard (see [GK98] and [S97]), this problem is Max SNP-
hard as well. The first approximation algorithms for the multilevel facility loca-
tion problem were developed by Shmoys, Tardos & Aardal [STA97] and Aardal,
Chudak & Shmoys [ACS99] and were based on rounding of an LP solution to
an integer one. The performance guarantees of these algorithms were 3.16, re-
spectively 3. The first combinatorial algorithm for the multilevel facility location
problem was developed by Meyerson, Munagala & Plotkin [MMP00], and finds
a solution within O (log |D|) the optimum, where D is the set of demand points.

Using an idea from [JV99], we present a simple greedy (dual ascent) method
for the multilevel facility location problem that finds a solution within 6 times
the optimum. The algorithm extends to a capacitated variant of the problem,
when each facility can serve only a certain number of demand points, with an
increase of the performance guarantee to 12.
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2 The Metric Multilevel Uncapacitated Facility
Location Problem

Consider a complete (k+1)−partite graph G = (V,E) with V = V0∪. . .∪Vk and

E =
k⋃

l=1
Vl−1×Vl. The set D = V0 is the set of demand nodes and F = V1∪. . .∪Vk

is the set of possible facility locations (at level 1, . . . , k). We are given edge costs
c ∈ RE

+ and opening costs f ∈ RF
+ ( i.e., opening a facility at i ∈ F incurs a

cost fi ≥ 0). We assume that c is induced by a metric on V . Without loss of
generality we can assume that there are no edges of cost 0.

Remark 1. Our results also hold in a slightly more general setting, where we
require only for e ∈ V0×V1 that c(e) ≤ c(p) for any path p joining the endpoints
of e.

Denote by P the set of paths of length k − 1 joining some node in V1 to
some node in Vk. If j ∈ D and p = (v1, . . . , vk) ∈ P , we let jp denote the path
(j, v1, . . . , vk). As usual c(p) and c(jp) denote the length of p resp. jp (with
respect to c).

The corresponding facility location problem can now be stated as follows:
Determine for each j ∈ D a path pj ∈ P (along ”open facilities”) so as to
minimize ∑

j∈D

c(jpj) + f(
⋃

j∈D

pj).

Remark 2. In this setting we assume that each j ∈ D has a demand of one unit
to be shipped along pj . Our results easily extend to arbitrary positive demands.

To derive an integer programming formulation of the multilevel facility lo-
cation problem, we introduce the 0 − 1 variables yi (i ∈ F ) to indicate whether
i ∈ F is open and the 0 − 1 variables xjp (j ∈ D, p ∈ P ) to indicate whether j
is served along p.

We let

c(x) :=
∑
p∈P

∑
j∈D

cjpxjp

and

f(y) :=
∑
i∈F

fiyi .
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The multilevel facility location problem is now equivalent to

minimize c(x) + f(y)

subject to
∑
p∈P

xjp = 1, for each j ∈ D (1)

(Pint)
∑
p�i

xjp ≤ yi, for each i ∈ F, j ∈ D (2)

xpj ∈ {0, 1} , for each p ∈ P, j ∈ D

yi ∈ {0, 1} , for each i ∈ F

Constraints (1) ensure that each j gets connected via some path and con-
straints (2) ensure that the paths only use open facilities.

The LP−relaxation of (Pint) is given by

minimize c(x) + f(y)
(P ) subject to (1), (2)

xjp ≥ 0
yi ≥ 0 .

Note that xjp ≤ 1 is implied by (1) and yi ≤ 1 holds automatically for any
optimal solution (x, y) of (P ).

The standard way of proving a 0 − 1 solution (x, y) of (Pint) to be a ρ−
approximation is to show that

c(x) + f(y) ≤ ρCLP (2.1)

where CLP is the optimum value of (P ).

3 The Primal-Dual Algorithm

The basic idea of the primal-dual approach is to exhibit a primal 0 − 1 solution
(x, y) satisfying (2.1) by considering the dual of (P ). Introducing dual variables
vj and tij corresponding to constraints (1) and (2) in (P ), the dual becomes

maximize
∑
j∈D

vj

vj −
∑
i∈p

tij ≤ c(jp), for each p ∈ P , j ∈ D (3)

∑
j∈D

tij ≤ fi, for each i ∈ F (4)

tij ≥ 0, for each i ∈ F , j ∈ D

Intuitively, the dual variable vj indicates how much j ∈ D is willing to pay
for getting connected. The value of tij indicates how much j ∈ D is willing to
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contribute to the opening cost fi (if he would be connected along a path through
i).

We aim at constructing a primal feasible 0 − 1 solution (x, y) and a feasible
dual solution (v, t) such that

c(x) + f(y) ≤ 6
∑
j∈D

vj ,

implying (2.1) for ρ = 6.
We first describe how to construct the dual solution (v, t). To this end, we

introduce the following notation w.r.t. an arbitrary feasible solution (v, t) of (D):
A facility i ∈ F is fully paid when∑

j∈D

tij = fi. (3.1)

A demand point j ∈ D reaches il ∈ Vl if for some path p = (i1, . . . , il) from
V1to il all facilities i1, . . . il−1 are fully paid and

vj = cjp +
∑
i∈p

tij . (3.2)

If, in addition, also il is fully paid, we say that j leaves il or, in case l = k,
that j gets connected (along p to ik ∈ Vk).

Our algorithm for constructing the dual solution is a dual ascent method,
generalizing the approach in [JV99]. We start with v ≡ t ≡ 0 and increase all
vj uniformly ( ”with unit speed” ). When some j ∈ D reaches a not fully paid
node i ∈ F , we start increasing tij with unit speed, until fi is fully paid and j
leaves i. We stop increasing vj when j gets connected. The algorithm maintains
the invariant that at time T the dual variables vj that are still being raised are
all equal to T . More precisely, we proceed as described below.

UNTIL all j ∈ D are connected DO
• Increase vj for all j ∈ D not yet connected
• Increase tij for all i ∈ F , j ∈ D satisfying (i) − (iii),

(i) j has reached i
(ii) j is not yet connected
(iii) i is not yet fully paid.

Let (v, t) denote the final dual solution. Before constructing a corresponding
primal solution (x, y), let us state a few simple facts about (v, t).

For each fully paid facility i ∈ Vl, l ≥ 2, denote by Ti the time when facility
i became fully paid. The predecessor of i will be the facility in the level l− 1 via
which i was for the first time reached by a demand point, i.e.,

Pred (i) =

i′ ∈ Vl−1| i′ is fully paid and Ti′ + ci′i = min
i′′∈Vl−1

i
′′

fully paid

(Ti′′ + ci′′i)

 .
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(Ties are broken arbitrarily.)
The predecessor of a fully paid facility i ∈ V1 will be its closest demand

point. We can define the time TPred(i) = 0.
For all fully paid facilities i in the k − th level denote by ji pi = (i1, . . . , ik)

the path through the following points:
• ik = i
• il =Pred(il+1), for each 1 ≤ l ≤ k − 1
•ji =Pred(i1).
We will call the neighborhood of i the set of demand nodes contributing to pi

i.e.,

Ni = {j ∈ D | ti′j > 0 for some i′ ∈ pi} .

Since each j ∈ D gets connected we may fix for each j ∈ D a connecting
path p̃j ∈ P of fully paid facilities (ties are broken arbitrarily).

Lemma 1. (i) c(jp̃j) ≤ vj for all j ∈ D
(ii) For all j ∈ D and i ∈ Vk fully paid such that i ∈ p̃j, either vj = Ti and

tij > 0 or vj > Ti and tij = 0
(iii) For all fully paid facilities i ∈ Vk and corresponding paths pi = (i1, . . . ,

ik), the following relation holds

Ti1 ≤ . . . ≤ Tik

(iv) Let i ∈ Vk be a fully paid facility and pi = (i1, . . . , ik) its associated path.
For all j ∈ D and il ∈ pi with tilj > 0, there exists a path p from V1to il such
that

c (jp) +
k−1∑
s=l

cisis+1 ≤ Ti .

In particular, c(jipi) ≤ Ti

(v) If i, i′ are two fully paid facilities in Vk with intersecting neighborhoods
then for each j′ ∈ D, such that i′ ∈ p̃j′ , cjij′ ≤ 4 max {Ti, vj′}

(vi)
∑

i′∈pi

ti′j ≤ vj for all j ∈ D

Proof. The first claim is straightforward from (3.2) and the definition of p̃j .
The second claim is based on the observation that at time T all the v−values

that can be increased are equal with T and that the final v−values reflect the
times when the demand points get connected. There are two possibilities that a
fully paid facility i ∈ Vk is on the connecting path of a demand point j. One is
that j reached i before Ti and got connected when i became fully paid. In this
case tij > 0 and vj = Ti. The other possibility is that j reached i after i was
fully paid, which means that tij = 0 and vj > Ti.

The definition of a predecessor implies that for each fully paid i ∈ F

cPred(i)i + TPred(i) ≤ Ti . (3.3)
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The third claim follows immediately.
For the forth claim, by adding the inequalities (3.3) for il+1, . . . , ik−1 one

obtains
k−1∑
s=l

cisis+1 + Til
≤ Tik

.

Since tilj > 0, there is a path p along which j reached il before Til
. Clearly,

c(jp) ≤ Til
, which implies (iv).

For proving (v), let j ∈ Ni ∩ Ni′ . Since j ∈ Ni, there is an il ∈ pi such that
tilj > 0. Then by (iv), there exists a path q from V1 to il such that c (jq) ≤ Ti.

Suppose pi′ = (i′1, . . . , i
′
k). Similarly, there is an i′r ∈ pi′ and a path q′ from

V1 to i′r such that c (jq′) +
k−1∑
s=r

ci′
si′

s+1
≤ Ti′ .

Using the triangle inequality and (ii), we obtain

cjij′ ≤ c(jipi) + c(jq) + c(jq′) +
k−1∑
s=r

ci′
si′

s+1
+ c(j′p̃j′)

≤ 2Ti + Ti′ + vj′

≤ 2Ti + 2vj′

≤ 4 max {Ti, vj′} .

Finally, for proving the statement in the last claim is enough to show that no
demand point j could increase simultaneously two values tilj , tisj , for il 
= is and
il, is ∈ pi. This follows from the definition of pi, which implies that whenever a
demand point reaches a facility on pi, the predecessor of that facility should have
been already paid, and subsequently all the facilities of pi situated on inferior
levels. ��

We now describe how to construct a corresponding primal solution (x, y).
Suppose there are r fully paid facilities in the last level. Order them according
to nondecreasing T−values, say

T1 ≤ . . . ≤ Tr .

Construct greedily a set C ⊆ Vk of centers which have parewise disjoint
neighborhoods and assign each j ∈ D to some center i0 ∈ C as follows:

INITIALIZE C = ∅
FOR i = 1, . . . , r DO

IF Ni ∩ Ni0 
= � for some i0 ≤ i, assign to pi0 all demand nodes
j ∈ D with i ∈ p̃j

ELSE C = C ∪ {i} and assign to pi all the demand nodes j ∈ D

with the property that i ∈ p̃j

The paths pi (i ∈ C) are called central paths.
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Remark 3. Note that each demand point j is assigned to one center. Further-
more, by construction of C, j ”contributes” to at most one central path (not
necessarily the one to which it is assigned).

The primal solution (x, y) is obtained by connecting all demand nodes along
their corresponding central paths:

xjp :=
{

1 if p = pi and j was assigned to pi

0 otherwise

and

yi :=
{

1 if i is on a central path
0 otherwise .

The shipping cost c (x) is easily bounded as follows.
If j ∈ D is assigned to pi0 then Ti0 ≤ Ti,where {i} = p̃j ∩Vk. Due to Lemma

1 (ii) and (v), we get Ti0 ≤ vj and

cjpi0
≤ cji0 j + cji0pi0

≤ 4vj + Ti0 ≤ 5vj .

The cost of opening facilities along a central path pi0 can be also bounded
with the help of Lemma 1(vi)∑

i∈pi0

fi =
∑

i∈pi0

∑
j∈Ni

tij ≤
∑
j∈Ni

vj .

Since the centers have pairwise disjoint neighborhoods, we further conclude
that

f(y) =
∑
i0∈C

∑
i∈pi0

fi ≤
∑
j∈D

vj .

We have proved

Theorem 1. The above primal solution (x, y) satisfies

c(x) + f(y) ≤ 6
∑
j∈D

νj .

4 A Capacitated Version

The following capacitated version has been considered in the literature: Each
i ∈ F has an associated node capacity ui ∈ N which is an upper bound on the
number of paths using i. On the other hand, we are allowed to open as many
copies of i (at cost fi each) as needed.
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To formulate this, we replace the 0 − 1 variables yi in (Pint) by nonnega-
tive integer variables yi ∈ Z+, indicating the number of open copies of i ∈ F .
Furthermore, we add capacity constraints∑

j∈D

∑
p�i

xjp ≤ uiyi, for each i ∈ F . (4.1)

Again, we let CLP denote the optimum value of the corresponding LP -relaxation.

The idea to approach the capacitated case (also implicit in [JV99] for the 1-
level case) is to move the capacity constraints to the objective using Lagrangian
multipliers λi ≥ 0, for each i ∈ F . This results in an uncapacitated problem

C(λ) := minimize c(x) + f(y) +
∑
i∈F

λi

∑
j∈D

∑
p�i

xjp − uiyi


= minimize c̃(x) + f̃(y)

with f̃i = fi − λiui, for each i ∈ F and c̃(e) = c(e) + λi if i is the endpoint of
e ∈ E. Note that each λ ≥ 0 gives C(λ) ≤ CLP .

As in section 3. we compute a primal 0 − 1 solution (x, y) of C(λ) with

c̃(x) + f̃(y) ≤ 6C(λ) .

Note that this does not necessarily satisfy the capacity constraints (4.1).
However, a clever choice of the Lagrangian multipliers λi = 1

2
fi

ui
(i ∈ F ) yields

c̃(x) + f̃(y) = c(x) +
1
2

∑
i∈F

fi

ui

∑
p�i

∑
j∈D

xjp +
1
2

∑
i∈F

fiyi

≥ c(x) +
1
2

∑
i∈F

fiyi ,

where yi :=

⌈
1
ui

∑
p�i

∑
j∈D

xjp

⌉
opens each facility i ∈ F sufficiently many times.

Hence (x, y) is indeed a feasible solution of the capacitated problem satisfying

c(x) +
1
2
f(y) ≤ 6C(λ) ≤ 6CLP ,

hence

c(x) + f(y) ≤ 12CLP .

Theorem 2. Our greedy dual ascent method yields a 12−approximation of the
multilevel capacitated facility location problem.
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