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Abstract. Robotizing flexible endoscopy enables image-based control of en-
doscopes. Especially during high-throughput procedures, such as a colonoscopy,
navigation support algorithms could improve procedure turnaround and ergo-
nomics for the endoscopist.

In this study, we have developed and implemented a navigation algorithm
that is based on image classification followed by dark region segmentation.
Robustness and accuracy were evaluated on real images obtained from human
colonoscopy exams. Comparison was done using manual annotation as a ref-
erence. Intraclass correlation (ICC) was employed as a measure for similarity
between automated and manual results.

The discrimination of the developed classifier was 6.8, making it a reliable
classifier. In the experiments, the developed algorithm gave an ICC of 93 %
(range 84.7-98.8 %) over the test image sequences on average. If images were
classified as ‘uninformative’, which led to re-initialization of the algorithm, this
was predictive for the result of dark region segmentation accuracy.

In conclusion, the developed target detection algorithm provided accurate
results and is thought to provide reliable assistance in the clinic. The clinical
relevance of this kind of navigation and control is currently being investigated.
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1 Introduction

Robotizing flexible endoscopes has potential advantages for routine medical diagnostic
as well as for complex therapeutic interventions [1]. Flexible endoscopes are 1.8 m
long flexible tubes, controlled by steering knobs and with a lens system and CCD or
CMOS chip in the tip. This configuration makes them suitable for minimally invasive
procedures. Demand for these kinds of procedures is growing with the trends of more
preventive medicine and of reducing the amount of scarring due to surgical procedures.
The design of flexible endoscopes has sufficed for decades, but the increased demand
now leads to a need for more efficient procedures in terms of turnaround. Additionally,
one instrument with two Degrees of Freedom (DOF) that protrudes from the tip does
not meet the dexterity that is required for complex interventions. Control of the
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endoscope is far from intuitive; high physical workload and injuries among endosco-
pists have been reported (e.g. [2]).

A telemanipulation system for currently used flexible endoscopes has been developed
[3]. This system, called TeleFlex, aims at improving procedure efficiency and reducing
endoscopist workload at relatively low cost. Image-based navigation and control of the
robotic system may help to improve the intuitiveness of the system and reduce procedure
time [4]. During routine diagnostic ‘high-throughput’ procedures, specifically colonos-
copies (endoscopy of the colon), the endoscope is first fully inserted in the colon and then
retracted slowly to interpret possible lesions. The retraction phase has a recommended
duration of 6 min [5] while the mean insertion phase of a colonoscope is 10-20 min [6], so
efficiency improvement can be achieved during the insertion phase.

Centralization of the target direction by automatic endoscope tip correction is
thought to lead to a smooth insertion (e.g. [7]), but this application has never been
brought into clinical practice. The target direction in images of the colon can easily be
found by segmentation of the darkest region in the image (Fig. 1, point A). This region
in most cases represents the deepest part of the inside of the organ (lumen) and thus
corresponds to the target direction for steering. The center of this region will be called
‘target’ from now on.

Fig. 1 Example of dark region segmentation (target direction determination) in a real
colonoscopy image.

A problem with image-based navigation in colonoscopy is that the lumen often is
not visible. This situation occurs when the tip of the endoscope is (almost) touching the
wall of the colon, a so-called ‘red-out’. In addition, fluids like blood or water frequently
occlude the field of view and influence image analysis. Bubbles and motion blur are
other artifacts that occur often during these kinds of exams (see Sect. 2.1).

At our department an attempt was made to develop image-based endoscope nav-
igation earlier [8]. The center of gravity (CoG) of the image was used as the target area
towards which the endoscope tip was steered. While the algorithm performs well on a
plastic model of the esophagus and stomach, in real colonoscopic image sequences it
suffers from the artifacts mentioned above and it drifts quickly.
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Probably, one of the main reasons automated navigation algorithms for colonos-
copy are currently not working in a clinical setting is that the colon is too unpredictable
for complete autonomous navigation. During colonoscopy, the colon is insufflated with
air, which changes the diameter and folds of the colon significantly. In addition, the
endoscope itself causes a considerable shape change of the colon, limiting the use of
pre-procedural imaging information (e.g. CT images). Therefore, we have chosen for a
semi-autonomous approach of endoscope navigation and have designed and realized a
support system. The navigation algorithm that was developed for this system was tested
on real colonoscopy images. Main requirements for such an algorithm are that it should
be able to perform robustly, accurately and in real-time in clinical practice. The focus in
our design lies on clinical applicability. Goal of this study is to evaluate the accuracy
and robustness of the designed algorithm.

2 Materials and Methods

A target centralization algorithm was designed for and implemented in a robotized
flexible endoscopy system. Two main requirements were imposed on system func-
tionality. First, the complete system needs to work in real-time without significant
hardware requirements to become applicable in a clinical setting. Second, the endos-
copist needs to be able to overrule the algorithm instantaneously and the complete
functionality needs to be intuitive.

In the case of Teleflex, control of the system (Fig. 3) can either be established
through remote user input (e.g. joystick or touchpad device), or through the image-
based navigation algorithm. This algorithm’s main task is to detect the target of the
endoscope through image analysis. The navigation algorithm should not be influenced
by frequently occurring artifacts like lumen occlusion, fluids on the lens or bubbles in
the field of view.

In this section, first the system will be described in more detail (Sects. 2.1 and 2.2),
and then the workings of the algorithm (Sect. 2.3). Section 2.4 contains the details of
the analyses we have performed.

2.1 Materials

Endoscope systems typically produce RGB image sequences ranging from 25 to 30
frames per second of varying resolution, depending on vendor and model. In the case
of this experiment, an Olympus CF180 colonoscope was used to record 576 x 768
pixel images with 25 frames per second. This endoscope has a field of view of 170° and
a field depth of 3—100 mm. An endoscope can be advanced up to tens of mms per frame
in some areas of the colon, making motion blur artifacts in images relatively common.

2.2 System design

The complete system setup and control is displayed in Figs. 2 and 3. Only the tip of the
endoscope is controlled by the steering knobs, and consequently the robotized system
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Fig. 2 Overview of the experimental setup. On the left, an endoscopist working with the system
using a joystick controller. If a button is pressed on this controller, the navigation algorithm is
enabled. The anatomical model is used to represent patient location. The robotic steering module
is clicked on a current flexible endoscope and motors in the motor module turn the endoscopic
steering knobs, using information from joystick or navigation algorithm input.

only influences tip motion in the currently used setup. The computer that is used for
navigation and control is a standard laptop.

The user can enable the automated steering by keeping a button on the interface
pressed. If the button is pressed, the navigation algorithm computes a steer command
by finding the target direction. The algorithm can be overruled by using the joystick or
by releasing the button. If the algorithm is enabled, the system attempts to centralize the
target, i.e. turn the motors in the motor unit to rotate the endoscope’s steering knobs
until the tip is in the correct position. However, constraints are imposed in the
movements of the motors to prevent instability of the system. Therefore it is possible
that the tip position is not reached before the next target location update (analysis of the
next image). Nonetheless, by using previous, reliable information, the target ultimately
will be reached with the navigation algorithm.

2.3 Navigation algorithm

Detection and correction of all possible artifacts separately is thought to lead to con-
siderable computational effort and to still not lead to a robust solution for endoscope
navigation because of the unpredictable environment. However, not in every frame a
new target needs to be determined. Directional changes during colonoscopy occur
gradually, which means previous accurate information can be used in the current frame.
Yet, determining accuracy of target direction estimation automatically is not straight-
forward. Dark region segmentation leads to a large spread in results for many possible
accuracy features. Therefore, we have designed an image classifier based on image
variance and entropy that will predict whether a frame contains reliable information
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Fig. 3 Flowchart of components in the robotized endoscopy system. Two types of control input
can be discerned: remote (user) controlled steering and image-based steering. The motor unit
controls the endoscopic steering knobs through the drive unit that is attached at the endoscope
handle. Images are acquired from the video processor of the endoscope system.
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Fig. 4 Stepwise approach of the algorithm with an image and the previous target as inputs. If the
image is ruled ‘uninformative’, it does not resemble the previous frame at all. Therefore, previous
target information is then discarded and the CoG is recomputed. This location will then be used
as candidate location for the target.

and thus whether the segmentation can be expected to be reliable (Fig. 4). If it is
expected that the information is unreliable, the algorithm will re-initialize by computing
the Center of Gravity (CoG) and using this as input location for the Gauss filter.

Let i be the frame index of an image sequence f;(x) with x the 2D pixel positions,
and let y(i) be the 2D position of the center of the lumen. y(i) is the estimate of y(i).
The algorithm is initialized in the first frame of the sequence (i = 1) by the CoG
computation described in [8]. This provides the estimate y(1). All other frames of the
sequence are processed according to:
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(1) invert and low pass filter the frame: g(x) = (1 —fi(x)) * h(x)
(2) window the result at the previous found position: gwin(X) = w(x — ¥y(i))g(x)
(3) estimate the lumen at the position of global maximum: ¥(i) = arg max g (x)

Gaussian low pass filtering is applied to suppress the influence of noise. The
inversion of the frame turns the search for a minimum into a search for a maximum.
The window function is a Gaussian with the peak located at the previously estimated
lumen position. So, it restricts the search area to a vicinity of that previous position, and
also biases the current estimate towards this previous one. If a frame is classified as
‘uninformative’ (see below), the sequence is regarded as terminated, and the algorithm
is re-initialized with the following frame.

Image classifier. Rationale behind the image classifier is that wall view frames, or red-
outs, contain the least information. These frames are recognized from three features:
image variance after high- and low-pass filtering and image entropy. We have estab-
lished a training data set consisting of two classes: wall view images and other images.
These images were obtained from colonoscopy exams in several patients. The classifier
was then designed as follows. Suppose the data is organized in a three-dimensional
(3D) vector z: high-pass filtered variance, low-pass filtered variance and entropy of two
classes, @, and w,. Differentiation between the classes occurs by transforming the data
into a log-likelihood ratio A, defined as:

o plaon)
A=log ) M

with p(z|wy) the likelihood function [9]. Under the assumptions of normally distributed
data sets with equal covariance matrices, A becomes a linear mapping of z:

A=a'z+b (2)

The likelihood ratios A, conditioned on the two classes, are two Gaussians with
equal variance V and means yu; = — % Vand p, = %V, respectively. If the densities are
normalized with respect to variance, the distance between the means becomes

% = JLV = +/V. This normalized distance is called the discrimination of the classi-

fier. A value above 4 makes the classifier reliable [9].

2.4 Experiments

For the complete algorithm to work properly, the classifier had to be trained first. 265
images of colonoscopy exams were collected; 172 were labeled in class uninformative
and the remaining 93 were labeled informative. A Linear Bayes Normal Classifier
mapping was applied from the training set using the ‘PRtools’ toolbox [10] in Matlab
R2011b (The Mathworks Inc., Natick, MA, USA). The mean values of the three
features for both classes, 3 X 1 vectors m; and m,, and the covariance C result from
this mapping. For the log likelihood ratio A then:
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a=C"'(m —my), andb=—05-(m; +my)-a. (3)

After the classifier was trained successfully, it was implemented in the algorithm.
Next, the algorithm was tested for robustness on five image sequences from human
colonoscopy exams. In Table 1, properties of the test image sequences are listed. We
have categorized the sequences in Easy, Medium or Hard. We expect the sequence of
category ‘Hard’ to provide poorer results than the sequence of category ‘Easy’. For
Medium (Hard) better results are expected than for (Medium) Hard.

For each sequence, the steering target was manually annotated per frame. This
target was defined as ‘the point to which a human user would steer the endoscope’. The
algorithm resulted in several measurement parameters for each sequence. The target
location was detected and compared to the manual results using intra-class correlation
analysis (ICC, [11, 12]). The ICC is the main measure to determine accuracy of the
algorithm. Additionally, the number of useful frames according to our classifier pro-
vides information on the quality of the frames in a sequence. This is expected to clarify
whether a poor result in target direction over a sequence is due to frame quality or has
another cause and therefore provides information on algorithm robustness as well.

Table 1. Properties and categorization of the test set of image sequences.

Sequence Artifact description No. of frames Category

1 No artifacts, clean bowel 77 Easy

2 Bubbles, motion blur, wall contact 100 Hard

3 Out of focus, motion blur, wall contact 174 (Medium) Hard
4 Motion blur 31 Medium (Hard)
5 Colitis (red, no folds in the wall) 175 Medium
3 Results

The best result was obtained with o, the peak width of the Gaussian window function,
set at 3. The discrimination of our classifier then was 6.8 using all three features,
making it excellent. Because of the excellent result a feature reduction was attempted.
With the two best features, the maximum discrimination was 6.1. Yet, the error rate
then still was 1.5 % due to not fully normally distributed data. To minimize the error
rate all three features were kept and the classifier was implemented in the navigation
algorithm.

Figure 5 displays plots of target location in X and Y coordinates for a good result
with many target location changes (A) and the poorest result (B) in terms of accuracy.
In Table 2, accuracy and robustness results are summarized.

In the top graphs of Fig. 5 can be seen that automatic target detection follows
manually annotated locations really well. The dashed vertical lines indicate areas for
which Az (zRes, bottom graphs) was far below the threshold, shown for reference as a
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horizontal line. In the top graphs it is seen that for these regions, the automatic
detection corresponds poorly to the manual gold standard.

From the results in Table 2 can be seen that the ICC between the results of our
algorithm and the manual results is high with an average of 93 % (range 84.7-98.8 %).
A high overall ICC corresponds to a high number of useful frames according to the
classifier. The best result indeed was obtained with sequence 1, which we categorized
as ‘Easy’. The poorest result came from sequence 5, which we categorized as
‘Medium’.

Sequence 5 only contained 6 (3.43 %) useful frames, leading to the question
whether the classifier worked properly in this sequence. In Fig. 6, a representative
image from this sequence is displayed. The colon of this patient was inflamed, causing
a red appearance without the usual characteristic folds in the wall. The variance and
entropy of these images thus deviate from images of patients without this disease,
which is why the classifier ruled so many images as ‘uninformative’. On the one hand,
these frames do contain relevant information and should thus not be classified as such.

—*— Automatic target

. —é— Manual target
! > 600
I
; 8 S 00

200

Xlocation lumen
IS
£=3
o
Xlocation lumen

[}
=3
S

.

" L " s " s L " " n L L
0 iO 40 60 | 80 100 120 140 160 0 20 40 60 80 10(]

—#—sAutomatic target
—é—Manual target

500

[CRET I
S S o
S S 3

Y location lumen

=3
3

Y location lumen

1 - ' 1 L 1 L 1 s L 1 1 1 1 1 L
0 20 40 60° 80 100 120 140 160 0 20 40 60 80 1000 120 M40 160
| Frame number Frame numbel |
+ ZResvalues ZRes values*

ZRes

. - Threshold
10f I
N . .

L L " L . | L | " 3
20 40 60 80 100 120 140 160 180
Frame no Frame no

" PR - L
20 40 60 80 100

Fig. 5 The top graphs illustrate the target location results in x (top) and y (bottom) coordinates in
pixels. The bottom graphs display the log likelihood of z, resulting from the classifier. Plots A
correspond to sequence 3, plots B to sequence 5. The dashed vertical lines show areas where
automatic and manual target locations do not correspond very well. In the bottom graphs, low
zRes values can be seen in these areas.
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Table 2 Results of robustness and accuracy of the target detection.

Sequence |ICCin % |No. of frames | No. of useful frames (% of total)
1 98.8 77 64 (83.12)

2 89.4 100 72 (72)

3 97.1 174 131 (75.29)

4 95.4 31 25 (80.65)

5 84.7 175 6 (3.43)

However, from the results of the target localization algorithm can be concluded that a
reliable target is difficult to find in images from this sequence. From a navigation
standpoint, the classification is therefore still correct.

Fig. 6 Representative image from image sequence 5. The characteristic folds in the wall are
missing and the colon wall is unusually vascularized and red. These features have impact on the
variance and entropy of the image, and therefore influence the classifier results (Color figure
online).

4 Conclusion

In terms of ergonomics and procedure efficiency, clinical relevance of robotized
flexible endoscopy is beyond question. Once a robotized system is being considered,
image-based navigation is a logical addition. In this research, an assistive algorithm for
endoscope insertion was developed, implemented and evaluated for accuracy and
robustness in real human colonoscopy images.

The algorithm was based on dark region segmentation after image classification.
Earlier research has been done in the field of dark region segmentation in endoscopy.
Chettaoui et al. [13] developed an algorithm that distinguishes the normal lumen from
so-called ‘diverticulas’, bulges in the colonic wall that can be mistaken for lumen.
Because the algorithm we developed takes the mean of the 5 % darkest regions, and
furthermore because the location is updated 25 times per second, we do not expect
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significant influence in control performance in case of diverticulas. Moreover, our
algorithm is meant as an assistive navigation tool, which means the endoscopist can
turn it off at any moment.

Zhiyu [14] describes an extensive analysis on lumen boundary extraction. In Sect. 2
was stated that the main requirement of an endoscopic navigation algorithm is real-
time, intuitive functionality. The method proposed by Zhiyu is complicated and
computationally intensive, making it not very applicable to clinical practice.

In the experiments it was found that the developed target centralization algorithm
always detected a suitable target or lumen direction, with an ICC with manual anno-
tation of the target of 93 %. The categorization we established beforehand was not
predictive for accuracy of the results, but the image classifier that was developed was
an excellent predictor of images in which a lumen could be detected reliably. In the
sequence from a patient with an inflamed colon, the classifier ruled many frames as
‘uninformative’, making the algorithm less accurate. However, an ICC of 84.7 % was
still obtained in this case. It is therefore expected that this kind of patients can still be
treated using the described system. The algorithm further works in real-time on stan-
dard equipment, making it suitable for clinical practice.

Although these results are promising, future work will be needed to improve
navigation functionality further. Possible improvements are to incorporate heading
direction information [11]. Furthermore, user feedback on the system’s functionality
during experiments in a realistic test environment will be obtained to adapt to clinical
practice and increase possible acceptance in the clinic. Finally, clinical relevance of the
complete robotized endoscopy system needs to be established. Therefore, the first
patient study has started and our goal is to include 32 patients.
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