
 1

Composing Aspects at Shared Join Points

István Nagy, Lodewijk Bergmans and Mehmet Aksit

TRESE group, Dept. of Computer Science, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands

+31-53-489{5682, 4271, 2638}
{nagyist, bergmans, aksit}@cs.utwente.nl

Abstract. Aspect-oriented languages provide means to superimpose aspectual behavior on a given
set of join points. It is possible that not just a single, but several units of aspectual behavior need to
be superimposed on the same join point. Aspects that specify the superimposition of these units are
said to "share" the same join point. Such shared join points may give rise to issues such as
determining the exact execution order and the dependencies among the aspects. In this paper, we
present a detailed analysis of the problem, and identify a set of requirements upon mechanisms for
composing aspects at shared join points. To address the identified issues, we propose a general and
declarative model for defining constraints upon the possible compositions of aspects at a shared
join point. Finally, by using an extended notion of join points, we show how concrete aspect-
oriented programming languages, particularly AspectJ and Compose*, can adopt the proposed
model.

1 Introduction
The so-called join point model is an important characteristic of every AOP language [6]. It defines a
composition interface (“hooks”) where the behavior of a (sub)program can be modified or enhanced,
by superimposing1 aspectual (crosscutting) behavior. Almost all AOP languages allow composing
independently specified aspectual behavior at the same join point, which we will refer to as a shared
join point (SJP). The composition of multiple aspects at the same join point raises several issues, such
as: What is the execution order of the aspects? Is there any dependency between them? These issues
are not specific to certain AOP languages but they are relevant for almost every AOP language.

This paper presents a novel and generic approach for specifying aspect composition at SJPs in
aspect-oriented programming languages. The approach adopts declarative specifications of both
ordering constraints and controlling constraints among aspects. In the following section (2), we will
first introduce an example, which will be used for explaining the problems that may occur when
composing aspects at SJPs. This analysis results in a set of requirements. In section 3, for specifying
aspect composition at SJPs. we introduce a simple, generic model, which we term as Core Model. In
section 4, we show how the concepts of Core Model can be integrated with aspect-oriented
programming languages. Finally, section 5 discusses the related work and the contributions of this
paper.

2 Problem Analysis
The superimposition of multiple advices on a particular join point involves several concerns. To
explain the possible problems, we introduce an example application, which will be used throughout the
paper.

2.1 Example

The example consists of a simple personnel management system. Class Employee, shown in Fig. 1,
forms an important part of the system. In particular, we will focus on the method increaseSalary(), which
uses its argument to compute a new salary.

1 We use this term to designate the weaving of behavior at one or more locations in the program.

 2

«aspect»
MonitorSalary

«aspect»
DBPersistence

«aspect»
CheckRaise

«aspect»
XMLPersistence

join point: (after) call(void
Employee.increaseSalary(int))

Employee

increaseSalary()

Fig. 1. Class Employee and its superimposed aspects

Our example has been defined as a scenario, which introduces a new requirement at each step.
Applying the principle of separation of concerns, we implement each of these requirements by separate
aspects that will be superimposed on the same join point (as well as others): in this example, after the
execution of the method increaseSalary() of class Employee. We will use AspectJ for illustrative purposes.

2.2 Primary Requirements

In this example we compose, one by one, four aspects with class Employee. Each of them will be
superimposed on the same join point2. At each step, we show the possible problems that can occur at
the SJP. We present an analysis of these problems and formulate the requirements towards their
solution.

2.2.1 Step 1 – Monitoring Salaries
Assume that the first requirement in this scenario is to introduce a logging system for monitoring
changes in salaries. This requirement is implemented by the aspect MonitorSalary in Fig. 2:

public aspect MonitorSalary{
 …
 pointcut salaryChange(Employee e, int l):target(e) &&
 call(void increaseSalary(l));
 after(Employee person, int level):
 salaryChange(person, level){
 System.out.println(“Salary increased to level"+level+
 ” for person ”+ person);
 … }
}

Fig. 2. The advice of the aspect MonitorSalary

Whenever a salary is increased, this aspect will print a notification, including the information about the
employee and the type of salary change.

2.2.2 Step 2 – Persistence
Assume that the second requirement in the scenario states that certain objects must store their state in a
database. After each state change occurs in the corresponding objects, the database have to be updated
as soon as possible. We consider persistence as a separate concern to be implemented as an aspect3.

The abstract aspect DBPersistence contains the advice that performs the update operation on a persistent
object:

2 Note that not every aspect will be superimposed on the same set of join points. However, for all aspects there is

a common join point which can be designated by the pointcut "call(void
Employee.increaseSalary(int))" in AspectJ.

3 There are several issues, such as connection, storage, updating and retrieval that have to be considered when
dealing with persistence. For simplicity, we will focus here only on updating. More details about implementing
persistence by aspects can be found in [8].

 3

public abstract aspect DBPersistence
 pertarget (target(PersistentObject)){
 abstract pointcut
 stateChange(PersistentObject po);

 after(PersistentObject po): stateChange(po){
 System.out.println("Updating DBMS...");
 po.update();
 … }
 … }

Fig. 3. The abstract aspect DBPersistence

The following definition applies the abstract aspect DBPersistence to class Employee:

public aspect DBEmployeePersistence extends DBPersistence{
 /* Class Employee implements the interface of PersistentObject */
 declare parents:

Employee extends PersistentObject;

 pointcut stateChange(PersistentObject po):
 call(void Employee.increaseSalary(int))
 && target(po) && … ;
 … }

Fig. 4. An implementation of DBPersistence: DBEmployeePersistence

These two aspects together implement the necessary behavior for making class Employee persistent.
Here, we would like to focus on DBPersistence due to its significance. If the data of a persistent object
changes, the corresponding information must be updated in the database too (Fig. 3, the advice of the
aspect). Changes to the state of the object are captured by the pointcut designator stateChange (
PersistentObject po), which is implemented in DBEmployeePersistence. Note that the aspect MonitorSalary,
which was required for the first scenario step, and the DBEmployeePersistence are now superimposed at
the same join point.

Even though in most AOP languages aspects can be specified independently, once they are
superimposed on the same join point, they may affect each others functionality. The concept of shared
join point may be experienced when both aspects and classes are superimposed. Fig. 5 illustrates these
two cases. On the left hand side, we show that superimposing a new aspect (CheckRaise) introduces a
SJP, together with the previously superimposed aspect MonitorSalary. On the right hand side of the
figure, it is illustrated that adding a new class can also introduce a new SJP, particularly when there are
wildcards in pointcut designators.

Employee Monitor
Salary

CheckRaise

Employee Monitor
Salary

CheckRaise
Manager

Fig. 5. Examples of creating possible SJPs

Problem: Because the database needs to be updated as soon as possible after the state change occurs in
the object, the advice of the aspect DBPersistence has to be executed before the advice of the aspect
MonitorSalary.

Analysis: As the example illustrates, due to semantic interference, different execution orders among
aspects at SJPs may exhibit different behavior. We distinguish the following categories of interference:

(A) No difference in the observable behavior – For example, consider two aspects where each does
not refer to the effect of the other but solely maintains its own state. Changing the execution order of
the two aspects at a SJP will not be observable after the execution of the advices of these two aspects.

(B) Different order exhibits different behavior – We have distinguished three subcategories of this
category:

(B1) The change in the order affects the observable behavior but there is no specific requirement
what the behavior should be – As an example of this case, assume that one aspect is designed to trace
the change in salary and the other one to notify the employee’s manager about any change in the salary.

 4

If the requirement is solely “both aspects should execute”, it does not matter which aspect executes
first. If there is an explicit requirement, however, the following category may apply:

(B2) The order of aspects does matter because there is an explicit requirement that dictates the
desired order of aspects – A typical example is the interference between the aspects MonitorSalary and
DBPersistence. The order between these aspects may seem to be not relevant, because they are defined
as independent aspects. However, for DBPersistence there is a requirement that it should execute as soon
as possible after a state change4 occurs. Since there is no such requirement for MonitorSalary, this implies
that DBPersistence must be executed before MonitorSalary.

(B3) There is no explicit requirement for an order, but certain execution orders can violate the
desired semantics of the aspects – For instance, when multiple advices lock shared resources,
deadlocks may occur in certain execution order of advices. This means that due to the semantics of
these advices, there are in fact implicit ordering requirements to be considered.

Requirement 1: Ordering Aspects – To ensure the required behavior of the superimposed aspects at
SJPs, it must be possible to specify the execution order of the aspects5.

2.2.3 Step 3 – Checking Salary Raises
Assume that the next requirement in this scenario is to ensure that an employee’s salary cannot be
higher than his/her manager’s salary. Thus, a raise is not accepted if it violates this criterion. This is
enforced by the aspect CheckRaise:

public aspect CheckRaise
 pertarget(target(Employee)){
 private boolean _isValid;
 public boolean isValid(){ return _isValid; }

 before(Employee person, int level):
 MonitorSalary.salaryChange(person,level){
 _isValid = true;
 } // workaround for conditional execution

 after(Employee person, int level):
 MonitorSalary.salaryChange(person,level){
 Manager m=person.getManager();
 if ((m!=null) && (m.getSalary() <= person.getSalary())){
 //Warning message
 System.out.println("Raise rejected”);…
 //Undo
 person.decreaseSalary(level);
 //workaround for conditional execution
 _isValid = false;
 }}}

Fig. 6. The aspect CheckRaise

The advice of this aspect (Fig. 6) will check the new salary after the method increaseSalary() is
executed6. If the rule is violated, a warning message will be printed and the salary will be set back to its
original value.

Problem: Adding the aspect CheckRaise affects the composition; if this aspect fails the DBPersistence
aspect must not be executed because the employee’s data has not changed. That is, the execution of the
aspect DBPersistence depends on the outcome of the aspect CheckRaise.

Analysis: Implementing conditional execution of aspects is not trivial since the AOP languages do not
provide explicit language mechanisms for this purpose. For example, in AspectJ we can use so called
workarounds, such as maintaining Boolean member variables in aspects, but effective (incremental)
composition cannot be achieved in this way; in other words, it is necessary to introduce extra advices to
maintain the Boolean variables and additional if-statements in the existing aspects to handle these
variables.

4 In fact, in this case the rationale for this feature has to do with the observable different behavior in the case of

crashes.
5 Some AOP languages, for example AspectJ, provide means to specify precedence between aspects, which

implies an execution order.
6 An alternative solution could be the prevention of an invalid raise using a before advice (as a pre-condition)

instead of an after advice. However, this is not feasible in all cases; e.g. it is undesirable to repeat complex
salary calculations, as this creates replicated code and may also incur a performance penalty.

 5

Consider for example, Fig. 7 which shows a modified version of DBPersistence. A new if-statement
has been added to check if the raise has been accepted by the aspect CheckRaise before executing the
original behavior of the advice.

public aspect DBPersistence{
 pertarget (target(PersistentObject)){

 private boolean _isUpdated;
 public boolean isUpdated(){ return _isUpdated; }

 …// workaround for conditional execution

 after(PersistentObject po): stateChange(po){
 if (CheckRaise.aspectOf(
 (Object)po).isValid()){
 System.out.println("Updating DB...");
 po.update(po.getConnection());
 }

}
}

Fig. 7. The modified version of DBPersistence composed with CheckRaise

Another disadvantage of this solution is that aspects will depend on each other. That is, to realize the
expected behavior of the composition, aspects will need to refer to each other directly. The invocation
of the method isValid in Fig. 7 is a typical example of such a dependency. Besides, problems will also
occur when CheckRaise, for some reason, is removed from the project.

Requirement 2: Conditional execution – This requirement refers to a case when the execution of an
aspect depends on the outcome of other aspects. Only if the outcome of these aspects satisfy a certain
criterion, the dependent aspect is allowed to execute. To avoid workarounds and their shortcomings,
direct language support is needed for expressing this type of dependency.

2.2.4 Step 4 – Updating XML Representations
Assume that the fourth requirement in the scenario states that if the database is not available,
persistence must be implemented using XML files. This means, for each instance of Employee, an XML
file has to be generated. If the regular persistence does not take place (e.g. because of database
connection problems), the file must be updated after each state change of an instance of class Employee.
This is realized by the aspect XMLPersistence in Fig. 8. This aspect has one advice, which calls the
method that rewrites the XML file if the salary (or other data) changes.

public aspect XMLPersistence {
 after(XMLPersistentObject po):
 stateChange(po){
 if ((CheckRaise.aspectOf(
 (Object)po).isValid())
 &&(!DBEmployeePersistence.aspectOf(
 (Object)po).isUpdated())
 po.toXML();
 }
}

Fig. 8. The aspect XMLPersistence

In this example, XML files must be updated only if the aspect DBPersistence has not been able to update
the database. This means that XMLPersistence must be executed only if DBPersistence has failed and
CheckRaise has succeeded.

We identified several dependencies among aspects at SJPs. If there is no explicit language support
for expressing the dependencies, they have to be implemented as workarounds in the realization of
aspects. This has generally a negative impact on adaptability and reusability. There is a need for
introducing new operators for expressing composition of aspects at shared join points. These operators
must be capable of expressing both ordering among aspects and conditional execution of aspects. The
composability of aspects should significantly improve in case the operators are largely orthogonal to
each other.

 6

2.3 Software Engineering Requirements

In the previous section, we presented the requirements from the aspect intereference viewpoint. In this
section, we list software engineering requirements that may play an important role in the quality of
programs.

2.3.1 Modularization of dependency specifications
From a software engineering perspective, not only the orthogonality of operators but also the structure
and modularization of composition specifications play an important role. In particular, new
dependencies are introduced since the specifications need to refer to specific join points, advices and
aspects.

X

A

B1

B2

Bn

...

C1

C2

Cn

1

2

2

2
3

4

Fig. 9. Four alternative modularizations of constraint specifications; A, X and Bi are aspect specifications, Ci are
composition specifications, and the grey squares (1 to 4) indicate alternative specification loci.

Fig. 9 illustrates a situation where between the aspect A and a series of aspects B1 to Bn, the
composition specifications C1 to Cn apply, respectively. The figure shows four alternative
modularizations of the composition specifications; each of these is shown as a grey square, labeled
with a different number. We will discuss each of these numbered alternatives briefly:
1. A combined specification of C1 to Cn is embedded in the specification of the aspect A;

consequently, this aspect will depend on (refer to) B1 to Bn. The introduction of a new aspect, say
Bm, can either be handled automatically by the use of an open-ended specification (as will be
discussed in section 2.3.3), or it can require an additional effort to modify the corresponding
specification of the aspect A.

2. The composition specification is partitioned and the corresponding specifications are located in B1
to Bn, respectively; as a result, each of these aspects will now depend on A. A newly introduced
aspect, say Bm must then incorporate the composition specification Cm.

A critical issue in the above two cases is that the aspects A and Bi, now include knowledge about how
they depend on each other. In certain cases, this may be exactly what is required, but for example if the
two aspects come from different (third-party) libraries, this is not desirable.

3. The composition specification is represented in a separate module (labeled X in the figure); Aspect
specifications in this case do not depend on each other. X can be either defined as a dedicated
module for describing the composition of aspects, or it is a part of another module (e.g. aspect or
class). Obviously, X will now depend on both A and B1 to Bn. Changes to any of these may require
an update to X. This allows for localizing composition specifications in a set of dedicated modules,
if desired.

4. All the composition specifications are collected in one global module (c.f. a configuration file);
this is a special case of alternative (3), and has the same dependency issues. In this case, all
composition specifications are collected in a single location, which makes it easier to get an
overview. However, scaling up to a large system will be more difficult, as the module
consequently becomes larger. Obviously, each change to the structure of the system requires a
potential revision of this global module.

Based on this analysis, we conclude that it is not desirable to offer a solution which satisfies only a
single case; AOP languages should offer a rich set of language mechanisms for composition
specifications so that the programmers may choose the right specification for their problem.

 7

2.3.2 Safety and Correctness: Identifying conflicts
An important design consideration is that programmers should be warned if their specification is not
sound. A specification is sound when it contains no inconsistencies. This is especially important if the
complete specification is made up from several sub-specifications defined at different locations. For
example, creating circular relationships is a typical error that can occur in such a case. When a
programmer creates a new composition specification, he or she must be warned if the new specification
is in conflict with other specifications.

2.3.3 Evolvability: Supporting open-ended specifications
Open-ended specifications in this context ensure that a specification is resilient to changes. Open-
endedness may appear in the following forms:
1. The specification directly refers to an abstraction (a language element) that is not (yet) defined. In

this case, open-endedness means that the specification is still correct and usable, even though some
abstractions that the specification refers to have not been yet defined.

2. The specification indirectly (by defining a number of selection criteria) refers to a set of potential
abstractions. In this case, open-endedness means that, if a new abstraction appears in the
environment, and it satisfies those criteria, it will be in the set of actual abstractions designated by
the specification.

If developers use open-ended specifications for composing aspects in SJPs, these specifications will be
able to handle (1) aspects that are referred to, but not yet present, and (2) aspects that are introduced
later, but are already designated by the current specification.

3 Core Model
The problem of shared join points is general to AOP languages. For this reason, we propose a generic
solution model that can be possibly built into various AOP languages. The presentation aim of this
section is not to present a formal foundation, but to illustrate the approach in an intiutive and concrete
but language-independent way. This requires a set of assumptions about AOP languages, which are
presented in Section 3.1. Section 3.2 presents composition constraints as a means to specify
composition of aspects at SJPs.

3.1 Basic Entities
In this section, we outline the key elements of AOP models, that we consider relevant to our purpose.
In order not to be too restrictive, it is important to make only a few assumptions about these entities In
particular, we focus on join points and actions7.

Join Points
AOP languages have different means to designate join points. Thus, the range of the possible join
points that can be designated varies from language to language. We do not make further assumptions
about the designators. We just assume that there are certain points (join points) in the execution of a
program where aspectual behavior can be executed.

Actions
In our model, the aspectual behavior that can be executed at join points, is abstracted under the concept
of action. An action has a name that is used for identification, and can have a return value. For the
purposes of our model, we are only interested in Boolean return values. These typically indicate a
success (true) or a failure (false) of the action8. For example, in the case of the example problem where
persistence was required, the action that is responsible for updating the database will indicate a failure
if it cannot connect to the database for some reason. If an action returns a value which is not Boolean,
or it does not return a value at all, we use the keyword void for this purpose. In our model, the return
values of actions will be used to express certain dependencies among actions at the same joint point.

By default, every action assigned to the join point will be executed, unless specified otherwise. The
execution of actions is sequential9, that is, only one action executes at a given time. In the absence of

7 These two entities have been identified among the main ‘ingredients’ of AOP languages [6].
8 A key reason for this restriction to Boolean values is that it guarantees uniform interfaces between the actions;

allowing for more freedom in choosing return types would create undesired coupling between actions, since
actions would become dependent on–the compatibility of–the return types of other actions.

9 Parallel execution is an orthogonal issue; if synchronization between (actions executing in) multiple threads is
needed, this is not a different problem from regular issues of thread-safe code. In this paper, we focus on the

 8

ordering constraints, the execution order of the actions is undefined10. How to handle this is considered
a language-design issue. Typically, a fixed order can be determined at compile-time, and be applied for
each execution. Alternatively, a random order of actions may be generated for each execution; this can
result in a non-deterministic execution order.

3.2 Constraints
Our proposed model for composing aspects at SJPs is based on declarative specifications of constraints.
Constraints define dependencies between actions. We distinguish between two main categories of
constraints: ordering constraints and control constraints. Ordering constraints specify a partial order
upon the execution of a set of actions. Control constraints specify conditional execution of actions.

Ordering Constraints
Ordering constraints specify a partial ordering over actions. When several actions are superimposed
upon the same join point, all these actions are assumed to execute once, in an unspecified order. This
implies that there can be many possible valid orderings. By applying ordering constraints, the number
of possible orders can be decreased. For example, assume that four aspects are superimposed on the
same join point, for example as shown in section 2.2. Without any ordering constraints, the number of
possible execution orders is 4!=24. To be able to specify ordering, we need to introduce an ordering
constraint.

Constraint pre
The pre constraint specifies that the execution of corresponding action should precede the execution of
another action at the SJP. The definition of the pre constraint is the following:

pre(x,y) – The order of actions is such that x should never be executed after the execution of y has
been completed. Besides, y should be executed only after x has been executed at this join
point11. (The two actions do not have to follow each other directly; other actions can be
executed between them.)

We use Table 1 to illustrate the definition of constraints that are applied on two actions, respectively x
and y. The topmost row of the table shows the applied constraints. Let us now focus on the column of
the constraint pre. The leftmost column lists the possible values (true, false and void) that the action x can
have after its execution. The last item in this column is the special case when the action x has not been
executed for some reason. According to the applied constraint and the return value of x, the remaining
cells of the second coulumn from left indicates if y is allowed to execute after the execution of x or not.
We can see in this figure that the pre constraint is not influenced by the return value: in each case y can
be executed after x is executed. The last cell in this column shows that y is not allowed for execution if
x has not been executed .

 pre(x,y) cond(x,y) skip(x,y,R)
x: true y:yes y:yes y:no, {yreturn←R}
x: false y:yes y:no y:yes
x: void y:yes y:no y:yes
x: did not run y:no y:no y:yes

Table 1. The execution semantics of the composition constraints: y:yes means that y can be executed according to
this specification; yreturn←R means that return value of y is substituted with R

In Table 2 we illustrate how the pre constraint decreases the number of possible orders. We use the case
that we have introduced in section 2. As a short hand notation, we show only the first letter of the name
of an action. We assume that all four actions (C = CheckRaise, D = DBPersistence, M = MonitorSalary, X =
XMLPersistence) are superimposed upon the same join point. In the middle column, we list the
constraints applied, and correspondingly in the right column we list all the possible orders which are
valid. In the first row (Case I.) we apply only one constraint specifying that DBPersistence should be
executed before MonitorSalary. The last six possible orders of Case I. are those cases where the
execution of DBPersistence and MonitorSalary are interleaved with other actions (C and/or X).

sequential execution of aspects. Parallel execution of actions at shared join points is outside the scope of this
paper. In particular, we have not encountered any motivation for exploring this further.

10 In this case, the programmer should be warned about possibly unspecified orderings.
11 In general, constraints do not allow for the execution of an action if the dependent action did not execute. In

other words, we deal with hard constraints. To be able to specify open-ended constraint specifications, we
introduced additional functions that are discussed in Appendix A of [10].

 9

Case Constraints Possible Orders
I. pre(D, M) DMCX, CDMX, CXDM, DMXC, XDMC, XCDM |

DCMX, DCXM, CDXM, DXMC, DXCM, XDCM
II. pre(D, M),

pre(D, X)
CDMX, CDXM, DCMX, DCXM, DMXC, DMCX

III. pre(D, M),
pre(D, X),
pre(C, D)

CDMX, CDXM

Table 2. The possible execution orders decrease as new constraints are added.

In Case II., we add a new pre constraint, which specifies that DBPersistence should precede
XMLPersistence as well. By applying two ordering constraints, the number of valid orders are reduced to
six in this case. In the third row (Case III), after applying three constraints, there are only two
alternatives left. Here, only the order between MonitorSalary and XMLPersistence is not fixed.

Control Constraints
Control constraints express conditional execution dependencies between actions. The general form of a
control constraint is the following: Constraint(Condition, ConstrainedAction). The Condition is
represented by an action, or a Boolean expression built up from actions with logical connectors (AND,
OR, NOT). Control constraints use the return value of the executed actions for constraining the
execution of ConstrainedAction.

Constraint Cond
The cond constraint specifies that an action is conditionally executed depending on the return value of
another action. The definition of the cond constraint is the following:
 cond(x,y) – Action y can execute only if x returns true. That is, y will not execute in case of the

following four conditions: (1) if x returns false; (2) if x returns void; (3) if x has not been
executed, or (4) if x is not present at the join point.

For the cond constraint, a Boolean return value is desired. Hence, if strong typing is applied to the
return values of actions and the arguments of constraints, the void case (which is also used for all non-
Boolean return values) can be avoided. We have deliberately included the return value void as a
legitimate case to make the system more flexible and applicable to a wide range of languages; either
with or without strong typing.

The column of cond(x,y) in Table 1 illustrates the meaning of the cond constraint: y can execute only
if x succeeded (i.e. x returned true). Note that when x did not execute, cond does not allow for the
execution of y. Again, a ‘soft’ constraint would allow for this.

Case Constraints Possible Cases
 C: true C:false C: did not run
IV. pre(D, M),

pre(D, X),
cond(C, D)

CDMX,
CDXM

CMX,
CXM

MX, XM

Table 3. Using the cond constraint

Table 3 demonstrates the effect of the cond constraint. In Case IV, we have changed the third constraint
of Case III to cond(CheckRaise, DBPersistence). Depending on the return value of CheckRaise, there are
two sets of possible orders. When CheckRaise returns true (the first column of Possible Cases) the
possible orders are the same as the one of the pre constraint. However, when the return value of
CheckRaise is void or false (the second column of Possible Cases) DBPersistence will not be executed.
The right-most column, “C did not run”, shows that both CheckRaise and DBPersistence have not been
executed in this case.

Constraint Skip
The skip constraint specifies that the execution of an action may be skipped, based on the result of the
logical expression built up from the results of other actions. The definition of the skip constraint is the
following:

skip(x,y,R) – The execution of y is skipped and y marked as ‘executed’ with the return value R,
only if x yields true.

R substitutes the original return value of y if y is skipped. For example, R can be true, false or void, but an
arbitrary logical expression can also be used to express the return value. In Table 1, we show the
behavior of skip: y is skipped only if x has been succeeded (i.e. x was true). In addition, the return value
of y is substituted with R.

 10

Case Constraints Possible Cases
DC ∧ DC ∧ runnotDC _=∧V. pre(D, M),

cond(C, D),
skip(D, X,F) CDM{X←F} CDMX,

CDXM
CX
CX

Table 4. Using the skip constraint

In Table 4, the first column on the left hand side under the cell Possible Cases shows that when both
CheckRaise and DBPersistence succeed, XMLPersistence is skipped as if it has returned a false value. In the
middle column, CheckRaise succeeds but DBPersistence fails, so XMLPersistence is executed. The third
column on the right hand side shows that XMLPersistence will also be executed in the absence of
DBPersistence.

Note that other possible cases may occur for both control constraints. We have chosen only those
cases that we considered important for the illustration of the behavior of control constraints. With the
cond constraint the execution of an action is controlled on the basis of information that originates from
the past. Using the skip constraint it is possible to control the execution of an action that will be
executed in the future. Although it is perhaps possible to introduce additional constraints, based on the
example cases that we have carried out, it seems to be that the three constraints pre, cond and skip are
powerful enough for expressing a large category of conditional constraints.

3.3 Composition Rules for Multiple Constraints
The constraints discussed so far, are to a large extent orthogonal to each other. However, when multiple
constraints apply to the same action, certain rules must be considered to resolve the composition of
constraints.

Precedence of Constraint Types
If different type of constraints apply to the same action, e.g. skip(x, z, true); cond(y, z) the constraints are
evaluated in a given order according to their type. The precedence order of the three constraints is the
following (starting with highest priority): pre, skip, cond. It is important to note that when a new type of
constraint is introduced, its relative precedence has to be determined according to this list.

Composition of Constraints
Control constraints are composed with AND logic; an action can be executed only if none of the
constraints applied to it forbids its execution. For example, in a set of constraints, if there is a cond
constraint that does not allow for execution, the action to which it applies cannot be executed. As an
example, consider the following pair of constraints: cond(x,z); cond(y,z). Since both constraints are
applied to z, in order to execute z both x and y have to be true. In fact, the above mentioned pair of
constraints can be re-written into the following one: cond(x ∧ y, z). On the other hand, note that the
execution of z can be skipped and marked as executed by an additional skip constraint, since the skip
constraint has a higher precedence than the cond constraint.

If complex Boolean expressions are used in cond constraints, they are composed with AND logic as
well. Consider the following example, where two cond constraints with different Boolean expressions
are applied to the same action: cond(a ∨ b, z); cond(!c, z). These two constraints can be rewritten in the
following manner: cond((a ∨ b) ∧ !c, z).

Note that OR composition is supported as well, as this is the default way of composition.

Multiple Skips
In case of multiple valid skip constraints with different substitution values, a runtime-conflict occurs,
since it is ambiguous which value should be used for substitution. As an example, consider the
following pair of constraints: skip(x,z,True); skip(y,z, False). Since both x and y can result in True values
after their executions, it is not obvious if the return value of z should be substituted with True or False.
Since this problem can be determined only after x and y have been executed, we indicate this by a
runtime-conflict when it is necessary. Note that there can be conflict situations that can be determined
statically as well. For instance, skip(x,z,True); skip(x,z, False) is a statically detectable conflict, since
different substitution values are used with identical conditions.

Cascading Constraints
The sequential composition of actions through constraints can have cascading effects. For instance,
consider cond(A, B); pre(B,C) as an example. If B is not executed it implies that C will not be executed as
well.

 11

3.4 Enforcing Ordering and Control Constraints
The enforcement of a given constraint specification involves two main steps: generating a valid
execution order (which may be done statically), and managing execution based on the specified control
constraints. Due to lack of space, the reader can find the detailed description of the algorithms that
realize these two steps in Appendix C of the technical report [10].

3.5 Hard & Soft Converter Functions
Both the ordering and control constraints introduced previously are termed as a ‘hard’ constraint. This
means that the definition of a constraint does not allow for the execution of the constrained action if
any action that is part of a condition is not present at the join point. That is, the constraints aim at
ensuring the presence of actions. This may be important for the sake of safety and correctness.
However, a ‘soft’ constraint may be preferred sometimes from the perspective of evolvability and
maintainability: soft constraints are considered ‘tolerant’ to the absence of an action; if they can handle
situations where a specification refers to an action that is not present in the system. This feature can be
important to provide open-ended specifications. To support open-ended specifications we introduced
hard and soft convert functions that can be used within the scope of constraints. Due to lack of space,
for a detailed description of these functions we refer to [10].

3.6 Structural Constraints
Structural constraints form another important category of constraints. They aim at specifying what
actions have to be or cannot be mutually present at a shared join point. We discuss two kinds of
structural constraints: the include constraint defines that the presence of an action requires the presence
of another action at the join point. In contrast, the exclude constraint defines that the presence of an
action excludes the presence of another action at the join point. A more detailed description about these
constraints, as well as the possible conflicts that can occur in their specification, can be found in
Appendix B of [10].

4 Integration with AOP Languages
In this section, we will show the application of the concepts of Core Model to concrete AOP languages.
As we pointed out before, Core Model is intended to be a succinct representation of the core concepts
for controlling the interaction among aspects. Hence, it does not address programming language issues
such as comprehensibility. It is rather intended as a model that can be adopted by AOP languages. This
section is structured as follows: first, we extend the join point concept, as it is available in most AOP
languages. Then, we use the extended join point construct to integrate our core model with AspectJ.
We revisit the example that we introduced in the problem analysis section and show how the extended
version of AspectJ can resolve the identified problems.

4.1 Extending Join Points with Properties
Most AOP languages provide reflective information about the current join point by representing the
join point as a first-class entity. The ‘instance’ of the join point can be accessed within the body of the
advice that is being executed when the join point is reached. For example, in AspectJ, the JoinPoint type
represents the concept of join point. The variable thisJoinPoint is an instance of that type and it can be
used only within the context of advices. The Joinpoint type in AspectWerkz [1], Invocation type in JBoss
[7], and ReifiedMessage [3] type in Compose* serve the same purpose.

To implement the conditional execution of aspects (i.e. cond constraint) and other concepts of our
Core Model presented in section 3, we have extended the interface of type join point with new
operations. These operations allow for placing and retrieving extra information into and from an
instance of the join point – this extra information may originally not pertain to the join point itself. In
this way, the join point will act as a communication channel/bus among the aspect instances that are
sharing the same join point. Thus, aspect instances being executed on the same join point can exchange
information among each other through the extended join point interface. In addition, the extra
information placed in the join point can also be recognized and maintained by a weaver to direct the
weaving process.

Extra Information: Properties
The extra information is represented in the form of properties. A property is a key-value pair that
belongs to the join point during the execution of advices. The key is the fully qualified name of the
property: a fully qualified representation where the property was created (the namespace and the name
of an aspect and its advice), plus the identifier of the property itself. For example, the value is a fully

 12

qualified reference to a constant defined in Java. Fig. 10 illustrates the structure of properties and an
example property.

Definition
Property := <Key; Value>
Key := <Namespace.Aspect.Advice.Identifier>
Value := Fully Qualified Constant References in Java

Example
< Persistence.update.isSucceeded; BooleanConstants.True>

Fig. 10. An example definition of property and its application in an example

Manipulation of Properties
In general, properties can be manipulated by two parties: the weaver and programmers. Before or after
the execution of an advice the weaver can create, access, change or release a property related to the join
point. We refer to the properties recognized by the weaver as built-in properties. Programmers can also
use built-in properties to direct the weaver. Built-in properties are independent from particular
applications; typically, they are used by the weaver for maintaining standard interactions among
aspects. We consider the conditional execution of aspects as an example of such an interaction.
Programmers can also create their own properties and manipulate them within advices. We refer to the
properties created by programmers as user-defined properties. User-defined properties are application
specific properties. In this case, a user-defined property realizes a common parameter passing
mechanism among aspects to exchange information.

4.2 Integration with AspectJ
Before we adopt Core Model in AspectJ, we need to carry out two simple extensions to the language:

Named Advices
As we mentioned above, every property has a fully qualified name for two reasons: to be able to trace
back to the origin of the property and to provide a unique name for the property. For this reason, the
advice-construct of AspectJ needs to be extended with an identifier12.

Extending the Join Point Interface
To be able to handle properties, the org.aspectj.lang.JoinPoint interface needs to be extended with the
following methods:

void createProperty(String propertyId, Object value) throws PropertyExists – creates a property with the given
value. If the property already exists, the method throws an exception.

Object getProperty(String propertyName) throws AmbiguousPropertyIdentifier – returns the value of the given
property. The propertyName is either the fully qualified name, or only the identifier of the property. If
the property with the given identifier or fully qualified name does not exist, the method returns a null
value. When only the identifier is used as propertyName and there are more properties with the given
identifier, the method looks up and returns the one that is in the default namespace (That is, it looks up
the property that is created in the current aspect & advice). If there is not such a property, the method
throws an AmbiguousPropertyIdentifier exception.

void setProperty(String propertyName, Object value) throws AmbiguousPropertyIdentifier – sets the value of
the given property. The look up strategy is the same as described at the method getProperty. If the given
value is null the property is released.

Fig. 11 illustrates the use of these extensions by a simple example. Within a named advice
(checkRaise) a property (isSucceeded) is stored with a given value. The initial value (True) is a constant
defined in a utility class (BooleanConstants) that contains Boolean constants for our purpose.

public aspect EnforceBusinessRules{
 after checkRaise(Employee p, int l): MonitorSalary.salaryChange(p,l){
 …
 thisJoinPoint.createProperty(‘isSucceeded’, BooleanConstants.True);
 …
 }}

12 A number of AOP languages (e.g. AspectWerkz, JBoss, Compose*) already support the identifier of the

construct that represents the superimposed behavior. (Typically, this construct is called advice in AOP).
However, this does not apply to AspectJ, where advices are unnamed. To keep the backward compatibility of
weaver, the name of the advice is an optional syntax element. However, properties can be created only within
named advices.

 13

Fig. 11. Placing a property into a join point in AspectJ

Adopting Core Model in AspectJ
Before discussing how AspectJ can adopt our core model, we have to mention that AspectJ has already
introduced the declare precedence construct to order the execution of advices at shared join points. For
this reason, we do not provide a mapping from AspectJ to the ordering constraints in our approach.
Consider the following significant characteristics of Core Model:

Granularity of actions: Advices are mapped to the actions of Core Model. A built-in property called
isSucceeded is introduced to indicate the success or failure of an advice. This built-in property can be
set by the above described operations, as shown in Fig. 11. To enforce conditional constraints, such as
cond, the weaver uses the isSucceeded property of each advice that is used in a condition of a control
constraint. It is not mandatory for programmers to set isSucceeded in each advice. If isSucceeded is not
set for an advice but the advice is used in a condition, the weaver takes the void case (neither success
nor failure)13 by default.
Specification of constraints: A new construct is introduced in AspectJ to define specifications of
control constraints termed as declare constraints. A set of constraint statements is introduced, which aims
at providing the desired control constraints. We list the statements along with their mapping to Core
Model:
 Control constraints (x and y represent advices):

x if y; ⇔ cond(y, x);
skip x with const if y; ⇔ skip(y, x, const);

 Structural constraints (x and y may represent both advices and sets of advices, see details below):
x includes y; ⇔ include(x, y);
x excludes y; ⇔ exclude(x, y);
x m_includes y; ⇔ include(x, y); include(y, x);
x m_excludes y; ⇔ exclude (x, y); exclude (y, x);

Designation of actions: In general, the arguments of the constraint statements (x and y) designate
advices, which can be specified according to the template namespace.Aspect.advice. For structural
constraints, the arguments can designate a set of possible advices, which means that the constraint
statement is repeated over the elements in the Cartesian product of the argument(s). For example, the
arguments of an include constraint statement can be resolved as follows:

{a1, a2} includes {a3, a4} ⇔ include(a1, a3); include(a1, a4); include(a2, a3); include(a2, a4);
This is equivalent to four include constraints with each of the possible combinations of advices a1 to
a4. In effect, this illustrates that the constraint statements can express crosscutting constraints.
Modularization of specifications: In AspectJ, the constraint specification, similarly to other declare
constructs, is modularized by aspects. Note that it is not necessary to place a constraint specification in
an aspect that is referred by the specification itself; any aspect can contain arbitrary constraint
specifications.

public aspect ApplicationConstraints{
 declare constraint:
 DBPersistence.update if EnforceBusinessRules.checkRaise;
}

Fig. 12. An example constraint specification in (extended) AspectJ

Fig. 12 shows an example of a constraint specification. It specifies that the advice update of the aspect
DBPersistence executes only if the advice checkRaise of the aspect EnforceBusinessRules has been
succeeded.

Example Revisited
In Fig. 13 we revisit the second step (section 2.2) of our scenario. In this figure, we show how the
extended version of AspectJ can realize the composition of DBPersistence and CheckRaise, without
introducing the problems we have identified in its original AspectJ version. In the aspect CheckRaise we
have made three modifications: (1) the code that was responsible for resetting the Boolean variable has
been removed; (2) the advice that is responsible for checking the salary has been named as checkRaise;
(3) instead of the Boolean variable that was used for the workaround of conditional execution, the
ísSucceeded property has been introduced to indicate the success or failure of checkRaise. The
realization of DBPersistence (regarding the update functionality) has been modified in two places: (4)

13 It is important to note we write the Boolean property into the join point and do not touch the original return

value of an advice.

 14

the advice that was responsible for updating the database has been named update; (5) the code that was
responsible for the conditional execution has been removed. Naturally, it is necessary to express the
conditional execution between DBPersistence and CheckRaise. This is done in the constraint specification
at (6). As we wrote before, control constraints do not specify the execution order of advices; this also
has to be provided to achieve the correct composition of aspects.

Note that we have removed all code that was related to the workaround of conditional execution.
The remaining code now represents clearly the intended responsibilities of aspects, since the
conditional execution is realized by the weaver and it is not tangled with the affected aspects. The
interaction between the aspects is expressed in the form of a declarative specification, which is much
closer to the design, as opposed to the tangled realization. Besides, the two aspects have become
independent from each other, since they do not contain references to each other anymore. As a result,
there is a low coupling between these aspects; they can be developed and maintained independently.

public aspect CheckRaise pertarget(target(Employee)){
(1) /* removed maintenance code */

(2) after checRaise(Employee person, int l):MonitorSalary.salaryChange(person,l){
 Manager m=person.getManager();
 if ((m!=null) && (m.getSalary() <= person.getSalary())){
 //Warning message
 System.out.println("Raise rejected”); …
 //Undo
 person.decreaseSalary(l);
 //setting Boolean for conditional execution
(3) /* _isValid = false; */
 thisJoinPoint.createProperty(“isSucceeded”, BooleanConstants.False);
 }
 thisJoinPoint.createProperty(“isSucceeded”, BooleanConstants.True);
 }}

public aspect DBPersistence pertarget (target(PersistentObject)){
 …
(4) after update(PersistentObject po): stateChange(po){
(5) /* if (CheckRaise.aspectOf((Object)po).isValid()){ */
 System.out.println("Updating DB...");
 po.update(po.getConnection());
 /* } */

}}

public aspect EmployeeConstraints{
 declare precedence:
 EnforceBusinessRules, DBPersistence;
(6) declare constraint:
 DBPersistence.update if EnforceBusinessRules.checkRaise;
}

Fig. 13. Realization of the second requirement in our scenario using the extended version of AspectJ

4.3 Integration with Compose*
Core Model is generic in the sense that it can be adopted by different AOP languages. For example, we
have also provided an integration of Core Model with Compose* in a way that is similar to AspectJ:
The join point type of Compose* (the ReifiedMessage class) has been extended to handle properties, and
we introduced a pre-defined property (named isSucceeded) to map filtermodules to actions. The
mapping has been realized using similar steps as we have discussed for AspectJ. The full description of
the integration with Compose* can be found in [10].

5 Conclusion

5.1 Related Work
Composition of aspects at shared join points is a common problem, which has been –partially–
addressed by several AOP languages. In the following, we examine some of them with respect to the
requirements that we identified in section 2.

In AspectJ [8][16], the order between actions can be controlled by the declare precedence statement.
The precedence determines the execution order of advices superimposed on the same join point,
depending on the type of the advice. The precedence declaration can be placed either in the aspect that
defines the advice, or in other independent aspects; this allows most of the modularizations discussed
in section 2.3.1. Circular relationships among aspects are detected only if they are superimposed on the

 15

same concrete join point. The precedence is defined at the level of aspects, which implies that different
pairs of advice of the same two aspects cannot have different precedence. As in most other AOP
languages, in AspectJ, conditional executions are not supported,. However, to the best of our
knowledge, among the current AOP languages, AspectJ is the one that supports the identified software
engineering requirements to the largest extent.

Constantinides et. al. [4], emphasizes the importance of the ‘activation order’ of aspects that have
been superimposed on the same join point. In their framework, they propose a dedicated class, called
moderator, to manage the execution of aspects at shared join points. The moderator class, as defined in
[4], can express conditional execution of aspects, but they cannot specify partial ordering relationships
between aspects. The implementation of the moderator class allows the activation of an aspect only if
all the preceding aspects are pre-activated successfully. In our work, a conditional execution is defined
between individual aspects. In this way, the execution of an aspect does not depend on the order of
other aspects, except the one of which the aspect uses as a condition. Note that since the application
programmer can implement new moderator classes, it is possible to introduce other activation
strategies; however, for certain cases, to define these strategies might not be straightforward in an
imperative way as defined in Java. With the composition constraints we propose, the execution
strategies are derived in a declarative way. Besides, extending the Aspect Moderator Framework to
support partial ordering relationships would allow for a more sophisticated way of the activation of
aspects.

In JAC [13], wrappers are responsible for the manipulation of intercepted methods. A wrapper is
implemented by a class that extends the Wrapper class. The order of the wrappers that can be loaded
into the system is handled in a global configuration file. In this file the wrapper classes are listed in
their wrapping order. This means in JAC the wrapping order is determined and fixed when the
application is loaded, whereas in our approach the order can be adapted, since it is automatically
derived when a new aspect is superimposed through new constraints.

EAOP [3] defines several operators that are comparable to our constraints. The Seq operator
specifies an exact order of aspects. Unlike pre in our model, it does not allow for partial ordering. The
EAOP operators Cond and Fst, are related to the Cond constraint of our model. However, in EAOP the
composition operators are used to construct a composition of aspects, whereas in our model we use the
constraints to derive a possible composition of aspects. The difference between the two approaches is
that EAOP may require the re-construction of the composition of aspect instances whenever a new
aspect instance has to be included. In our model, by adding one or more new constraints, the
composition of the new aspect is automatically derived. Further, in EAOP the specification of
composition is not open-ended (it requires concrete aspect instances) and conflict analysis is not
available, yet planned to be integrated in the tool.

5.2 Discussion
SJPs are not a new phenomena, nor specific to any AOP language. To the best of our knowledge, SJP
composition has not been explicitly analyzed in-depth in the literature before. In particular, in the
current approaches, we have encountered mostly ordering constraints, but little or no control
constraints and structural constraints. In this paper, we have first performed an extensive analysis on
the issues that arise when multiple aspects are superimposed at a SJP. Based on this analysis, we
identified a set of requirements that drove our design (section 2). As a generic solution, independent of
any specific AOP language, we have proposed a constraint-based, declarative approach to specify the
composition of aspects (section 3).

The proposed constraint specification can express the composition of aspects from different
libraries, provided by third parties. This is important for large scale-systems, where a large number of
aspects are involved in the development process. Unlike other approaches, the composition is
expressed in form of declarative specifications, rather than in form of imperative code within methods.
This declarative specification allows for defining the composition of aspects already in the design
phase.

We have implemented and tested the algorithms that are necessary to check the soundness of the
constraint specification and detect possible runtime conflicts. By the underlying constraint model and
conflict detection techniques we aimed at providing safe use for programmers.

We have extended the join points with the property construct to provide a mechanism by which
aspects can exchange information with each other and control the weaver at shared join points. We
claim that this extension is applicable to a wide range of aspect-oriented programming languages that
offer an explicit join point type. By using the extended join point type and a dedicated property, we
have provided mappings of two specific AOP languages, AspectJ and Compose*, to our Core Model.

 16

Finally, to provide an intuitive use of the constraint model, we proposed a small and clear-cut
composition language in AspectJ and Compose*.

6 References
[1] AspectWerkz project; http://aspectwerkz.codehaus.org
[2] L. Bergmans, M. Aksit, “Composing crosscutting concerns using composition filters”, Communications of the

ACM, Volume 44, Issue 10, October 2001.
[3] “Compose* portal”, http://composestar.sf.net
[4] Constantinides, C. A., Bader, A., and Elrad, T., “An Aspect-Oriented Design Framework for Concurrent

Systems”, Proceedings of the ECOOP’99 Workshop on Aspect-Oriented Programming, Lisbon, Portugal,
1999.

[5] R. Douence and M. Südholt, A model and a tool for Event-Based Aspect-Oriented Programming, Technical
Report no. 02/11/INFO, École des Mines de Nantes, 2002.

[6] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, H. Ossher, “Discussing Aspects of AOP”, Communications of
the ACM, Volume 44, Issue 10, October 2001.

[7] JBOSS project: http://www.jboss.org
[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm & W. Griswold, “An Overview of AspectJ”, in

Proceedings of ECOOP 2001, LNCS 2072, Springer Verlag, 2001
[9] D. Knuth, The Art of Computer Programming – Vol.1/Fundamental Algorithms, Addison Wesley, Reading,

1973.
[10] I. Nagy, L. Bergmans, M. Aksit, Declarative Composition of Aspect, Technical Report,

http://trese.ewi.utwente.nl/publications/publications.php?action=showPublication&pub_id=346
University of Twente, April 2005

[11] C. Noguera, Compose* - A Run-time for the .NET platform, EMOOSE M.Sc. thesis, Vrije Universiteit
Brussel, September 2003

[12] H. Ossher , P. Tarr, "Multi-Dimensional Separation of Concerns and the Hyperspace Approach", in Software
Architectures and Component Technology: The State of the Art in Research and Practice, M. Aksit (Ed.),
Kluwer Academic Publishers, 2001

[13] R. Pawlak, L. Seinturier, L. Duchien and G. Florin, “JAC: A Flexible Solution for Aspect-Oriented
Programming in Java”, in Proceedings of the Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns, Kyoto, Japan, 2001.

[14] A. Rashid, R. Chitchyan, “Persistence as an Aspect”, in Proceedings of the 2nd international conference on
Aspect-oriented software development, Boston, Massachusetts, 2003.

[15] P. Tarr, H. Ossher, Hyper/J User and Installation Manual, IBM corporation, 2000.
[16] The AspectJ Team, The AspectJTM Programming Guide, 1998-2001 Xerox Corporation, 2002-2003 Palo Alto

Research Center.

