Verification of Loop Parallelisations

Stefan Blom, Saeed Darabi, and Marieke Huisman

University of Twente, The Netherlands

Abstract. Writing correct parallel programs becomes more and more
difficult as the complexity and heterogeneity of processors increase. This
issue is addressed by parallelising compilers. Various compiler directives
can be used to tell these compilers where to parallelise. This paper ad-
dresses the correctness of such compiler directives for loop parallelisa-
tion. Specifically, we propose a technique based on separation logic to
verify whether a loop can be parallelised. Our approach requires each
loop iteration to be specified with the locations that are read and writ-
ten in this iteration. If the specifications are correct, they can be used to
draw conclusions about loop (in)dependences. Moreover, they also reveal
where synchronisation is needed in the parallelised program. The loop
iteration specifications can be verified using permission-based separation
logic and seamlessly integrate with functional behaviour specifications.
We formally prove the correctness of our approach and we discuss auto-
mated tool support for our technique. Additionally, we also discuss how
the loop iteration contracts can be compiled into specifications for the
code coming out of the parallelising compiler.

1 Introduction

Parallelising compilers aim to detect loops that can be executed in parallel.
However, this detection is not perfect. Therefore developers can typically also
add compiler directives to declare that a loop is parallel. Any loop annotated
with such a compiler directive is assumed to be parallel by the compiler.

This paper discusses how to verify that loops that are declared parallel by
a developer can indeed safely be parallelised. This is achieved by adding spec-
ifications to the program that when verified guarantee that the program can
be parallelised without changing its behaviour. Our specifications stem from
permission-based separation logic [5,6], an extension of Hoare logic. This has the
advantage that we can easily combine the specifications related to non-functional
properties such as data race freedom with functional correctness properties.

Concretely, for each loop body we add an iteration contract, which specifies
the iteration’s resources, i.e., the variables read and written by one iteration of
the loop. We prove that if the iteration contract can be proven correct without
any further annotations, the iterations are independent and the loop is parallelis-
able. If a loop has dependences, we can add additional annotations that capture
these dependences. These annotations specify how resources are transferred to
another iteration of the loop. We then identify a class of annotation patterns

© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 202-217, 2015.
DOI: 10.1007/978-3-662-46675-9 14

Verification of Loop Parallelisations 203

for which we can prove that the loop can be vectorised because they capture
forward dependences. Finally, we also discuss how the verified iteration contract
(including possibly functional property specifications) can be translated into a
verifiable contract for the parallelised or vector program, written as a kernel.

Our approach is motivated by our work on the CARP project!. As part of
this project the PENCIL language has been developed [1]. It is a high-level pro-
gramming language designed to ease the programming of many-core processors
such as GPUs. Its core is a subset of sequential C, imposing strong limitations
on pointer-arithmetic. However, it should be noted that our approach also is
applicable to other programming languages or libraries that have a similar par-
allel loop construct, such as OpenMP [7], parallel for in C++ TBB [21] and
Parallel.For in .NET TPL [13].

The main contributions of our paper are the following:

— a specification technique, using iteration contracts and dedicated transfer
annotations that can capture loop dependences;

— a soundness proof that loops respecting specific patterns of iteration con-
tracts can be either parallelised or vectorised; and

— compilation of iteration contracts to kernel contracts for the parallelised or
vectorised program.

An earlier paper sketching the idea of iteration contracts to capture dependences
appeared in PLACES 2014 [3]. However, the current paper additionally proves
soundness of the approach, and defines specification compilation.

The remainder of this paper is organised as follows. After some background
information, Section 3 explains how iteration contracts precisely capture depen-
dences. Soundness of the approach is proven in Section 4. Then Section 5 dis-
cusses tool support for iteration contracts, and Section 6 discusses compilation
of specifications. Finally, we conclude with related and future work.

2 Background

We first provide some background on data dependence and separation logic.

Loop Dependences. Given a loop, there exists a loop-carried dependence from
statement S, to statement Ss;,x in the loop body if there exist two iterations ¢
and j of that loop, such that: (1) ¢ < j, and (2) instance i of S, and instance j
of Ssink access the same memory location, and (3) at least one of these accesses is
a write. The distance of a dependence is defined as the difference between j and 1.
We distinguish between forward and backward loop-carried dependences. When
Ssre syntactically appears before Syini (or if they are the same statement) there
is a forward loop-carried dependence. When Sg;,; syntactically appears before
Ssre there is a backward loop-carried dependence.

Ezample 1 (Loop-Carried Dependence). The examples below show two different
types of loop-carried dependence. In (a) the loop has a forward loop-carried de-
pendence, where L is the source and Ls is the sink, as illustrated by considering

! See http://wuw.carpproject.eu/

http://www.carpproject.eu/

204 S. Blom, S. Darabi, and M. Huisman

iteration 1 and 2 of the loop. In general, the i*" element of the array a is shared
between iteration ¢ and ¢ — 1. In (b) the loop has a backward loop-carried depen-
dence, because the sink of the dependence (L;) appears before the source (Ls).

for(int i=0;i<N;i++){ iteratio iteration = 2
(a) Ly: ali] = b[i] + 1; Ly

Lo: if(i>0) c[i]=ali—1]+2;} Ly: ¢

for(int i=0;i<N;i++){ iteration = 1

(b) Li: ali] = b[i] + 1; Li:a[l] = b
Lo: if(i<N-1) c[i|=ali+1]4+2;} La: ¢[1]

The distinction between forward and backward dependences is important. In-
dependent parallel execution of a loop with dependences is in general unsafe,
because it may change the result. However, for loops with forward dependences
only, parallelisation is possible if appropriate synchronisation is inserted. This is
called vectorised execution.

Separation Logic. Our approach to reason about loop (in)dependences uses
permission-based separation logic to specify which variables are read and writ-
ten by a loop iteration. Separation logic [17] is an extension of Hoare logic [11],
originally proposed to reason about pointer programs. Separation logic is also
suited to reason modularly about concurrent programs [15]: two threads working
on disjoint parts of the heap do not interfere and thus can be verified in isolation.

The basis of our work is a separation logic for C [22], extended with fractional
permissions [6,5] to denote the right to either read from or write to a location.
Any fraction in the interval (0,1) denotes a read permission, while 1 denotes a
write permission. Permissions can be split and combined, but soundness of the
logic prevents the sum of the permissions for a location over all threads to exceed
1. This guarantees that if permission specifications can be verified, the program
is free of data races. In earlier work, we have shown that this logic is suitable to
reason about kernel programs [4].

We write Perm(e, 7) to denote that a thread holds an access right 7 to the
location denoted by expression e. Permissions are combined using separating
congunction (xx), which is the resource-sensitive extension of conjunction. For
example Perm(z,1/2) xx Perm(y, 1/2) indicates that a thread holds read per-
missions to access locations z and y, and these permissions are disjoint. If a
thread holds Perm(z,1/2) xx Perm(z,1/2), this can be merged into a write
permission Perm(z, 1).

3 Dependence Specifications

The classical way to specify the behaviour of a loop is by means of an invariant
that has to be preserved by every iteration of the loop. However, loop invariants
offer no insight into possible parallel executions of the loop. Instead we consider
every iteration of the loop in isolation. First, we introduce our way of specifying
them. Then, we propose a way of verifying our annotations.

Verification of Loop Parallelisations 205

for(int i=0; i < N; i++) /+@
requires Perm(a[i],1) *x Perm(b[i],1/2);
ensures Perm(a[i],1) ** Perm(b[i],1/2);

@x/ { ali]= 2 * b[i]; }

Listing 1. Iteration contract for an independent loop

3.1 Iteration Contracts

Each iteration is specified by its iteration contract, such that the precondition
of the iteration contract specifies the resources that a particular iteration needs,
and the postcondition specifies the resources that become available after the
execution of the iteration. In other words, we treat each iteration as a specified
block [10]. For convenience, we present our technique on non-nested for-loops
with K statements that are executed during N iterations.? Each statement Sy
labelled by Lj consists of an atomic instruction [, which is executed if a guard
gk is true, i.e., we consider loops of the following form:
for(int j=0; j < N; j++){ body(j) }

where body(j) = L1: if(¢91) I1; ... Li: if(gx) Ik;

There are two extra restrictions. First, the iteration variable j cannot be
assigned anywhere in the loop body. Second, the guards must be expressions
that are constant with respect to the execution of the loop body, i.e., they may
not contain any variable that is assigned within the iteration.

Listing 1 shows an example of an independent loop with its iteration contract.
This contract requires that at the start of iteration 4, permission to write ali] is
available, as well as permissions to read b[i]. Further, the contract ensures that
these permissions are returned at the end of iteration ¢. The iteration contract
implicitly requires that the separating conjunction of all iteration preconditions
holds before the first iteration of the loop, and that the separating conjunction of
all iteration postconditions holds after the last iteration of the loop. For example,
the contract in Listing 1 implicitly specifies that upon entering the loop, permis-
sion to write the first N elements of a must be available, as well as permission
to read the first N elements of b.

To specify dependent loops, we need to specify what happens when the compu-
tations have to synchronise due to a dependence. During such a synchronisation,
permissions should be transferred from the iteration containing the source of a
dependence to the iteration containing the sink of that dependence. To specify
such a transfer we introduce two annotations: send and recv:

//@ Lg: send ¢ to Lg, d;

//@ Lg: recv ¢ from Lg, d;
A send specifies that at label Lg the permissions and properties denoted by
formula ¢ are transferred to the statement labelled Ly in iteration i + d, where
1 is the current iteration and d is the distance of dependence. A recv specifies
that permissions and properties as specified by formula v are received.

2 Our technique can be generalized to nested loops as well.

206 S. Blom, S. Darabi, and M. Huisman

(a) for(int i=0; i < N; i++) /+@
requires Perm(ai],1) xx Perm(b[i],1/2) *+ Perm/(cli,1);
ensures Perm(b[i],1/2) s+ Perm(a[i],1/2) «x Perm(cli],1);
ensures i>0 ==> Perm(afi—1],1/2);
ensures i==N—-1 ==> Perm(a[i],1/2); Qx/
{ ali]=b[i]+1;
//@ L1:if (i< N—1) send Perm(ali],1/2) to L2,1;
//@ L2:if (i>0) recv Perm(afi—1],1/2) from L1,1;
if (i>0) clij=ali—1]+2; }
(b) for(int i=0; 1 < N; i++) /xQ
requires Perm(a[i],1/2) «x Perm(bli],1/2) *+ Perm(c[i],1);
requires i==0 ==> Perm(a[i],1/2);
requires i < N—1 ==> Perm(ali+1],1/2);
ensures Perm(a[i],1) s+ Perm(b[i],1/2) *x Perm(c[i],1); @/
{ //@ L1:if (i>0) recv Perm(ali],1/2) from L2,1;
afi]=b[i]+1;
if (i < N—1) c[i]=ali+1]+2;
//@ L2:if (i < N—1) send Perm(a[i+1],1/2) to L1,1; }

Listing 2. Iteration contracts for loops with loop-carried dependences

The send and recv annotations can be used to specify loops with both
forward and backward loop-carried dependences. Listing 2, shows specified in-
stances of the code in Example 1.

We discuss the annotations for part (a) in some detail. Each iteration i starts
with a write permission on ali] and cli], and a read permission () on bli]. The
first statement is a write to a[i], which needs write permission. The value writ-
ten is computed from bli], for which a read permission is needed. The second
statement reads a[i—1], which is not allowed unless read permission is available.
This statement is not executed in the first iteration, because of the condition
i > 0. For all subsequent iterations, permission must be transferred. Hence a
send annotation is specified before the second assignment that transfers a read
permission on ali] to the next iteration (and in addition, keeps a read permission
itself). The postcondition of the iteration contract reflects this: it ensures that
the original permission on cli] is released, as well as the read permission on afi],
which was not sent, and also the read permission on a[i—1], which was received.
Finally, since the last iteration cannot transfer a read permission on afi], the
iteration contract’s postcondition also specifies that the last iteration returns
this non-transferred read permission on ali].

The send annotations indicate an order in which the iterations have to be
executed, and thus how the loop can be parallelised. Any execution that respects
this order yields the same behaviour as the sequential execution of the loop. For
the forward dependence example, this means that it can be vectorised, i.e. we
add appropriate synchronisation to the parallel program to ensure permissions
can be transferred as specified. However, for the backward dependence example,
only sequential execution respects the ordering.

Verification of Loop Parallelisations 207

3.2 Verification of Iteration Contracts

To prove the correctness of an iteration contract, we propose appropriate pro-
gram logic rules. As mentioned above, an iteration contract implicitly gives rise
to a contract for the loop. The following rule says that if the iteration contract
is correct for any execution of the loop body then this contract is true:

{P(5)} body(5) {Q()} Vjjelo---N)
{35! P(5)} for(int j=03j<Nij++){ body(j) } {*k 15" QU)}

Note that this rule for a loop with an iteration contract is a special case of the
rule for parallel execution, which allows arbitrary blocks of code to be executed
in parallel (see e.g. [15]).

The rules for the send and recv are similar in spirit to the rules that are
typically used for permission transfer upon lock releasing and acquiring, see
e.g. [9]. In particular, send is used to give up resources that the recv acquires.
This is captured by the following two proof rules:

{P} send P to L,d {true} {true} recv P from L,d {P} (1)

Receiving permissions and properties that were not sent is unsound. Therefore,
send and recv statements have to be properly matched, meaning that:

(i) if S, is the statement if(g.(j)) recv ¥(j) from Lg, d; then S; is the state-
ment if(gs(j)) send ¢(j) to L,, d;

(i) if the recv is enabled in iteration j, then d iterations earlier, the send
should be enabled, i.e.,

Vi€l N)gr(j) = jZdNgs(j —d) (2)
(iii) the information and resources received should be implied by those sent:

Vjeld,- ,N).¢(j —d) = ¥(j) 3)

In other words, the rules in Eq.1 cannot be used unless the syntactic criterion
(i) and the proof obligations (ii) and (iii) hold.

4 Soundness of the Approach

Next, we show that a correct iteration contract capturing a loop independence or
a forward loop-carried dependence indeed implies that a loop can be parallelised
or vectorised, while preserving the behaviour of the sequential loop.

To construct the proof, we first define the semantics of the three loop execu-
tion paradigms: sequential, vectorised, and parallel. We also define the instru-
mented semantics for a loop specified with an iteration contract. Next, to prove
the soundness of our approach we show that the instrumented semantics of an
independent loop is equivalent to the parallel execution of the loop, while the
instrumented semantics of a loop with a forward dependence is an extension of
the vectorised execution of the loop. Functional equivalence of two semantics is
shown by transforming the computations in one semantics into the computations
in the other semantics by swapping adjacent independent execution steps.

208 S. Blom, S. Darabi, and M. Huisman

4.1 Semantics of Loop Executions

To keep our formalisation tractable, we split the loop semantics into two lay-
ers. The upper layer determines which sequences of atomic statements, called
computations, a loop can have. The lower layer defines the effect of each atomic
statement, and we do not discuss this further here, as this is standard.

As above, we develop our formalisation for non-nested loops with K guarded
statements. We instantiate the loop body for each iteration of the loop, so we
have (L?: if(g]) I7;) as the instantiation of the i'" statement in the j* iteration
of the loop. We refer to this instance of statements as Sj The semantics of a
statement instance [[S]]] is defined as the atomic execution of the instruction [J
labelled by L] provided its guard condition g] holds, otherwise it behaves as a
skip. If we execute iterations one by one in sequential order and we preserve the
program order of the loop body, we will have a sequence of statement instances
starting from S and ending at S%il. Intuitively this is the semantics of the
sequential execution of the loop.

Definition 1. A computation ¢ is a finite sequence ty,ts,...,t, of statement
instances such that t1 is executed first, then to is executed and so on until the
last statement t,,.

To define the set of computations describing the parallel and vectorised se-
mantics of a loop, we define auxiliary operators concatenation and interleaving.
We define two versions of concatenation, plain concatenation (++) and syn-
chronised concatenation (#), which prevents data races between statements by
inserting a barrier b that acts as a memory fence:

C1 ++C2:{C1'CQ‘01 €C1,02€C2}
Cl#CQ :{C1~b~CQ|C1€C1,Cg€CQ}

We lift concatenation to multiple sets as follows:

Concat? | C; =Cy ++ - ++ Cx
SyncConcaty ,C; = Cy # --- # Cy

Next, interleaving defines how to weave several computations into a single
computation. This is parametrised by a happens-before order <, in order not to
violate restrictions imposed by the program semantics. To define the interleaving
operator (Interleave.), we use an auxiliary operator that denotes interleaving
with a fixed first step: (Interleavel):

Interleave’=" "¢ Interleave<(< yen) = UL, Interleave’ (c1, -+, cn)
Interleave’ (e, - - - = { }

Interleave® (c1,---€--+,¢cn) =0

Interleave’ (c1,---sici- ,cn) =0 ,if 35 # i, € cj.6 < 55

Interleave® (c1,---sici--+ ,cn) = {si -5 | 5 € Interleave<(c1,---¢c;--- ,cn)} , otherwise

where € is the empty computation. We use two happens-before orders: program
order (PO), which maintains the order of statements executed by the same thread

Verification of Loop Parallelisations 209

and specification order (SO), which extends program order by also enforcing that
for every matching pair of send and recv, the send statement happens-before
the recv statement. Both orders maintain the order between a barrier and the
statements preceding and following it.

Now we are ready to define the semantics of the different loop executions.
Sequential execution simply executes all steps sequentially, parallel execution
allows any interleaving that preserves program order within the loop body and
vectorised execution executes multiple iterations in lock-step.

Definition 2. Suppose we have a loop LP in standard form.

— Its sequential execution semantics is [LP]%¢7 = Concatj»\[:_olConcatfi1 [S7]
~ Its parallel execution semantics is [LP]7%"= Interleavel,5” " ' ConcatX , [$7]
— Its vectorised execution semantics for vector length V is

[LP]VeelY) = Concatgév)*lSyncConcatfi1 (Interleaveg):”v“”wrvfl[[S{]])

We define the instrumented semantics to capture the behaviour of LP in the
presence of its specifications. This semantics contains all possible computations
respecting the specification order (SO). It is formalised by parametrising the
interleaving operator with SO.

Definition 3. The instrumented semantics of LP is

[LP]%Pe = |nter|eave§30..N71Concat{; [57]

4.2 Correctness of Parallel Loops

In the previous section, we defined the semantics of parallelised and vectorised
executions in terms of possible traces of atomic steps. This section proves, under
certain conditions, that each of those traces is safe and yields the same result as
sequential execution, where safe means that the execution of the trace is data
race free. Equivalence is established by considering traces modulo reordering
independent steps and while ignoring steps that make no modifications. First,
we formally define these notions. Then we present our correctness theorems.

To determine if two steps are independent and/or can cause a data race, we
need to know for every atomic step (¢) which locations in memory it writes
(write(t)), which locations in memory it reads (read(t)) and by which thread it is
executed. We define the set of accessed locations as access(t) = write(t) Uread(?).
Now we define a data race in a trace as a pair of statements that both access
a location, where at least one access is a write, and are not ordered by the
happens-before relation:

Definition 4. A computation contains a data race with respect to a happens-
before order <, if it contains two steps s and t, such that write(s) N access(t) #
DA=(s<tViE>s).

210 S. Blom, S. Darabi, and M. Huisman

To reason about different execution orders, equivalence of executions is defined
in terms of swapping the order of steps which are not in the happens-before
relation. The following proposition states that this does not change the end
result of a data race free computation.

Proposition 1. In a data race free computation, swapping two adjacent state-
ments which are unordered in the happens-before relation does not change the
behaviour of that computation.

Proof. Because the statements are unordered and the computation is data race
free, the set of locations written by one of the actions cannot affect the set of
locations accessed by the other. Hence neither step can see the effect of the
other. O

The traces in the different semantics do not just differ by their order, but also
by steps that are used to enforce synchronisation. To compare the functional
result of two threads, we only look at the steps in those traces that actually
modify locations that are relevant to the program semantics.

Definition 5. Given two computations ¢y and co. The computations ¢; and co
are functionally equivalent 4f mods(c1) = mods(cg), where

€ yifc=c¢
mods(c) = { mods(¢/) , if c=1t-c Awrite(t) =0
t-mods(c), if c =1t - Awrite(t) # 0
The correctness of the various loop semantics depends on the correctness of
the instrumented semantics:

Theorem 1. Given a loop with a valid specification.

1. All computations in [LP]P¢ are data race free.
2. All computations in [LP]P¢¢ and [LP]%? are functionally equivalent.

Proof. 1. Because there is a valid specification, all invariants of separation logic

hold. In particular, for every location the sum over all threads of the per-
missions held for that location cannot exceed 1.
Suppose that a statement s occurs before ¢t where one writes a location [and
the other accesses it and they are not ordered by happens-before (s £ t). If
s needs a fraction p permission on [then we can trace which threads hold
the permission when ¢ is executed. It cannot be the thread that executes t,
because that implies s < t. The fraction ¢ held for ¢ and p are thus held at
the same time. Because p = 1 or ¢ = 1, we have p + ¢ > 1. This contradicts
the invariant.

2. We prove that every computation in [LP]?* is functionally equivalent to
the single computation [LP]%, by showing that any computation can be
reordered until it is the sequential computation using Prop. 1.

Assume that the first n steps of the given computation are in the same order
as the sequential computation. Then step ¢,,+; in the sequential execution

Verification of Loop Parallelisations 211

has to be somewhere in the given sequence. Because each sequence contains
the same steps and the sequential computation is in happens-before order,
all of the steps that have to happen before t,1 are already included in the
prefix. Hence, step t,11 is independent of all of the steps after the prefix
and before itself in the given sequence and can be swapped with them one-
by-one until it is the next step. We then repeat until the whole sequence
matches. O

The correctness of parallelisation of independent loops is an immediate corol-
lary of this theorem.

Corollary 1. Given a loop with a valid specification, that does not make use of
send or recv.

1. All computations in [LP]F%" are data race free.

2. All computations in [LP]P" and [LP]% are functionally equivalent.

Proof. If the specification does not make use of send or recv then program order
coincides with specification order and the result follows from Theorem 1. a

This proof is straightforward because in this case, the program order and
synchronisation order coincide, thus the set of parallel executions is equivalent
to the set of instrumented executions. However, if the specifications use send
and recv then some parallel execution order may contain data races. But if the
send occurs before the matching recv in the loop then vectorisation is possible.

Theorem 2. Given a loop with a valid specification, such that every send occurs
before the matching recv in the body, and V' that divides N.

1. All computations in [LP]VeV) are data race free.
2. All computations in [LP]"**(V) and [LP]%°? are functionally equivalent.

Proof. Because every send occurs before the matching recv, every computa-
tion that may occur in [LP] (V) can also occur in [LP]°P¢°. That is, we can
construct a specification order sequence in which the computational steps occur
in the same order and in which the happens-before relation on the vectorised
sequence are more restrictive than those in the specification order sequence.
Hence all vectorised sequences are data race free because all specification order
sequences are data race free (Theorem 1). Moreover, every vectorised computa-
tion is functionally equivalent to a specification order sequence and thus func-
tionally equivalent to [LP]%¢ (Theorem 1). O

5 Tool Support

After discussing the soundness of our approach, we now turn to tool support as
provided by the VerCors tool set. The VerCors tool set was originally developed
to reason about multi-threaded Java programs, but it has been extended to sup-
port verification of OpenCL kernels [4] and parallel loops. The tool set leverages

212 S. Blom, S. Darabi, and M. Huisman

input languages VerCors | back ends Viper

CoRmct | => ﬁ Too :
= -

|Common Object Language| i e :

Fig. 1. VerCors tool set overall architecture

existing verification technology: it encodes programs via several program trans-
formation steps into Silver programs [12]. Silver is an intermediate language for
separation logic-like specifications, used by the Viper project [12,23]. Verification
of the encoded program uses the Silver verification framework. Figure 1 sketches
the overall architecture of the tool set, where dashed boxes are other front-ends
and back-ends that are not relevant for this paper.

Encoding into Silver. For the verification of parallel loops, we only use the
encoding into Silver, using the Silicon verifier. We describe this encoding below.
To verify our iteration contracts using the Silicon verifier, we encode the
behaviour of parallel loops and the send/recv annotations as method contracts.
The idea is that every loop annotated with an iteration contract is encoded by
a call to the method loop main, whose contract encodes the application of the
Hoare Logic rule for parallel loops, instantiated for the specific iteration contract.
/*Q requires (\forallx int j;0<=j && j<N; pre(j));
ensures (\forallx int j;0<=j && j<N; post(j)); @x/
loop main(int N,free(5)));
We also need to verify that every iteration respects the iteration contract. This
is encoded by a method, parametrised by the loop variable, containing the loop
body, and specified by the iteration contract.
/%@ requires (0<=j && j<N) *x pre(j);
ensures post(j); @x/
loop body(int j,int N.free(S))){ body; }
Within the body there may be send and recv statements.

//@ Lt if (g5(j)) { send ¢(j) to L, d;}
//@ L,: if (g,(j)) { recv ¢¥(j) from L, d;}

The guards are untouched, but the statements are replaced by method calls
//@ Ly: if (g5(j)) { send s to x(j,N,free(¢(j)):}
//@ Ly if (g,(j)) { recv s to r(j,N,free(y(5)):}
where requires ¢(j); ensures 9 (j);
send s to r(int j,int N,free(S))); recv s to r(int j,int N,free(S)));
Finally, we need to check that the proof obligations in Eq. 2 and 3 hold.

Verification Examples. In Section 3, we illustrated our approach by specifying
loops with different data dependencies in Listings 1, and 2. These examples are

Verification of Loop Parallelisations 213

for(int j=0; j < N; j++) requires ¢(tid);
requires ¢(j); ensures (tid);
ensures ¥(j); loop()

{ L1 if (92(5) { 1 ()s } = { Ci(tid);
Lict 3f (g (7)) { I () } } O (tid); }

Fig. 2. Vectorisation of a loop with a forward loop-carried dependence

verified automatically by the tool. Moreover, the tool is also able to verify the
functional correctness of loops. For example, to verify the functional correctness
of the program in Listing 2(a), we could add the following specifications:
requires bli]==i;
ensures afi]==i+1 *x blij==i *x (i>0 ==> c[i]==i+2);
to its iteration contract. To make this verify, the property a[ij==i+1 has to be
added to the send resource formula and a[i—1]==i has to be added to the recv
resource formula. To see the fully annotated examples, we refer to http://www.
utwente.nl/vercors.

6 Compiling Iteration Contracts to Kernel Specifications

Above, we discussed verification of loop parallelisability in high-level sequential
programs. Typically, we want to be sure that when we parallelise the program,
the resulting low-level parallel code is still correct. To support this, we define
how a specification of the original program can be translated into a specification
of the low-level code. In particular, this section shows how iteration contracts
are translated into OpenCL kernel specifications [4], such that if the code is
compiled using a basic parallelising compiler, without further optimisations, the
compiled code is correct w.r.t. the compiled specification.

Independent loops. Given an independent loop, the basic compilation to kernel
code is simple: create a kernel with as many threads as there are loop iterations
and each kernel thread executes one iteration. Moreover, the iteration contract
can be used as the thread contract for each parallel thread in the kernel directly.
The size of the work-group can be chosen at will, because no barriers are used.

Forward loop-carried dependences. If the loop has forward dependences then the
kernel must mimic the vectorised execution of the loop. Consider the specified
loop on the left of Figure 2, for simplicity, we assume that both the number of
threads and the size of the working group are N. Basic vectorisation results in
the kernel on the right of Figure 2, where:

— if I (j) is a send statement then it is ignored: Ci(j) = {}

http://www.utwente.nl/vercors
http://www.utwente.nl/vercors

214 S. Blom, S. Darabi, and M. Huisman

kernel Ref {
global int[tcount] a,b,c;

requires Perm(a[tid],1) #+ Perm(b[tid],1/2) *x Perm(c[tid],1) ** b[tid]==tid;
ensures Perm(a[tid],1/2) xx Perm(b[tid],1/2) ** Perm(c[tid],1);

ensures tid>0 ==> Perm(a[tid—1],1/2);

ensures tid==tcount—1==>Perm(aftid],1/2);

ensures a[tid]==tid+1 *x btid]==tid *x (tid>0==>c[tid]|==tid+2);

void main(){
a[tid]=Db[tid]+1;
barrier(global){
requires tid<tcount—1 ==> Perm(a[tid],1/2) #* a[tid]==tid+1;
ensures (tid>0==>Perm(aftid—1],1/2)) * (tid>0==>a[tid—1]==tid);}
if (tid>0) c[tid]=a[tid—1]+2;
}
}

Listing 3. Kernel implementing the loop with forward dependence

— if Ix(j) is a recv statement with a matching send statement at L;, then it
is replaced by a barrier Cy(j) =

barrier(){requires g;(j) ==> ¢5(j); ensures gi(j) ==> ¢r(Jy);}
where the barrier contract specifies how the permissions are exchanged at

the barrier (cf. [4]).
— if I (j) is any other statement then it is copied: Ck(j) = if (9x(4)){ Lk (4); }

Listing 3 shows the kernel that is derived in this way from the forward de-
pendence example in Listing 2(a).

7 Related Work

Verification of High-Level Parallel Constructs. Recently, almost all ma-
jor programming languages have been augmented by high-level parallelisation
constructs. Verification of these high-level constructs has been investigated in
different works. Salamanca et al. [19] present an integration of a runtime loop-
carried dependence checker in OpenMP. Compared to their approach, we propose
a static approach to detect loop-carried dependences, that is valid for all possible
executions.

Radoi et al. [16] employ the restricted thread structure of parallel loops to
specialise a set of static data race detection techniques and make them practi-
cal for the verification of Java 8 loop-parallelism mechanism [20]. In comparison,
their method cannot distinguish between vectorised and parallel loop executions,
while our approach propose different specification patterns for each of these ex-
ecutions. Also, they use a specialised data race techniques for Java 8 collections,
while we investigate the problem in a more general sense.

Verification of Loop Parallelisations 215

Barthe et al. [2] propose a new program synthesis technique which produces
SIMD code for a given innermost loop. They exploit the relational verification
approach to prove functional equivalence of the generated SIMD code and the
original sequential code, while we employ permission-based separation logic to
prove such an equivalence for both vectorised and parallel loop executions.

Automated Loop Verification. Gedell et al. [8] employ automated first-
order reasoning in order to deal with parallelisable loops instead of interactive
proof techniques, such as induction. They transform a loop into a universally
quantified update of state changes by the loop body. The extraction of quantified
state update for a particular loop iteration is intuitively similar to the idea of
iteration contracts in our method. Their technique only works for parallelisable
loops where there is no loop-carried dependence, while our iteration contracts
idea addresses both dependent and independent loops.

Parallelising Compilers. From parallelising compilers perspective, our ap-
proach can complement the current static dependence analysis techniques. Specif-
ically, in case of input-dependent semantics where static analysis cannot decide
whether a loop is independent or not [14,18].

8 Conclusion and Future Work

This paper proposes how to verify compiler directives about loop parallelisation.
Each loop is specified by its iteration contract and in the presence of loop-carried
dependence, additional send/recv annotations are added to the iteration spec-
ifications to indicate how the iterations synchronise with each other. We prove
that loops without send/recv annotations are parallelisable, and for a specific
pattern of send/recv annotations the loop is vectorisable. As an additional
result, we propose how the high-level iteration contracts can be compiled into
low-level kernel contracts.

In addition to the verification of compiler directives, our approach can be em-
ployed to detect possible loop parallelisations even where (in)dependence cannot
be determined from static analysis of program text.

The method described is modular in the sense that it allows us to treat any
parallel loop as a statement, thus nested loops can be dealt with simply by giving
them their own iteration contract. Alternatively one iteration contract can be
used for several nested loops.

As future work we plan to investigate how the verifier and the parallelising
compiler can support each other. We believe this support can work in both
ways. First of all, the parallelising compiler can use verified annotations to know
about dependences without analysing the code itself. Conversely, if the compiler
performs an analysis then it could emit its findings as a specification template
for the code, from which a complete specification can be constructed. This might
extend to a set of techniques for automatic generation of iteration contracts.

216 S. Blom, S. Darabi, and M. Huisman

Acknowledgement. This work is supported by the ERC 258405 VerCors
project and by the EU FP7 STREP 287767 project CARP.

References

1. Baghdadi, R., Cohen, A., Guelton, S., Verdoolaege, S., Inoue, J., Grosser, T.,
Kouveli, G., Kravets, A., Lokhmotov, A., Nugteren, C., Waters, F.,
Donaldson, A.F.: PENCIL: Towards a Platform-Neutral Compute Intermediate
Language for DSLs. CoRR, abs/1302.5586 (2013)

2. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational
verification to SIMD loop synthesis. In: PPoPP, pp. 123-134 (2013)

3. Blom, S., Darabi, S., Huisman, M.: Verifying parallel loops with separation logic.
In: PLACES, pp. 47-53 (2014)

4. Blom, S., Huisman, M., Mihel¢i¢, M.: Specification and verification of GPGPU
programs. In: Science of Computer Programming (2014)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 259-270. ACM (2005)

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003)

7. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science & Engineering 5(1), 46-55 (1998)

8. Gedell, T., Hahnle, R.: Automating verification of loops by parallelization. In:
LPAR, pp. 332-346 (2006)

9. Haack, C., Huisman, M., Hurlin, C.: Reasoning about java’s reentrant locks. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 171-187. Springer,
Heidelberg (2008)

10. Hehner, E.: Specified blocks. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 384-391. Springer, Heidelberg (2008)

11. Hoare, C.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576-580 (1969)

12. Juhasz, U., Kassios, I.T., Miiller, P., Novacek, M., Schwerhoff, M., Summers, A.J.:
Viper: A verification infrastructure for permission-based reasoning. Technical re-
port, ETH Zurich (2014)

13. Microsoft TPL, http://msdn.microsoft.com/enus/library/dd460717.aspx

14. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. SIGPLAN Not 47(6), 509-520 (2012)

15. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271-307 (2007)

16. Radoi, C., Dig, D.: Practical static race detection for java parallel loops. In: ISSTA,
pp. 178-190 (2013)

17. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic
in Computer Science, pp. 55-74. IEEE Computer Society (2002)

18. Rus, S., Pennings, M., Rauchwerger, L.: Sensitivity analysis for automatic paral-
lelization on multi-cores. In: Proceedings of the 21st Annual International Confer-
ence on Supercomputing, ICS, pp. 263-273. ACM (2007)

19. Salamanca, J., Mattos, L., Araujo, G.: Loop-carried dependence verification in
openMP. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Miiller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 87-102. Springer, Hei-
delberg (2014)

http://msdn.microsoft.com/enus/library/dd460717.aspx

20.

21.
22.

23.

Verification of Loop Parallelisations 217

State of the Lambda: Libraries Edition, http://cr.openjdk.java.net/
~briangoetz/lambda/lambda-libraries-final.html

Threading Building Blocks, http://threadingbuildingblocks. org

Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M.,
Felleisen, M. (eds.) POPL, pp. 97-108. ACM (2007)

Viper project website, http://www.pm.inf.ethz.ch/research/viper

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html
http://threadingbuildingblocks.org
http://www.pm.inf.ethz.ch/research/viper

	Verification of Loop Parallelisations

	1
Introduction
	2
Background
	3
Dependence Specifications
	3.1
Iteration Contracts
	3.2
Verification of Iteration Contracts

	4
Soundness of the Approach
	4.1
Semantics of Loop Executions
	4.2
Correctness of Parallel Loops

	3
Tool Support
	4
Compiling Iteration Contracts to Kernel Specifications
	5
Related Work
	6
Conclusion and Future Work
	References

