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Abstract. Interactive Markov chains (IMCs) constitute a powerful sto-
chastic model that extends both continuous-time Markov chains and la-
belled transition systems. IMCs enable a wide range of modelling and
analysis techniques and serve as a semantic model for many industrial
and scientific formalisms, such as AADL, GSPNs and many more. Appli-
cations cover various engineering contexts ranging from industrial system-
on-chip manufacturing to satellite designs. We present a survey of the
state-of-the-art in modelling and analysis of IMCs.

We cover a set of techniques that can be utilised for compositional mod-
elling, state space generation and reduction, and model checking. The
significance of the presented material and corresponding tools is high-
lighted through multiple case studies.

1 Introduction

The increasing complexity of systems and software requires appropriate formal
modelling and verification tools to gain insights into the system’s possible be-
haviour and dependability. Imagine the construction of a satellite equipped with
hardware components and software systems. Once sent into its orbit, the satellite
has to work mostly autonomously. In case of any hardware or software compo-
nent failure, the required maintenance work is time-consuming and cannot be
executed immediately, leading to excessive costs and even complete system fail-
ures. To avoid such shortcomings, the system’s components need to be highly
dependable and any design mistakes must be identified as soon as possible. Rig-
orous modelling and analysis techniques can help significantly by accompanying
the development process from the blue-print to the testing phase. They can an-
swer quantitative questions like “what is the probability that the system fails
within 3 years” by synthesising an abstract system model.

In the last years a plethora of formalisms [45] [25] [55] [47, B85 23] and tools
(PRISM [43], ETMCC [39], MRMC [42], YMER [58], VESTA [56] and MAMA



[27]) have been developed for this purpose. The advent of large-scale, distributed,
dependable systems requires formal specification and verification methods that
capture both qualitative and quantitative aspects of systems. Labelled transi-
tion systems (LTS) allow to capture qualitative aspects of software and hard-
ware systems by defining the interaction between system components, but they
lack quantitative predicates. On the other hand, continuous time Markov chains
(CTMC) allow to model and reason over quantitative aspects of systems. How-
ever, CTMCs do not allow to model component dependencies and interaction
with the environment.

A prominent formalism to remedy these drawbacks are interactive Markov
Chains (IMCs) [35]. IMCs conservatively extend LTSs and CTMCs and thereby
allow to accurately model system dependencies as well as quantitative aspects.
IMCs strictly separate between nondeterministic choices, called interactive tran-
sitions, and exponentially distributed delays, called Markovian transitions. Hence,
they can be considered as an extension of CTMCs with nondeterminism or, the
other way around, as enriched labelled transition systems. Interactive transi-
tions, denoted as s %+ s, allow to model actions that are executed in zero time
and account for nondeterministic choices by the system’s environment. They al-
low very efficient bisimulation minimisation since quotienting can be done in a
compositional fashion. A system’s progress over time can be modelled by Marko-
vian transitions, denoted by s -2» s’. They indicate that the system is moving
from state s to s’ after a delay exponentially distributed with parameter A\, and
thereby account for time dependencies between system states.

IMCs are closely related to continuous-time Markov decision processes (CT-
MDPs), but they are strictly more expressive. CTMDPs closely entangle nonde-
terminism and stochastic behaviour in their transition relation. The separation
of nondeterministic and stochastic choices allows for a well-behaved and natural
notion of composition and hierarchy. Recently, IMCs were extended to Markov
automata (MA) [23] by adding the possibility of random switching to interactive
transitions.

Recent works on model checking opened the door for far-reaching indus-
trial applications. IMCs provide a strict formal semantics of modelling and engi-
neering formalisms such as generalised stochastic Petri nets (GSPNs) [50], Dy-
namic Fault Trees (DFTs) [12], the Architectural Analysis and Design Language
(AADL) [13], and STATEMATE [I0]. The powerful compositional design and
verification approach of IMCs is applied for instance to Globally Asynchronous
Locally Synchronous (GALS) designs [19], supervisory control [48] [49], state-
of-the-art satellite design [24], water-treatment facilities [34] and train control
systems [10].

This paper aims to give an extensive introduction to IMCs and survey recent
developments in the field. Therefore, we present a detailed description of the
fundamentals of the IMC formalism. Besides, we introduce related concepts such
as CTMDPs and describe their relationship to IMCs. An important aspect of
IMCs is that they can be analysed with respect to certain properties. Therefore,
we introduce a logic that is capable of specifying important properties like “is the



system running at least 99% of the time?”. Furthermore, we provide a rich set of
model checking algorithms to efficiently compute and thus check these properties.
Especially for time-bounded reachability, expected time and long-run average
properties, we give an in-depth description of the algorithms with accompanying
examples. Another challenge in a model like IMCs is the state space explosion
problem. The prevention of this is a major research topic and covered by this
paper in terms of bisimulation minimisation. Therefore, we present the notion
of strong and weak bisimulation, and provide an algorithm for computing the
bisimulation quotient.

Organisation of the paper. Section [2] introduces the model, semantics and com-
positional construction methods of IMCs. A survey on model checking techniques
is provided in Section [3| and behavioural equivalences and abstraction are dis-
cussed in Section [d] Section [5] shows extensions of IMCs, Section [f] provides a
number of case studies and applications, and Section [7] concludes the paper.

2 Preliminaries

This section summarises the basic notions and definitions to provide a formal
underpinning of the concept of interactive Markov chains [35] [T4] and related
concepts. The interested reader can find more details in the referred material
throughout this section.

Before we describe interactive Markov chains, we give a brief introduction
to two widely used models which are related to them. We start with a discrete
time and nondeterministic model, namely Markov Decision Processes (MDPs).
They extend Markov chains by adding nondeterministic decisions.

Definition 1 (Markov Decision Process). A Markov decision process (MDP)
is a tuple M = (S, Act, P, sg) where S is a finite set of states, Act a finite set of
actions, so the initial state, and P: S x Act x S — [0, 1] the transition probability
function such that ), g P(s,a,s") € {0,1} for all s € S and a € Act.

MDPs are a well studied model with a wide range of efficient algorithms [53]
for various types of analysis. Later on in this survey, we exploit some of those
algorithms to solve problems on interactive Markov chains.

Unsurprisingly, CTMDPs are the extension of MDPs to continuous time and
are closely related to IMCs.

Definition 2 (Continuous Time Markov Decision Process). 4 CTMDP
is a tuple C = (S, Act, R, sg) where S is a finite set of states, Act a finite set of
actions, sg the initial state, and R: S x Act x S — R~ a three dimensional rate
matrix.

A CTMDP is a stochastic nondeterministic model that describes the behaviour
of a system in continuous time. The delay of each transition (s1,a,s2) is ex-
ponentially distributed with rate R(s1, a, s2) for s1,s2 € S and a € Act. IMCs
extend CTMDPs by breaking the tight connection between nondeterministic and
stochastic behaviour.



2.1 Interactive Markov Chains

The Syntax of an IMC. IMCs are finite transition systems with action-
labelled interactive transitions, as well as Markovian transitions that are la-
belled with a positive real number identifying the rate of an exponential dis-
tribution. Hence, they strictly separate between interactive and Markovian be-
haviour. This enables for a wide range of modelling features. On the one hand,
based on the action-labelled interactive transitions, IMCs can be used for compo-
sitional modelling with intermittent weak bisimulation [35]. On the other hand,
the Markovian transitions allow to encode arbitrary distributions in terms of
acyclic phase-type distributions [52]. An in depth discussion of the advantages
of the IMC formalism is given in [I4].

Definition 3 (Interactive Markov Chain). An interactive Markov chain is
a tuple T = (S, Act, — ,--+,50) where S is a nonempty, finite set of states with
initial state sg € S, Act is a finite set of actions, — C S X Act x S is a finite
set of interactive transitions and --+ C S X R<q X S is a finite set of Markovian
transitions.

We abbreviate (s, a, s') € — by s 235" and (s,\,s') € --» by s -2 . Let:

— IT(s) ={s—235'} be the set of interactive transitions that leave s, and

— MT(s) = {s -2 s’} be the set of Markovian transitions that leave s.

We denote with MS C S the set of Markovian states, with IS C S the set of
interactive states and with HS C S the set of hybrid states of an IMC Z, where:
—seMS iff MT(s)#® and IT(s) =0,

—selIS iff MT(s)=0 and IT(s) # 0, and

—s€HS iff MT(s)#0 and IT(s) # 0.

Further, we distinguish external actions from internal T-actions. Note that a
labelled transition system (LTS) is an IMC with MS = () and HS = (). Further,
a continuous-time Markov chain (CTMC) is an IMC with IS = () and HS = 0.
Therefore, IMCs are a natural extension of LTSs as well as CTMCs.

The Semantics of an IMC. A distribution p over a countable set S is a
function p: S — [0,1] such that > _qpu(s) = 1. If p(s) = 1 for some s € S,

p is a Dirac distribution, and is denoted ps. Let Distr(S) be the set of all

distributions over a set S. The interpretation of a Markovian transition s -2» s

is that the IMC moves from state s to s’ within d time units with probability
fod e Mdt = (1 — e M), For a state s € MS, let R(s,s") = S {\ | s -2» 5’}
be the total rate to move from state s to s’, and let E(s) = > g R(s,s) be
the total outgoing rate of s. If s has multiple outgoing Markovian transitions to
different successors, then we speak of a race between these transitions, known

as the race condition. In this case, the probability to move from s to s’ within d
R(s,s’)
E(s)
state s’ after a delay of at most d time units with discrete branching probability

P(s,s') = R}gs(f)/). As defined on CTMDPs [6], uniformity can also be adapted

to IMCs [40]. An IMC is called uniform iff there exists an e € R>( such that

time units is (1 — e~ B)) utilising that the IMC moves to a successor




Vs € MS it holds that E(s) = e. Thus, the distribution of the sojourn time is
the same for all Markovian states if the IMC is uniform.

IMCs are compositional, i.e. if a system comprises several IMC components,
then it can be assembled via parallel composition of the components. The com-
ponents can communicate through external actions visible to all of them, while
internal T-actions are invisible and cannot communicate with any other action.
Instead of communication, we say in the following that two IMCs synchronize on
an action. Consider a state s € HS with a Markovian transition with rate A and a
T-labelled transition. We assume that the 7-transition takes no time and is fired
immediately since it is not subject to any interaction and cannot be delayed.
On the other hand, the probability that the Markovian transition fires immedi-
ately is zero. Thus, internal interactive transitions always take precedence over
Markovian transitions.

Assumption 1 (Maximal Progress) In any IMC, internal interactive tran-
sitions take precedence over Markovian transitions.

Figure 1: An interactive Markov chain.

Ezxample 1. Let T be the IMC depicted in Figure [I] Then sg is a hybrid state
with Markovian transition sp -2+ s3 and interactive transitions sg -2 s; and
S0 £, s3. We assume that all actions are no longer subject to any further syn-
chronisation. W.l.o.g. we consider o and [ as T-transitions. Hence, we can ap-
ply the maximal progress assumption and obtain sy € IS with so %> s; and
S0 By s3. Therefore, in sy we have to choose between « and 3. Since both tran-
sitions are fired without delay and take no precedence over each other, this
choice has to be made nondeterministicly by a scheduler, see Section [2.3] The
same holds for state sg. If we choose (3 in s, then the successor state is s3, which
is a Markovian state with transition s3 -2+ s, with rate A = 3. The delay of
this transition is exponentially distributed with parameter A; thus, the transition

fires in the next z € Rxo time units with probability [; e *dt = (1—e73?). In



case we choose « in sy we reach state s, which has two Markovian transitions.
We encounter a race condition, and the IMC moves along the transition whose
delay expires first. Consequently, the sojourn time in s; is determined by the
delay of the first transition that executes. The minimum of exponential distri-
butions with parameters A, Ao, ... is again exponentially distributed with the
parameter A\; + Ay + - - -. Thus, the sojourn time is determined by the exit rate,
in our case we have E(s1) = 4. The probability to move from a state s € MS to
a successor state s’ € S equals the probability that one of the outgoing Marko-
vian transitions from s to s’ wins the race. Therefore, the discrete branching
probabilities for s; are given by P(sy, s2) = P(s1,85) = % = % [ ]

2.2 Behavioural and Measurability Concepts

In this section we define fundamental concepts relating to the behaviour and the
measurability of IMCs. We start with the definition of paths and then define the
o-algebra over the set of paths.

Paths. Like in other transition systems, an execution in an IMC is described by
a path. We define finite and infinite paths and provide several useful notations
and operators relating to paths. Before proceeding with the definition, for the
uniformity of notation, we use a distinguished action L ¢ Act to indicate Marko-
vian transitions and extend the set of actions to Act; = Act U {L}. Formally,
a finite path is an initial state followed by a finite sequence of interactive and
Markovian transitions annotated with times, i. e.

T = s to,o0 s1 t1,a1 e 8p1 tn—1,0n—1 s

with o € Acty, t; € Ry, 4 =0...n—1 and s9...s, € S. Each step of a
path 7 describes how the IMC evolves from one state to the next; with what
action and after spending what sojourn time. For example, when the IMC is
in an interactive state s € IS where only internal actions are enabled, it must
immediately (in zero time) choose an enabled action « and go to state s’. This
gives rise to the finite path s 0.2 o/ On the other hand, if s € MS, the IMC
stays in s for ¢ > 0 time units and then moves to the next state s’ based on the
distribution P(s,-) by s =55 ¢/

For a finite path m we use |7| = n as the length of 7 and 7} = s,, as the last
state of m. Assume k < n is an index, then 7[k] = s is the k + 1-th state of
7. Moreover, the time spent on 7 up to state m[k] is denoted by A(m, k) which
is zero if k = 0, and otherwise Zi:ol t;. We use A(m) as an abbreviation for
A(m, |w|). For t < A(rw), let 7@t denote the set of states that 7 occupies at time
t. Note that 7@t is in general not a single state, but rather a set of states, as an
IMC may exhibit immediate transitions and thus may occupy various states at
the same time instant. Operator Pref extracts the prefix of length k from path
7 by Pref(m, k) = sg 22%0 51 -5y k1% o1y o By removing the sojourn
time from transitions of path m, we obtain a time-abstract path denoted by
abs(m) = s 205y 23 ... 5, 1 =1y 5,. Furthermore, Paths™ refers to the



Table 1: An example derivation of 7@t for IMCs.

t<A(ri)|{0 123456 7|minjjmaxj| 7wQ¢
0 \/‘/ / \/\/‘/ / \/ 0 3 <80818283>
tz3—e X XXXV VYV 4 - (s3)
t3 X XXXV VY| 4 5 (s485)

ts+e [XXXXXxXVV| 6 - (s5)

ts+ts [X XX XXXV V| 6 7 (s687)

set of all paths with length n and Paths* to the set of all finite paths. In this
context, we add subscript abs for the set of time-abstract paths i.e. Pathsy
and Pathsy.. A (possibly time-abstract) path could be infinite which means it is
constructed by an infinite sequence of (time-abstract) transitions. Accordingly,

we use Paths® (Pathsyy,) to refer to the set of all (time-abstract) infinite paths.
Ezxample 2. Consider the path

1L

T =S 0,ap $1 0,01 So 0,a2 S3 ts, S4 0,a4 S5 ts,L Sg 0,a6 S7.

Let 0 < € < min{ts, t5}. The derivations for the sequence 7@Q0, 7Q(t3—¢), TQ(t3),
mQ(t3 + €) and 7Q(t3 + t5) are depicted in Table |1} where v indicates that
t < A(m, i), and x denotes the states where ¢t > A(m,i). Further, minj de-
scribes the minimum path length and maxj the maximum path length such
that ¢ < A(mw, 7). Hence, with min j, 7[j] describes the first state on path 7 for

the sequence mQt, respectively for max j the last state. |

o-algebra. Here we recall the definition of o-algebra for IMCs as described in [40,
50]. First we recapitulate the concept of compound transitions. A compound
transition is a triple of (¢, «, s), which describes the behaviour of the IMC when
it waits in its current state for ¢ time units then takes action « and finally evolves
to the next state s. The set of all compound transitions over action space Act
and state space S is denoted by CT = R>g x Act; x S. As a path in IMCs
is composed of a sequence of compound transitions originating from an initial
state, first we define a o-algebra over compound transitions and then extend it
over finite and infinite paths. Let g = 2% and Fa.¢, = 2+ be o-algebras over
S and Act,, respectively. We define the o-algebra over compound transitions
using the concept of Cartesian product of a collection of o-algebras [4], as For =
0(B(R>0) X Fact, XFs), where B(R>() is the Borel o-algebra over non-negative
reals. Furthermore, it can be extended to the o-algebra over finite paths using the
same technique as follows. Let Fpatnsr = 0 (§s X [[1; Scr) be the o-algebra
over finite paths of length n, then the o-algebra over finite paths is defined as
SPathst = U208 pathsn- The o-algebra over infinite paths is defined using the
standard cylinder set construction [4]. We define the cylinder set of a given base
B € Fpatns» as Cyl(B) = {m € Paths” : Pref(m,n) € B}. Cyl(B) is measurable if
its base B is measurable. The g-algebra over infinite paths, § pgtps«, is therefore



the smallest o-algebra over measurable cylinders. Finally the o-algebra over the
set of paths is the disjoint union of the o-algebras over the finite paths and the
infinite paths.

2.3 Schedulers

In states with more than one outgoing interactive transition the choice of the
transition to be taken is nondeterministic, just as in the LTS setting. This nonde-
terminism is resolved by schedulers. Different classes of schedulers exist in order
to resolve nondeterminism for different kinds of objectives. The most general
scheduler class maps a finite path to a distribution over the set of interactive
transitions that are enabled in the last state of the path:

Definition 4 (Generic Measurable Scheduler [40]). A generic scheduler
over IMC T = (S, Act,—>,--+,80) 18 a function, D: Paths® — Distr(—s),
where the support of D(r) is a subset of ({m]} X Act x SYN— and 7w} € IS. A
generic scheduler is measurable iff for all T C —, D(-)(T) : Paths* — [0,1] is
measurable.

For a finite path 7 ending in an interactive state, a scheduler specifies how
to resolve nondeterminism by defining a distribution over the set of enabled
transitions of w). Measurability of scheduler D means that it never resolves
nondeterminism in a way that induces a set of paths that is not measurable,
ie. {w | D(m)(T) € B} € Fpaths for all T C — and B € B([0,1]), where
B([0,1]) is the Borel o-algebra over interval [0,1]. We use the term GM to
refer to the set of all generic schedulers. Since schedulers in IMCs are closely
related to schedulers in CTMDPs, most of the concepts are directly applied
from the latter to the former. A slight difference is that schedulers in IMCs
resolve nondeterminism only for finite paths that end up in interactive states.

A wvariety of scheduler classes in CTMDPs [40, [50], which can also be em-
ployed in IMCs, has been proposed in order to resolve nondeterminism for dif-
ferent kinds of objectives. These schedulers are classified according to the level
of time and history details they use to resolve nondeterminism. Another cri-
terion is whether they are deterministic, i.e. the distribution over the set of
target transitions is Dirac, or randomised. In history-dependent schedulers the
resolution of nondeterminism on an interactive state may depend on the path
is visited upto the state. A scheduler is hop counting if all finite paths with the
same length lead to the same resolution of nondeterminism. It is positional if
its decision for a given path is only made based on the last state of the path.
On the other hand, schedulers can be time-dependent, total time-dependent or
time-abstract. Time-dependent schedulers utilise the whole timing information
of a path including the sojourn time of all intermediate states for resolution of
nondeterminism, while total time-dependent schedulers only employ the total
time that has elapsed to reach the current state for that purpose. No timing
information is used by time-abstract schedulers and a path is thus considered
time-abstract by them.



The most general class, GM schedulers, uses the complete trajectory up to the
current interactive state to randomly determine the next state. Therefore, they
are also called time- and history-dependent randomised (THR) schedulers. The
class has an excessive power which is not necessary for most types of analysis. For
example, for time-abstract criteria like expected reachability, long-run average
and unbounded reachability, it suffices to consider time-abstract positional deter-
ministic (TAPD) schedulers [27], which are also called stationary deterministic.
Furthermore, the optimal scheduler for computing time-bounded reachability
probabilities is total time-dependent positional deterministic (TTPD) [50]. More
classes of randomised schedulers are depicted in Table [2 The deterministic ver-
sion of each class can be obtained under the assumption that Distr(—) is Dirac.

Table 2: Randomised scheduler classes for IMCs. The classification criteria
are denoted by TA (Time-Abstract), TT (Total Time-dependent), T (Time-
dependent), P (Positional), HOP (HOP counting) and H (History-dependent).

Abbreviation|Scheduler Signature Parameters of Scheduler
for a given path 7

P TAPR  |D: IS — Distr(—) ml €IS
TA|HOP| TAHOPR |D :IS x N — Distr(—s) i €IS, |x|

H TAHR  |D: Paths},, — Distr(—) abs(w) with 7| € IS

P TTPR  |D: IS X R> — Distr(—) ml € IS, A(m)
TT|HOP| TTHOPR |D:IS x N x Rso — Distr(—) |ml € IS, |n|, A(r)

H TTHR  |D : Paths},, X R>q — Distr(—)|abs(7) with 7| € IS, A(n)

P TPR D : IS x R>o — Distr(—) m, € IS, A(m|n|) —
B A, ] — 1)

H | THR (GM) |D : Paths* » Distr(—) m with 7 € IS

Ezample 3. We define a scheduler over the IMC in Figure [[] which always
chooses action « in state sp with probability 1. In addition, it selects a and
[ in state sg with probability p and 1 — p, respectively, provided that a path
in the set A(Tl,T5) = {80 O, S1 LZFES S5 ts, L Sg i t1 <Ti Nty < T5} has
been observed. Otherwise, action 8 (in state sg) is almost surely picked. Assume
that p = 0.5, T3 = 1 and T5 = 3, then the scheduler is in the THR (GM) class.
It becomes deterministic (THD) by setting p = 1 or p = 0. By taking p = 1,
Ty = oo and T5 = o0, A(T1,T5) becomes time-abstract and the scheduler is then
time-abstract history-dependent deterministic (TAHD). On the other hand when
A(Ty,Ts) is replaced by the set B = {m € Paths™ : w1} = sg N A(m, |7]) < 4},




the scheduler is total time-dependent and positional deterministic (TTPD) or
randomised (TTPR), depending on the value of p. |

2.4 Probability Measures

The model induced by an IMC after the nondeterministic choices are resolved by
a scheduler is pure stochastic and then can be analysed. To that end the unique
probability measure [40, 50] for probability space (Paths®,§ patns~) is proposed.
Given a state s, a general measurable scheduler D and a set II of infinite paths,
then Pry p(IT) denotes the probability of visiting all paths in II under scheduler
D starting from state s. We omit the details due to lack of space.

Zenoness. Due to the presence of immediate state changes, an IMC might ex-
hibit Zeno behaviour, where infinitely many interactive transitions are taken
in finite time. This is an unrealistic phenomenon characterised by paths m,
where A(m,n) for n — oo does not diverge to co. In other words, the time
spent in the system may stop increasing if the system follows path 7. Ac-
cordingly, an IMC Z with initial state sy is non-Zeno, if for all schedulers D,
Prs, p({m € Paths® | lim, 00 A(m,n) < c0}) = 0. As the probability of a Zeno
path in a finite CTMC is zero [5], IMC Z is non-Zeno, if and only if no strongly
connected component with states T' C IS is reachable from sg. In the remainder
of this paper we restrict to models without zenoness.

2.5 Composition

Compositionality is one of the key properties of IMCs. Complex models consist-
ing of various interacting IMCs can be aggregated in a stepwise manner. This
allows e. g. to model each subsystem separately and obtain a model of the whole
system by applying the following parallel composition.

Definition 5 (Parallel Composition). Let Z; = (51, Act1, —1,--21,50,1)
and Iy = (S2, Acta, — 2,--+2,50,2) be IMCs. The parallel composition of Z;
and Iy wrt. synchronisation set Syn C (Act; N Acta) \ {7} of actions is defined
by:

Th||Z2 = (S1 x Sz, Acty U Acty, —,--+,(50,1,50,2))
where — and --+ are defined as the smallest relations satisfying

s1 =% 18] and so —298h and a € Syn, o £ 7 implies (s1,82) =2 (8], 5)
$1 =% 18] and o ¢ Syn implies (s1, s2) =% (s}, s2) for any s2 € S

S9 =% 985 and o ¢ Syn implies (s1, s2) = (s1,54) for any s1 € S1

51 -1 8| implies (s1,52) -2+ (s, 52) for any sy € Sy

8o —23y sh implies (s1, $2) -2 (s1,8%) for any s1 € Sy.

CUEs Lo do =

The two IMCs have to synchronise on actions in Syn, i. e. any action o € Syn
needs to be performed by both IMCs at the same time, except if « is an internal
action (first condition). The second and third conditions state that any other



action can be performed autonomously by any of the two IMCs. According to the
last two conditions, Markovian transitions are interleaved independently. This is
justified by the memoryless property of the annotated exponential distributions.

Given a set of IMCs B which need to be synchronised, the computational
effort of the composition process is crucially dependent on the order in which
these IMCs are aggregated. Crouzen and Hermanns [20] suggested an algorithm
based on heuristics to determine a composition order which induces low com-
puting costs. In a first step, the algorithm determines candidate subsets of B
up to a certain size. For each subset a metric is calculated which estimates how
good the composition of the IMCs in this subset is in keeping the cost of the
overall composition low. The IMCs in the subset with the maximal metric are
then composed and minimised, as described in Section |4l This process iterates
until only one IMC remains in B.

The composition of two or more IMCs involves two steps: After synchronisa-
tion on a set of actions, those actions which require no further synchronisation
are hidden.

Definition 6 (Hiding). The hiding IMC T = (S, Act, — ,--+,50) wrt. the
set A of actions is the IMC IT\A = (S, Act\A, —' --+,50) where —' is the
smallest relation defined by

1. s—%5 5" and a ¢ A implies s -5’
2. s—% 5" and o € A implies s ——'s’

Through hiding, interactive transitions annotated with actions in A are trans-
formed into 7-transitions. Further, we distinguish between two classes of IMCs:

— closed IMCs, where all interactive transitions are hidden, such that the IMC
is not subject to any further synchronisation, and

— open IMCs, which still have visible interactive transitions, and can interact
with other IMCs.

As we will see next, closed IMCs are closely related to CTMDPs.

2.6 IMCs versus CTMDPs

The modelling of a system usually involves the composition of various communi-
cating subsystems. Therefore, open IMCs are used to describe those subsystems.
Once all open IMCs are composed to a single closed IMC, it is subject to analy-
sis. Note that a CTMDP combines the two transition relations of an IMC in one
transition rate matrix. We recapitulate a transformation from an IMC to a CT-
MDP [40, 38, B7] which preserves important properties of the original IMC, and
thus can be used to apply CTMDP analysis techniques [16] [6] on the transformed
model.



IMC vs CTMDP. In general, closed IMCs are a generalisation of CTMDPs in
which interactive and Markovian transitions are loosely coupled. Therefore, every
CTMDP can be converted into an equivalent IMC in a straightforward way. The
equivalent IMC is contained in a restricted subclass called strictly alternating
IMCs that behaves exactly like CTMDPs. Note that in a strictly alternating
IMC, Markovian and interactive transitions are exhibited in a strict alternation.
The idea of the transformation from an IMC to a CTMDP [40)] is to convert a
given IMC to a strictly alternating IMC which is essentially a CTMDP.

Given an IMC Z, the following steps [38] are applied: (1) obtain an alter-
nating IMC' by transformation of hybrid states into interactive states, (2) turn
all successors of any Markovian state into interactive states to obtain a Markov
Alternating IMC, (3) transform any immediate successor of all interactive states
into Markovian states to obtain an Interactive Alternating IMC. By employing
these transformation steps, an arbitrary IMC turns into a strictly alternating
IMC. The strictly alternating IMC can then be transformed into a correspond-
ing CTMDP in a straightforward way. Here we explain each step by an example.

Alternating IMC. In the first step, IMC Z is transformed into an alternating
IMC which does not contain any hybrid state. Owing to closeness of the IMC and
imposing Assumption (1| interactive transitions take precedence over Markovian
transitions. Hence all emanating Markovian transitions of a hybrid state can be
safely eliminated.
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Figure 2: Step by step transformation of an IMC into a CTMDP



Markov Alternating IMC. The aim of the second step is to make sure that pre-
decessors and successors of any Markov state are interactive. In this step, a
fresh interactive state with internal action 7 is inserted in between two consecu-
tive Markovian states. Due to immmediate firing of the 7 transition, the timing
behaviour of the IMC is preserved.

Ezample 4. The state-labelled IMC (see Section in Figureis closed and sub-
ject to analysis. The result of the first two steps of the transformation, namely the
alternating IMC and the Markov alternating IMC, are illustrated in Figures
and [2d respectively. [ |

Strictly Alternating IMC. After this step we make sure that there is no se-
quence of interactive transitions, therefore each interactive state is preceded and
succeeded by Markovian states. As discussed earlier, a sequence of consecutive
interactive transitions occur in zero time and thus can be seen as a single transi-
tion labelled by a word of taken actions. Note that the sequence always ends in a
Markovian state. There are interactive states in between that have only outgoing
and incoming interactive transitions, which are eliminated from the state space.
We call those states vanishing, and all others persistent.

The above transformation is not enough to reconstruct all information from
the original model. In order to preserve the semantic structure of the model
after eliminating vanishing states, their state labels (atomic propositions) must
be adopted by persistent states. In this regard, state labels are decorated with
an extra may and/or must tag. In other words, if starting from an interactive
persistent state s, all sequences of interactive transitions ending in Markovian
states visit label o, then s will be labelled by o' (s must satisfy a). On the other
hand, if there exists such a sequence, s will be labelled by a’ (s may satisfy a).
Note that must labelling implies may labelling, as a label that must occur, may
also occur. At the end since all labelling information is inherited by interactive
persistent states, labels of other states will be removed.

An alternating IMC is transformed into a strictly alternating one after the
specified Markov and interactive alternating steps are applied. Since in a strictly
alternating IMC, Markovian and interactive transitions exhibit in a strict alter-
nation, the strictly alternating IMC can be interpreted as a CTMDP. It has been
proven [38, 40] that the above transformation steps preserve the uniformity and
timed reachability of the original model. The transformation is a crucial part of
the evaluation of STATEMATE models as will be discussed in Section

Ezxample 5. The result of the transformation into the strictly alternating IMC
is shown in Figure and the transformed CTMDP is illustrated in Figure
|

3 Model Checking

Consider we are confronted with a IMC originated from some high level-formalism
and a performability requirement. How can one describe this performability



property and then compute the set of satisfying states in the IMC? First of
all we need a logic representing the desired property. Then the basic computa-
tional procedure of the satisfaction set is a simple recursive descent of the logical
formulae.

In this section we provide an overview of the current model checking capabil-
ities of IMCs to provide an answer to the preceded question. We first introduce a
logic which is used to specify a wide range of properties and thereafter describe
algorithms to check those properties for IMCs.

3.1 Continuous Stochastic Logic

This section describes Continuous Stochastic Logic [5] (CSL), which is suitable
to express a broad range of performance and dependability measures. CSL is an
extension of Probabilistic Computation Tree Logic (PCTL) [30,[9] to continuous-
time Markov models. This section reviews CSL and its related model checking
algorithms as introduced in [59, [50] and enriches it with expected reachability

and long-run average operators as described in [27]. CSL works on state-labelled
IMCs.

Definition 7 (State-Labelled IMC). A state-labelled IMC is a tuple T =
(S, Act, —, -, 80, L) where L : S — 24P is q state labelling function with AP
as a set of atomic propositions. All other elements are as in Definition[3.

Hence, given an IMC Z and a finite set of atomic propositions AP, a state
labelling function L : S ~— 24F decorates each state with a set of atomic propo-
sitions which do hold in that state.

Syntax of CSL. Let J be the set of all nonempty nonnegative real intervals
with real bounds, then Continuous Stochastic Logic (CSL) for IMCs is defined
as follows.

Definition 8 (CSL Syntax). Let a € AP, p € [0,1], t € R>o, I € T an
interval and 4 € {<, <, >, >}, CSL state and path formulae are described by

Pu=a | =@ | PAP | Pap(9) | Eat(®@) | Lap(P)
pr=Xo | dUD | PU' D

Except for the last two operators of the state formulae this logic corresponds
to the CSL logic defined in [59]. Note that P<p(¢) denotes the probability of
the set of paths that satisfy ¢. The formula E4¢(®@) describes the expected time
to reach some state satisfying ¢ and Lo, (@) denotes the average time spent in
states satisfying @ in the long-run.

Given an infinite path 7 € Paths®, 7 satisfies X1 if the first transition of
occurs within time interval I and leads to a state that satisfies @. Similarly, the
bounded until formula @YUV is satisfied by 7 if 7 visits states that satisfy formula
@ until it reaches a state that satisfies formula ¥ within the time interval I. In
contrast to the bounded until, an unbounded until formula does not constrain
the time at which m may visit a state which satisfies ¥. This corresponds to the
time interval [0, c0).



Semantics of CSL. To define the semantics of CSL we first introduce some
important notations. We denote with (7, n) the time interval during which a
given path 7 stays in its n-th state. More formally, it equals [A(m, n), A(7,n+1)]
if A(m,n) < A(m,n+1), and {A(m,n)} otherwise. Let Vg : Paths — R be the

random variable which defines the elapsed time before visiting some state s £ @
o1,t

for the first time. In other words, for an infinite path ™ = s¢ oo, §p — 2 .
we have Vp(m) = min{t € R>q | s € 7@t A s F &}. Furthermore, let I be the
characteristic function of @, such that Ig(s) = 1 if s £ @ and otherwise 0. The
fraction of time spent in states satisfying @ on an infinite path 7 is given by the
random variable Ag(m) = limy_,o0 7 f(f Is(m@Qu)du 2] [46]. The formal semantics
of CSL formulae is then defined as follows.

Definition 9 (CSL Semantics). LetZ = (S, Act, — ,--+, AP, L,v) be a state-
labelled IMC, s € S, a € AP, pe [0,1], t € Rso, [ € T, < € {<,<,>,>}, and
7w € Paths”. We define the satisfaction relation E for state formulae: s F a iff
a€L(s), sSE-Diff sED, sEPANV iff sEPANSEW, and

s E P<ap(9) iff VD € GM. Pr, p({m € Paths” | 7 E ¢}) <p

S':(gﬁt(@) ZﬁVDEgM Vqs(ﬂ') PI’S’D(dTF)S]t
Paths®

s E Lap(®) iff VD € GM. Ag(m)Pry p(dm) < p
Paths®

For path formulae:

TEXI®  iff m[l|E®AA(m ) ET

TEOU' T iff IneNoy(mn)NI#OATEPAYE=0...n— 1L.7[k]| E®
TEQUY iff IneNoamn]EWAVE=0...n—1ak]E D

Ezample 6. Consider a system with the two atomic propositions up and down.
We are interested in the availability of the system and want to know if we are in
an up state at least 90 percent of the time. This CSL property is described with
the long-run average operator L£>g.9(up). It is satisfied, if we are in the set of
up states with more than 90% in the long-run. We denote the states that satisfy
this property with the atomic proposition available.

Besides the availability of the system, we are also interested in its safety.
Therefore, we want to validate that the probability to reach a down state via up
state is at most 0.01 during the first 5 time units . This condition is expressed
by the CSL formula P<g.01(up Y105l down). We denote all states that satisfy
this property with the atomic proposition safe.

With these propositions, one can e.g. investigate if the average time to reach
some available and safe state is at most 10 time units. This is be determined by
the CSL formula E<io(available A safe). |

3.2 Probability Bounds

Model checking a CSL formula @ over an IMC Z entails the computation of all
sub-formulas ¥ of @ by determining the satisfaction sets Sat(¥) = {s € S | s F ¥}.



Just like for other branching-time logics, we recursively compute those sets
by starting with the inner most formula, represented by an atomic proposi-
tion. In general, we have Sat(a) = {s € S| a € L(s)} for an atomic proposition
a € AP, Sat(-¥) = S\ Sat(¥) for negation formulae, and Sat(¥; A¥,) =
Sat(¥1) N Sat(Ps) for the conjunction of formulae.

Probability Bounds. The proper calculation of Sat(P<p(¢)), however, requires
deeper considerations. Sat(P«p(¢)) is defined as:

{s € S|VD € GM. Pry p({m € Paths” | m E ¢}) Ip}.

In a nutshell, determining this set requires the calculation of the maximum or
minimum (depending on <) probability measures induced by all ¢-satisfying
paths starting from state s, where the maximum or minimum are to be taken
over all measurable schedulers. Let pZ_ (s,¢) and pZ. (s,¢) be those values
respectively. In the following, we show how to compute them for different types
of path formulae ¢. We only consider the maximum, since the minimum can be
handled analogously.

Next Formula Assume that ¢ = X7® and Sat(®) have been already computed.
Let @ = infI and b = sup /. If s € MS is a Markovian state, then nondeter-
minism does not occur, and the computation can be done as for CTMCs [5],
ie. pL. (s, X1®) = Es,esat@)P(s,s’)(e‘E(s)“ — e BB For s € IS, we de-
termine the possibility to move directly from s to a ®-satisfying state. Hence
pL (s, X1®) = 1if 3’ € S,a € Act.s—s' As' FEPAO € I, and it is zero
otherwise.

Unbounded Until Formula The evaluation of a given unbounded until for-
mula in an IMC can be reduced to the computation of unbounded reachability,
which in turn can be reduced to the computation of reachability in a time-
abstract model. It utilises the same technique that is used for the model checking
of an unbounded until formula in CTMCs [5]. Let Z be an IMC and ¢ = ® U ¥
be an unbounded until formula. We assume that Sat(®) and Sat(¥) have al-
ready been computed. At first, we reduce the problem to the computation of
unbounded reachability in the IMC Z_g, which is built by turning all states
Sat(—P) in Z into absorbing states. This is achieved by replacing all outgoing
transitions of these states with a single Markovian self loop with an arbitrary
rate, so that once a path has entered an absorbing state it cannot leave it any-
more. The reasoning behind this transformation is that as soon as a path reaches
some state in Sat(—P) \ Sat(¥), regardless of which states will be visited in fu-
ture, it does not satisfy ¢. Consequently, making these states absorbing does
not affect the evaluation of an unbounded until formula. More formally, let
&G be the set of paths that eventually reach some goal states G C S, then
Vs e S. pL (5,8 U W) = pLz (s, $Sat(P)).

In a second step, the unbounded reachability problem in Z_4 can be trans-
formed into the computation of unbounded reachability in a time-abstract model.



We can use a time-abstract model, since the sojourn time in Markovian states is
not of importance in the evaluation of unbounded reachability. In other words,
it does not matter at which point in time a transition from a Markovian state
s to its successor s’ occurs. It is sufficient to know the probability P(s,s’) of
eventually reaching s’ from s. Therefore, it suffices to compute the unbounded
reachability in a discrete model in which all interactive transitions of Z_g are
mimicked and all Markovian transitions are replaced with the corresponding dis-
crete branching probabilities. The discrete model is called the embedded Markov
Decision Process induced from Z_4 and denoted as emb(Z_4). Formally speaking,
the unbounded reachability property in Z_¢ is preserved by the transformation
in its embedded MDP, or Vs € S. pZ2 (s, OSat(W)) = poe®=*) (s, ¢ Sat(¥)). In
the final step, we can compute the unbounded reachability property in emb(Z_4)
by using, for example, the algorithms described in [7, Chapter 10].

Time-Bounded Until Formula The computation of a time-bounded until
formula is more complicated and requires some innovation. As above, the prob-
lem can be transformed into the computation of reachability in a first step. Let
Z be an IMC, ¢ = U’ ¥ with I € J be a CSL formula, and {'G denote the set
of paths that reach goal states G C S within interval I. We assume that Sat(P)
and Sat(¥) has been already computed. Similarly to the unbounded until, all
states in Sat(¥) are considered to be goal states and all states in Sat(—®P) are
made absorbing. The analysis of time-bounded until analysis is then replaced by
the analysis of time-bounded reachability, utilising the following theorem.

Theorem 1 (Bounded Until [50]). Let Z = (S, Act, —,--+,50) be an IMC
as before, and ¢ = ® U' W with I € T be a CSL path formula and G = Sat(¥).
We construct Ig from I by making all states in Sat(—P) absorbing. Then Vs €

S. pho (s, @ U W) = pLin (s, O1G).

The computation of time-bounded reachability is explained in the following sec-
tion.

3.3 Time-Bounded Reachability

This section presents the algorithm introduced in [59] [50] which approximates
the probabilities of a time-bounded reachability analysis in IMCs. The algorithm
is based on a discretisation technique with a predefined approximation error.
Given IMC Z, interval I € J, a set of goal states G C S and s € S, the technique
provides a fixpoint characterisation for the computation of pZ_ (s, {!G) (and
similarly for pZ; (s, 0'G)). The characterisation implies that TTPD schedulers
are sufficient for this purpose, i.e. pZ (s,O!G) = supperrpp Prs,p(O1G). In
other words, it suffices to find the optimal scheduler among all TTPD schedulers,
which maximises time-bounded reachability. Note that similar results exist for
the minimum.

Ezxample 7. Consider the IMC in Figure |3| and assume we want to compute the
maximum reachability probability from the initial state sy to the goal state ss



Figure 3: An exemplary IMC.

within 3 time units. Thanks to the simple structure of the IMC, the fixpoint
characterisation gives us the closed form of the maximum reachability as well as
the optimal TTPD schedule. The optimal decision in state s; depends on the
time when it is visited. Hence, the scheduler takes action « if the time is less
than 3 — In(3) time units, and action 8 otherwise. |

The fixpoint characterisation yields an integral equation system which is in
general not tractable [5]. To circumvent this problem, the fixpoint characterisa-
tion is approximated by a discretisation technique. The time horizon is divided
into equally-sized subintervals with length &, where § is assumed to be small
enough such that at most one Markovian transition fires with a high probability.
Under this assumption we can transform the IMC into its induced interactive
probabilistic chain [19], the discrete version of IMCs.

Definition 10 (Interactive Probabilistic Chain). An interactive proba-
bilistic chain (IPC) is a tuple D = (S, Act,—>,--+4, 80), where S, Act, —
and so are as in Deﬁnition@ and --+4 C S x Distr(S) is the set of probabilistic
transitions.

A probabilistic transition specifies the probability with which a state evolves
to its successors after one time step. The notion of probabilistic transitions re-
sembles the one-step transition matrix in DTMCs. The concepts of closed and
open models can be transferred to IPCs. Additionally, since we do not con-
sider continuous time, paths in an IPC can be seen as time-abstract paths in an
IMC, implicitly still counting discretisation steps, and thus discrete time. The
most general scheduler classes for IPCs are time-abstract history-dependent ran-
domised (TAHR) schedulers.

Discretisation from IMC to IPC. Below we describe the discretisation technique
that transforms an IMC into an IPC. Afterwards, we explain how reachability
computation in an IMC can be approximated by an analysis on the corresponding
IPC with a proven error bound.

Definition 11 (Discretisation [50]). Given an IMC T = (S, Act, —, --+, 5¢)
and a discretisation constant 0, Iy = (S, Act, —>, --+5,50) 1is the induced IPC



from T with respect to discretisation constant &, where --+5= {(s, u*) | s € MS}

and
(') = (1- e‘E(s)‘S)P(s, ') s'#£s
H (1 _ C_E(S)(S)P(S,Sl) 4 e—E(s)é 8/ — s

This discretisation approximates the original model by assuming that at most
one Markovian transition fires in each time-interval of length d. Accordingly, u*
specifies the probability that either one or no Markovian transition occurs from
state s within each discretisation step. Using the fixpoint characterisation above,
it is now possible to relate the probabilities of a reachability analysis in an IMC
7 to reachability probabilities in its IPC Zs.

Ezample 8. Consider the IMC in Figure [1] and assume that all actions are in-
ternal. Given discretisation constant § > 0, Figure [a] shows the induced IPC of
the original model w.r.t. §. |
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(a) The induced IPC of the original model. § is bounded reachability computed by
an arbitrary positive discretisation constant. discretisation.

Figure 4: Time-bounded reachability for the IMC depicted in Figure

Theorem 2 (Discretisation error [50]). Let T = (S, Act, —,--+,50) be an
IMC, G C S and an interval I with rational bounds such that a = inf I,b = sup [
with 0 < a < b and A = maxgseps F(s). Let 6 > 0 be such that a = k,0,b = kpd
for some ko, ky, € N. Then, for all s € S it holds that

2
PE (5, Ok PIG) — ka@ < Phax (5, O1G) < pliy (5, 0Pl G)
2
n kb@ )6

Theorem [2] states that the time-bounded reachability property in an IMC Z
can be arbitrarily closely approximated by evaluating the same property in the



induced IPC Zs. The error bound decreases linearly with smaller discretisation
steps d. It has been recently improved in [33].

The remaining problem is to compute the maximum (or minimum) prob-
ability to reach G in an IPC within step bound k& € N. Let $!%* G be the
set of infinite paths in an IPC that reach a state in G within k steps, and
let p2, (s, IOk G) denote the maximum probability of those paths that start
from state s and are subject to scheduler D. Then, we have p2, (s, OI0F @) =
sUppe 4 Prs.p(QI0F G). This expression can be solved by using an adaptation
of the well-known value iteration scheme for MDPs to IPCs [59).

The algorithm unfolds the IPC backwards in an iterative manner, starting
from the goal states. Each iteration intertwines the analysis of Markovian states
and the analysis of interactive states. The main idea is that a path from in-
teractive states to G is split into two parts:(1) reaching Markovian states from
interactive states in zero time and (2) reaching goal states from Markovian states
in interval [0, j], where j is the step count of the iteration. The computation of
the former can be reduced to an unbounded reachability analysis in the MDP in-
duced by interactive states and rewards on Markovian states. For the latter, the
algorithm operates on the previously computed reachability probabilities from
all Markovian states up to step count j. We can generalise this recipe to step
interval-bounded reachability [59].

Example 9. We want to compute the maximum reachability probability from
the initial state sg to state s; of the IMC shown in Figure Consider the
induced IPC shown in Figure a] which discretises the IMC. The maximum step-
bounded reachability of the IPC is illustrated in Figure[4b] The optimal decision
in state sy depends on the time bound. When the time bound is small the optimal
action in state sg is «, whereas for larger time bounds taking action g yields
the maximum reachability. The discretisation constant § = 1.27e — 7 is chosen
on the basis of Theorem [2] to guarantee that the error bound is at most le-6.
Hence, the computation is completed after 8e+6 iterations. |

3.4 Time-Bounded Reachability in Open IMCs

IMCs feature compositional behaviour which allows them to communicate with
their environment. As discussed in Section [2], the class of IMCs which can in-
teract with other IMCs, in particular via parallel composition, is called open.
Lately, model checking of open IMCs has been studied, where the IMC is con-
sidered to be placed in an unknown environment that may delay or influence its
behaviour via synchronisation [I5]. The approach is restricted to a subclass of
IMCs that are non-Zeno and do not contain states that have both internal and
external actions enabled at the same time. Let IMC Z satisfy these restrictions
and be subject to an environment E, which can be seen as the composition of
several other IMCs and has the same external actions as Z. IMC 7 is then turned
into a two-player controller-environment game, in which the controller controls
7 and the environment controls E. In each state of Z the controller selects one of
the enabled internal transitions, if there are some. Otherwise, the environment



either chooses an external action and synchronises Z and FE, or it chooses an
internal action. Given a set of goal states G and time bound b, the controller
tries to maximise the probability to reach the target set G within b time units.
The environment tries to prevent the controller from reaching its goal by ei-
ther delaying synchronisation steps or forcing the controller to take non-optimal
paths. In this setup, the time-bounded reachability can be computed by the
approximation scheme laid out in [59], which we have discussed above.

3.5 Expected Time

This section presents an algorithm to obtain the minimum and maximum ex-
pected time to reach a given set of goal states in an IMC, introduced in [27]:
We describe the expected time objective with a fixpoint characterisation, and its
transformation into a stochastic shortest path (SSP) problem. This SSP problem
can then be used to solve the expected time CSL formula. Note that we only
consider well-defined IMCs without Zeno paths.

Ezpected time objective. Let’s assume that we already computed Sat(P), and
denote this set as our set of goal states G. We want to compute the minimum
expected time to reach a state in G from a given state s € S. Thus, we have
to consider all possible paths 7 induced by a given scheduler D. We define the
random variable Vi : Paths — R>( as the elapsed time before visiting a state
in G . For an infinite path m = so 22/ 5; -Z15 et Vg(r) = min{t €
R>o|G N 7@t # @} with min(&) = oo [27]. Then the minimal expected time to
reach G from s € S is given by:

eT™(s5,0G) = infE, p(Vg) = inf | Vg(n) Prep(dn). (1)
D Paths

Formula expresses that we have to find a scheduler D which minimises the
time until reaching a state in G . We therefore need to consider all paths induced
by scheduler D. Note that, by definition of Vg, it is sufficient to consider the
time before entering a goal state. Hence, we can transform all goal states into
absorbing Markovian states without affecting the expected time reachability.
This may result in a much smaller state space, since we can neglect those states
that become unreachable from the initial state.

Theorem 3 (|27]). The function eT™" is a fizpoint of the Bellman operator

ﬁ—!—ZP(s,s')-v(s/) if s€ MS\ G
s'eS
v(8) = {0 min v(s") if s € IS\ G
s> s/
0 if s € G.

Theorem |3[ encodes expression in a Bellman equation, in which we aim to
find optimal values v(s) for all states s € S. If we are already in a goal state, we



have by definition that Vi () = 0 with 7 = sq 2222 ... and so € G. If s € IS
and s has only one outgoing interactive transition, then the expected time is the
same as the one of its successor state. In case there is a nondeterministic choice
between interactive transitions in s, the next transition is determined by the
scheduler. Since we look for the infimum over all schedulers D, we choose the
action which induces the lowest expected time in the successor state. If s € M.S,
we add the sojourn time in state s to the time to reach a state in G over all
paths starting in s induced by scheduler D. In other words, we add the sojourn
time in state s to the expected sojourn time of each successor state s’ weighted
with the probability to reach s’. 4

As a result of Theorem [3| the nondeterminism in eT™" (s, $G) can be re-
solved by using a stationary deterministic scheduler [27]. This implies that the
scheduler chooses an action that results in the minimum expected time for each
interactive state with a nondeterministic choice. To yield an effective algorithm
as well as to show the correctness of Theorem [3| we transform the expected
time computation into a non-negative stochastic shortest path (SSP) problem
for MDPs. A SSP problem derives the minimum expected cost to reach a set of
goal states in a MDP.

Definition 12 (SSP Problem). A non-negative stochastic shortest path prob-
lem (SSP problem) is a tuple ssp = (S, Act, P, so,G, ¢, g), where (S, Act,P, sq)
is an MDP, G C S is a set of goal states, ¢ : S\ G x Act — Rx>q is a cost
function and g : G — R>¢ is a terminal cost function.

Given a smallest index k € N of a path 7 with 7[k] = s € G, the accumulated
costs to reach G on 7 is given by Zf;ol c(s;) + g(sk). The transformation of an
IMC into an SSP problem is realized with the following definition.

Definition 13 (SSP for Minimum Expected Time Reachability). The
SSP of IMCZ = (S, Act, — ,--+, s50) for the expected time reachability of G C S
is sspgrmin (Z) = (S, Act U{L}, P, s0,G,c,g) where g(s) =0 for all s € G and
forall s,s' € S and o € Act U{L}:

R(ss)  jrsc MSAo=L1

E(s)
P(s,0,8) =<1 ifs€IS A s—Zvs
0 otherwise, and
o(s,0) = ﬁ ifse MS\GANo=_1
0 otherwise.

The Markovian states are equipped with costs, since they are the states in which
time advances. The cost to traverse a Markovian state along path 7 is determined
by the sojourn time. Observe that the Bellman equation in Theorem [3| coincides
with the definition of the SSP problem. The uniqueness of the minimum expected
cost of an SSP problem [3] [§] implies that eT™" (s, {G) is the unique fixpoint of
v(s) [27].

Ezample 10. Consider IMC Z depicted in Figure [I| with G = {s5} being the set
of goal states and sg being the initial state. We want to obtain eT™"(sq, G).
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Figure 5: Resulting ssprmin of the IMC depicted in Figure

In a first step, we make goal state s5 absorbing. Afterwards, we transform the

resulting IMC into the SSP problem depicted in Figure[5] From this SSP problem

we can derive the following LP problem, where x; represents values for s;:
Maximise xo + x1 + x3 + x4 subject to:

1 1 1
o < a1 $1§Z+§$2+§$5 $3§§+$4 x5 =0
1
o < T2 To < 14w $4§§+£B5

By solving these equations we obtain zg = %,xl = 00,Ty = 00, T3 = %,m = %,
which yields eT™"(sg, 0G) = 2. [ |

An analogous approach can be applied to obtain the maximum expected time.
In this case, we search for the supremum over all schedulers, and thus, we resolve
nondeterministic choices in such a way that the scheduler chooses the actions
that maximises the expected time.

3.6 Long-Run Average

In this section we present an algorithm to compute the long-run average (LRA)
time spent in a set of goal states, as introduced in [27]. We describe the long-run
average objective and a three step procedure to obtain the long-run average and,
thus, compute the LrRA CSL formula. Again, we only consider well-defined IMCs
without Zeno paths.

Long-run average objective. We assume that Sat(®) has already been computed
with the technique explained before, and we denote this set as our set of goal
states G. Random variable Ag (7)) = %fg 1¢(m@Qu)du defines the fraction of
time that is spent in G on an infinite path 7 in Z up to time bound ¢ € R>¢ [2].
Note that 1¢(s) = 1 if and only if s € G and otherwise 0. For the computation
of the long-run average we consider the limit ¢ — oo for random variable Ag 4,

denoted by Ag. The expectation of Ag under scheduler D and initial state s



then yields the long-run average time spent in G, where the minimum long-run
average time spent in G starting from s is defined by:

In contrast to the computation of the expected time and time-bounded reach-
ability, we may assume w.l.o.g. that G C M S, since the long-run average time
spent in any interactive state is always 0 (see Section 2). In the remainder of
this section we give the basic intuition of how to compute the minimum long-run
average. The general idea is given by the following three-step procedure:

1. Determine the maximal end components {7y, ...,Zs} of IMC T.
2. Determine LRA™"(G) for each maximal end component Z;.
3. Reduce the computation of LRA™"(sg, G) in IMC Z to an SSP problem.

The first step can be performed by a graph-based algorithm [I} [I7], whereas the
latter two can be expressed as LP problems.

Definition 14 (End Component). An end component of IMC T is a sub-
IMC defined by the tuple (S’, A) where S’ C S and A C Act such that:
— for all Markovian states s € S" with s -2» s’ it follows that s' € S’, and
— for all interactive states s € S and for all « € A with s <+ s it follows that
s’ €8, where at least one action is enabled in s € S'.
Further, the underlying graph of (S’, A) must be a strongly connected component.

Note that a mazimal end component (MEC) is an end component which is not
contained in any larger end component.

Long-run average in MECs. For the second step we show that for unichain
IMCs the computation of LRA™™" (s, G) can be reduced to the determination of
long-run ratio objectives in MDPs. An IMC is unichain if and only if under any
stationary deterministic scheduler it yields a strongly connected graph structure.
Note that an MEC is a unichain IMC. At first, we define long-run ratio objectives
for MDPs, and then show how to transform them to LRA objectives in unichain
IMCs.

Let M = (S, Act, P, s9) be an MDP and ¢1,¢2 : S x Act; — Rxg be cost
functions. The operational interpretation is that cost ¢; (s, «) is incurred when «
is selected in state s, similarly for ¢o. The long-run ratio between the accumulated
costs ¢; and ¢ along an infinite path 7 in MDP M is defined as:

n—1
Rir) = lim =0 A0

nooe 370 ealsgy )

Ezample 11. Consider the infinite path m = (59 -2 51 — 59 — 53 — 50)* where
c2(84,+) denotes the transition labels and c¢;1(sg,-) = 2 and ¢i1(s,-) = 0 for

1 <4 < 3. Table |3|depicts the computation of the long-run ratio until n = 6. By

setting the limit n — oo we obtain a fixpoint with R(r) = 1. |



Table 3: Example computation for the long-run ratio.

n || o2 | 3 | 4 | 5 | 6

2 2
243 7 5

2 1

243+1 — 3

2 1

243+1+4 ~ 5

242 1

243+1+4+2 — 3

242 _ 4
2+3+1+4+2+3 ~ 15

The minimum long-run ratio objective for state s of MDP M is then defined by:

R™IN(5) = infE, p(R) = inf > R(m) P (n).

TE Pathsaps

Paths,,s denotes the time-abstract paths of the MDP M and Prgf’z) represents

the probability measure on the sets of paths starting from s induced by scheduler

D in M. R™(s) can be obtained by solving a linear programming problem [1].

With real variable k representing R™™ and z, representing each s € S we have:
Maximise k subject to:

s < ci(s,a) —k-ea(s, ) + Z P(s,a,s')-xy for each s € S,a € Act.
s'es

This system of inequations can be solved by linear programming algorithms, e.g.
with the simplex method [54].

Ezxzample 12. We take path 7 from Example and assume that it is the only
path in an MDP M. Deriving the system of linear inequations with variables
k,zs, for 0 <4 < 3 then yields:

Maximise k subject to:

Too <2—-2-k+ Tsy
Tey <=3 -k+ x5, Tsq

—1-k+ax,,

<
<—4-k+az,,

By solving the inequation system we obtain k = %, which is the minimum long-
run ratio on M. Note that this value equals the product of the long-run ratio as
obtained in Example [[T] and the probability that path 7 is chosen, which is 1 in
our case. |

This result can now be transferred to a unichain IMC by transforming it into an
MDP with two cost functions.

Definition 15. Let Z = (S, Act, — ,--+,80) be an IMC and G C S a set of
goal states. We define the MDP mdp(Z) = (S, Act.,P,sg) with cost functions
¢1 and co, where P is defined as in Definition [I3 and

0 otherwise.

= ifsEMSNGAo=1 == ifs€MSAo=L1
01(5,0') = E(s) Zfs . 7 CQ(S,O’) = E(s) ’LfS i
0 otherwise,
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Figure 6: IMC with two maximal end components.

Observe that cost function co keeps track of the average sojourn time in all
states s € S whereas ¢; only does so for states s € G.

For a unichain IMC Z, LRA™"(s, @) equals the long-run ratio R™"(s) in
the transformed MDP mdp(Z) [27]. Further, in a unichain IMC we have that
LRA™" (s, G) and LRA™"(s', @) are the same for any two states s and s’. There-
fore, we will omit the state and write LRA™"(G) when considering unichain
IMCs.

Reducing LRA objectives to an SSP problem. Let Z be an IMC with initial state
sp and maximal end components {Zi, ..., Z;} for k > 0, where Z; has state space
S;. Using this decomposition of Z into maximal end components, we obtain the
following result:

Theorem 4 ([27]).E|For IMCT = (S, Act, — ,--», sg) with MECs {Z, ..., T}
with state spaces S1,...,Sk C S, and set of goal states G C S:

k
LRAmm(SO, G) — l%fz LRA;-nm(G) . PI‘D(SO ': <>\:|Sj)a

Jj=1

where PrP(sy = $OS;) is the probability to eventually reach and continuously
stay in S; from so under policy D and LRAT™(G) is the LRA of G N S; in
unichain MA Z;.

Intuitively we have to find a scheduler that minimises the product of the prob-
ability to eventually reach and stay in a MEC and the minimum LRA, over all
possible combinations of MECs. We illustrate this procedure more clearly in the
following example.

Ezample 13. Consider the IMC in Figure[6] with G' = {s}. It consists of the two
maximal end components MEC; with S; = {s1, s2, 3,54} and Act(s3) = {0},
and MECy with Sy = {s5,s6}. Note that only MEC; contains a goal state.
Hence, the long-run average for MECy is automatically 0, wheras for MEC; it
is greater than 0. Since we are looking for the minimum long-run average of s,

* This theorem corrects a small flaw in the theorem for IMCs in [27].



and are starting in sy, we choose action « in s3 so that we end up in MEC,.
According to Theorem [4] we have to look for the scheduler that minimises the
LRA in such a way that we eventually always stay in the desired MEC. With the
choice of a we can neglect the LrRA for MEC1, since we will almost surely leave
MEC;, and thus obtain LRA™" (50, G) = 0. [ ]

The computation of the minimum LRA for IMCs is now reducible to a non-
negative SSP problem. In IMC Z we replace each maximal end component Z;
with two fresh states g; and u;. Intuitively, ¢; represents the MEC Z; and u;
represents a decision state that has a transition to ¢; and contains all outgoing
interactive transitions of S;. Let U denote the set of u; states and @) the set of
g; states. For simplification, we assume w.l.o.g. that all actions are unique and
replace actions of a state s; € S by 7; ; where j € {1...n;} with n; € N defined
as the number of nondeterministic choices in state s;.

Definition 16 (SSP for Long-Run Average). LetZ, S, G C S, Z; and S; be
as before. The SSP induced by T for the long-run average fraction of time spent in

G is the tuple ssp gamin(Z) = (S \ Ule S;uUuUQ,Act U{L}, P’ s0,U,c, g) ,

where g(q;) = LRA;“in(G) forg; € Q and c(s,0) =0 for all s and 0 € Act, . P’
is defined as follows: Let 8" = S\ Ule Si. P’ equals P for all s,s' € S’ and for

the new states in U:

P’ (ui, T, 8) = P(sk, mh1,8") if s’ €S Asp, € SiAl€E {1...nx} and
P (ui, o1, uj) = P(sk, Th1,8") if sk € Sins € S;Ale{l...ng}

Finally, we have: P'(¢;, L,q;) =1=P'(u;, L,q;) and P'(s,0,u;) = P(s,0,5;) .

Here, P(s,0,5;) is a shorthand for ), g P(s,0,5’). An example of the SSP
transformation of IMC Z from Figure [I]is given in Figure [7]

Ezxample 14. Consider the IMC in Figure [I] with two maximal end components
MEC; with S1 = {s2} and MECy with Sy = {s3, s4, s5, $6}. For each MEC we
introduce new states u; and g;, which substitute the states of MEC;. Further, we
substitute a with 7 ; and 8 with 71 ». Note that both MECs are bottom strongly
connected components, which means that, under all schedulers of IMC Z, we
cannot leave the MEC after entering it. Therefore, decision state u; has only one
outgoing transition to the corresponding ¢; state. After the transformation to
the IMC in Figure |§|7 the decision state of MEC; has a nondeterministic choice
between 3, to stay in MEC;, and «, to leave it. |

Note that an analogous approach can be applied to obtain the maximum LRA.
The main difference is that, in this case, we look for the supremum over all
schedulers. In the second and the third step we now resolve the nondeterminsitic
choices according to maximise the LRA.

4 Abstraction

In the previous chapter we introduced a number of IMC properties and presented
algorithms for their computation. For each presented algorithm the runtime is



LrRAT®(G) =0

Figure 7: Resulting SSP for LRA™™ of the IMC depicted in Figure

crucially depends on the size of the considered IMC. On average, the complex-
ity of most algorithms grows polynomially in the size of the state space, but
in the worst case it grows exponentially resulting in extremely long computa-
tion times for complex models. Abstraction provides the means to reduce the
state space of investigated IMCs and thereby to reduce the complexity of the
verification of certain properties. In this section, we will first define the most
important behavioural equivalences, namely strong and weak bisimulation, and
outline efficient algorithms to compute bisimulation quotients. We remark that
bisimulation can be decided in polynomial time but most coarser behavioural
equivalences like trace and testing equivalences are PSPACE-complete [41].

4.1 Behavioural Equivalences

Behavioural equivalences relate states which are indistinguishable for an external
observer of the system. In the following we will present the concepts of strong and
weak bisimulation. As for non-probabilistic systems, these behavioural equiva-
lences relate states that can mimic each other’s behaviour. Weak bisimulation
relaxes strong bisimulation by allowing that interactive transitions with visible
actions may be interleaved with transitions annotated with the internal action 7.
In the context of model checking, the most important application of behavioural
equivalences is to provide the means for ‘quotienting’ a system with respect to
the behavioural equivalence to reduce its state space.

Definition 17 (Strong Bisimulation). Let Z = (S, Act, —,--+,50) be an
IMC. An equivalence relation R C S x S is a strong bisimulation on Z, iff for
all (s,t) € R, a € Act and C € S/R we have that:

— s-% ¢ for some s’ € C iff t 2>t for somet' € C
— R(s,C) = R(t,C) whenever s 4.

Here, R(s,C) is a shorthand for » .~ R(s,s’), as defined in Section 2| The
first condition expresses the classical bisimulation condition, requiring that for
related states s Rt every interactive transition s —%» s’ can be mimicked by an



interactive transition ¢ —%+t’ such that the target states are again related, i.e.
s’ Rt'. The second condition expresses that related states s Rt need to agree on
the cumulative rates of moving from s, respectively ¢, to any equivalence class
C; it thereby corresponds to conditions for lumpability of Markov chains and
probabilistic bisimulation of DTMCs [44]. This condition is only required for
states which can perform Markovian transitions. Due to the maximal progress
assumption, these can only be states that have no internal action 7 enabled,
denoted by —4 . Bisimulation relations on IMCs are closed under union which
allows to define the largest bisimulation ~ by the union on all bisimulations of the
considered IMC. As shown in [35, Theorem. 4.3.1] both parallel composition and
hiding are defined with respect to ~. Moreover, time-bounded and unbounded
reachability properties are preserved by bisimilar states [5I, Theorem 4]. This
allows us to reason over IMCs in a compositional manner.

Strong bisimulation is rigid in the sense that it requires the mimicking of
interactive transitions for visible and internal actions 7. To achieve a higher de-
gree of abstraction, we relate states that cannot be distinguished by an external
observer by considering the visible actions only. For interactive transitions we
apply the same machinery as for LTS. We denote by "5 the transitive reflex-
ive closure of interactive transitions labelled with the internal actlon 7. Weak
interactive transitions are then given by = = T4 6 % o Ty On the
other hand, this does not work for Markovian transitions, since sequencing of
Markovian transitions leads to the formation of the more general phase-type dis-
tributions. Thus, Markovian transitions need to be mimicked in the same way
as in strong bisimulation.

Definition 18 (Weak Bisimulation). Let Z = (S, Act, —,--»,s0) be an
IMC. An equivalence relation R C S x S is a weak bisimulation on Z, iff for all
(s,t) € R, a € Act and C € S/R we have that:

— s==¢ for some s' € C if and only if t==1t' for some t' € C
— R(s',C) = R(t',C) for some t ==t and t' =4 whenever s and
s A

Weak bisimulation is closed under union and we denote the largest weak
bisimulation by =. Similarly to strong bisimulation, parallel composition and
hiding are compatible with ~ [35, Theorem. 4.4.1]. Moreover, weak bisimilar-
ity preserves maximal time-bounded reachability properties [36, Theorem 10].
Strong and weak bisimulation are suitable to compare systems and to reduce
their state space by deriving strong bisimilar (resp. weak bisimilar) IMCs with
smaller state spaces constructed from the equivalence classes of the strong bisim-
ilarity (resp. weak bisimilarity) and with the interactive and Markovian transi-
tions defined in the natural way [36, Definition 10]. We remark that, in order
to reason over the refinement of IMCs, there are appropriate notions of strong
and weak simulations available, for which parallel composition and hiding are
precongruences [30].



Figure8: An interactive Markov chain with 5 states.

Ezxample 15. Consider the IMC in Figure [§f We have s3 ~ sy and s3 ~ s4
since these states can mimic each other’s behaviour. It follows that s; ~ s5 and
81 ~ $2; the accumulated transition rate into the bisimulation class Cy = {s3, s4}
is the same for both states. Because sg reaches s; and s via internal 7 transitions
we have sy =~ s1 & s9, but sg is not strongly bisimilar to s; and ss. |

4.2 Algorithmic Computation of the Strong Bisimulation Quotient

Given an IMC Z, we want to determine its counterpart Z’ in which strongly
bisimilar states are collapsed into one state so that Z~Z’. The result Z’ of this
collapsing process is called the bisimulation quotient. In the following, we present
an algorithm based on partition refinement techniques [35]. The core idea of the
algorithm is to partition the states in .S, and refine the resulting partition step by
step. The refinement procedure of one particular partition consists of two stages
that validate the two conditions of Definition 14 with respect to a so-called
splitter. A splitter is a tuple formed by a set of states C' and an action a. Given
a partition P of S, in each set of P we group all those states together that can
reach C' via an a-transition, and those that cannot. This process is illustrated in
Figure [0} More formally, given a splitter (C,a) we refine the partition according
to the first condition in Definition 14 by applying

Refine(P,a,C) := ( U ( U {{s € X |~(s,a,C) = V}})) \{0}.

XeP “ve{true,false}

The function 7 : S x Act x S* — {true, false} applied to (s,a,C) returns true
if there is an a-transition from s to at least one state in C. Thus, the function
Refine splits each set of the partition by grouping those states together that
can reach states in C' by at least one interactive a-transition and those that
cannot. Similarly, the second condition for strongly bisimilar states is validated
by refining the partition with

M_Refine(P,C) = ( U ( U {{s € X|R(s,C) :1/}}>>\{@}.

X€eP “veR+t



Figure9: One refinement step.

In other words, M_Refine splits each set of the partition P into classes so that all
states in one class reach the set C' with the same accumulated rate. Note that the
result might be a set of singletons in case that all values of R(s,C) are different.
These two functions highlight the naming of the tuple (a, C) as splitter: It splits
sets of states according to the two conditions of strongly bisimilar states and
thereby refines the initial partition step by step.

Equipped with these two functions we construct the algorithm. The algorithm
starts with a splitter (a,C) build from an arbitrary action a € Act an the set
of states C' either comprising all states which can perform a 7 step or all states
which cannot perform 7. The original partition consists of one set which contains
all states. We then apply Refine and M_Refine iteratively by choosing a different
splitter in each step. After each iteration we possibly obtain a finer partition
and, thus, we need to add newly formed classes to the set of splitters. A final
observation speeds this procedure up: States with outgoing internal 7-transition
will never take Markovian transitions due to the maximal progress assumption.
We therefore do not need to apply M_Refine on these states. Furthermore, they
cannot be strongly bisimilar to states without outgoing 7-transition. For these
reasons we evaluate these two classes of states separately from the very start.

Algorithm 3 (Computation of the Strong Bisimulation Quotient)

STRONG-BISIM-QUOTIEN(S, R)
1 S_Parte {{ P' € S|P’ iﬁ}%\{@};

U-Parte {{ P' € S|P' 5} }\{0};
Spl«— Actx (S_-Part U U_Part);
while Spl not empty
do
Choose (a,C) in Spl;
Old:=S_Part U U_Part;
S_Part« Refine(S-Part,a,C);
U_-Part+ Refine(U_Part,a,C);
10 S_Part« M_Refine(S-Part,C);
11 New<— (S_Part U U_Part)-Old;
12 Spls— (Spl-{(a,C)}) U (Act X New);
13  return S_Part U U_Part

© %N T W

The algorithm can be implemented with a time complexity of O((mr+mp)log n),
where my is the number of interactive transitions, mj; the number of Markovian
transitions and n the number of states [35].



4.3 Algorithmic Computation of the Weak Bisimulation Quotient

The computation of the weak bisimulation quotient of an IMC is more involved
and we will only briefly outline the ideas formalised in [35], which uses an adapta-
tion of the partition refinement technique described above. In contrast to strong
bisimulation, weak bisimulation does not mimic internal 7 actions to achieve a
higher degree of abstraction. We therefore have to identify those states that have
no outgoing interactive transition annotated with a 7 action, also called stable
states, and those that have at least one, called unstable states. We then partition
the whole state space by grouping those states together that can reach stable
states by taking only internal 7 transitions, and those that cannot. We call the
first class C; and the latter Cy . This step requires the a priori computation of
the transitive reflexive closure ——— of internal 7 actions. The algorithm is then
similar to the computation of the strong bisimulation quotient: We initialise
the set of splitters and refine the classes C; and C5 separately in a stepwise
fashion. The class Cs is refined with function Refine and Cy with Refine and
M_RefineS, where Refine is as before and M_RefineS an adaptation of M_Refine.
The algorithm then computes the weak bisimulation quotient in O((m/; +mar)n)
time where m/ is the number of interactive transitions after transitive closure of
internal transitions [35].

4.4 Bisimulation Quotient of Acyclic IMCs

In case that the considered IMC is acyclic, the minimum strong bisimulation can
be determined at a much lower time-complexity of O(m) as suggested in [21],
where m is the total number of transitions.

Definition 19 (Acyclic IMC). An IMC P is acyclic, if it does not contain
any plausible path m with k € N>¢ and n[k] = s such that In.k < n < || with
w[n] = s for all s € S. A path is plausible, if it does not contain any Markovian
transition such that the maximum progress assumption is violated.

Since S is finite and P is acyclic, there is at least one state which cannot be left
by a plausible path. The idea of the following algorithm is to order the states
according to their longest distance to such an absorbing state. To do so we define
the notion of ranks for IMCs.

Definition 20 (Rank Function). The rank function R: S — N is defined by
R(s) = max{|n| | 7 € Paths®(s)}.

Here, Paths? (s) denotes the set of all plausible paths — which are finite — such
that R(s) < oo for all s € S. The observation which sets the groundwork for the
algorithm below is that any two strongly bisimilar states have the same rank.
Vice-versa, two states with the same rank are strongly bisimular if and only if
they fulfil the two conditions of strongly bisimilar states. Note that transitions go
only from states with a higher rank to states with a lower rank. This observation
is exploited in the following algorithm. First, check states with rank 1 (states with
rank 0 are by default strongly bisimilar) for strong bisimilarity. This computation



requires only states with rank 0. We apply the same procedure iteratively to all
states with rank 2, then to all states with rank 3 and so forth. In each iteration
states with the same rank are analysed by looking at their transitions to states
at the next lower rank. The time-complexity O(m) is defined by the depth-first
search which is required for the rank computation [2I]. A similar algorithm can
be adopted for the computation of the weak bisimulation quotient.

5 Extensions

The remarkable progress in the theoretic developments of IMCs in the last decade
has also triggered research on related concepts. In this section we review inho-
mogeneous IMCs and Markov automata as specific extensions of IMCs.

5.1 Inhomogeneous IMCs

Inhomogeneous IMCs extend IMCs by allowing the annotations of Markovian
transitions with functions rather than real values. So far we assumed that the
rates of the Markovian transitions were static and independent of time, i.e. the
dynamics of IMCs were assumed to be time-homogeneous. However, in many
real-world applications the progress of time crucially influences the system’s
dynamics. Hardware components tend to degrade over time due to oxidation
and deterioration, so that their failure rate is a monotonically increasing function
over time rather than a static value. Another example is the power extraction
rate of a battery, which depends on the remaining amount of stored energy.
Those natural phenomena can be accurately captured with the help of time-
inhomogeneous IMCs (I2MCs) as introduced in [29]. Technically, the Markovian

transitions -2» of IMCs (labelled with a positive real number )\) are generalized
to transitions of the form s =3 & of I?MCs (labelled with a continuous
functions 7, o : R>9 — Rx>¢). The rate to execute the transition s /8D o from
s to & at time ¢, is determined by r, o (t). The state transition probabilities
respecting the respective race condition if multiple transitions leave a single
state can be formulated analogously [29].

A process algebra and congruence results for weak and strong bisimulation
for I?MCs can be found in [29]. On the other hand, the model checking of
inhomogeneous systems is quite intricate since one needs to account for the

time-dependent dynamics and it still needs to be investigated further.

5.2 Markov Automata

Markov automata (MA) constitute a compositional behavioural model for con-
tinuous time stochastic and nondeterministic systems [23]. Markov automata are
on the one hand rooted in interactive Markov chains by extending the expres-
siveness of IMCs with instantaneous random switching. They are on the other
hand an orthogonal composition of probabilistic automata and continuous time
Markov chains. Formally, M = (S, Act, —,--»,59) is a Markov automaton,



where all components of M, but —, are as Definition [3] and the set of interac-
tive transitions — is a subset of S x Act x Distr(S). The definition of interactive
transitions characterises the ability of random switching in Markov automata.
Consequently, IMCs are special cases of Markov automata, where all distribu-
tions which prevail in the set of interactive transitions — are Dirac. Markov
automata are expressive enough to capture the complete semantics of gener-
alised stochastic Petri nets and of stochastic activity networks [22]. Due to these
attractive semantic and compositionality features, there is a growing interest in
tool and technique support for modelling and analysis with MA [57] 26] [32].

6 Case Studies

IMCs have shown their practical relevance in diverse areas where memoryless
continuous delay prevails. They serve as the semantics of several modelling and
engineering formalisms such as generalised stochastic Petri nets [50], and Archi-
tectural Analysis and Design Language (AADL) [13]. Furthermore, they have
proven their practical importance in various applications like Globally Asyn-
chronous Locally Synchronous (GALS) designs [19], supervisory control [48] [49],
satellite design [24], water-treatment facilities [34], and train control systems [10].

In the following, we will demonstrate how IMCs provide a precise formal
semantics and enable compositional design and verification by examples about
the industrial specification formalisms of dynamic fault trees [12] and STATEM-
ATE [I0].

6.1 Dynamic Fault Trees with Input/Output IMCs

Fault trees (FT) constitute a prominent formalism in reliability analysis to model
how the failure propagation of a system’s components induces a failure of the
whole system [I3], [12]. Its intuitive graphical syntax is often used for reliability
analysis in industry. The leaves of a F'T represent component failures called basic
events, and all non-leaves indicate how component failures propagate through
the system, modelled by so called gates. The root node represents the system
failure, called the top-level event.

Static fault trees allow the use of the logic AND, OR and VOTING gates.
Dynamic Fault Trees (DFT) extend them with a number of dynamic gates, to
model common patterns in reliability engineering: functional dependencies can
be specified via the FDEP gate; spare management via the SPARE gate ; and
sequencing via the PAND gate. Further, each basic event is equipped with a
probability distribution showing how the failure behaviour evolves over time.

Ezample 16 (Cardiac assist system). Figure depicts a DFT representing a
cardiac assist system (CAS) [II] consisting of three types of subsystems: the
CPU, the motor unit, and the pump unit. If either one of these subsystem fails
then the entire CAS fails, as modelled by the top-level OR gate.

The CPU unit consists of a primary (P) and backup (B) CPU, indicated by
the SPARE gate. Both are subject to a common cause failure represented by the
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Figure 10: The cardiac assist system DFT.

CPU FDEP gate: if either a crossbar switch (CS) or the system supervisor (SS)
fails, both become unavailable.

The motor unit consists of a primary (MA) and backup motor (MB). If the
primary motor fails and the switching component (MS) is still available, the
backup motor is turned on. If the switching component fails afterwards, this can
be ignored, as modelled by the PAND gate.

The pump unit consists of two primary pumps (PA and PB) which share
a backup pump (PS). Thus, one of the primary pumps can be replaced after
failing, and the pump unit fails, if all pumps are unavailable, represented by the
AND gate. |

Given a DFT, one is typically interested in calculating the reliability of the
whole system over time. An efficient way to do so is the transformation of a DF'T
into an Input/Output Interactive Markov Chains (I/O-IMC). I/O-IMCs [12]
extend IMCs by integrating features from input/output automata. Interactive
transitions are partitioned into input actions and output actions. Input actions
can only be taken, if another I/O-IMC executes a matching output action. This
refinement enables one to define which component triggers a synchronization and
which merely reacts. This can be readily exploited to model the components’
dependencies with respect to failure propagation in DFTs.

The process chain from a DFT to its semantical IMC is depicted in Figure [L1}
The behaviour of each leaf and gate is encoded as an I/O-IMC. The interaction
between components is modelled by means of input and matching output actions.
Composition and abstraction techniques explained in Section [f] can then be used
to aggregate a DF'T into one IMC representation for the whole system. Finally,
the IMC can be analysed either directly or after the transformation to a CTMDP.

=0
) DFT ) Transformation (c¢) Composition (d) Minimization (e) IMC

Flgure 11: Graphlcal overview of the compositional aggregation of DFT models.
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Figure 12: An example of STATEMATE design and the tool chain for quantitative
evaluation of STATEMATE

6.2 Compositional Performability Evaluation for STATEMATE

STATEMATE [31] is a statechart-based tool set used by engineers in several avionic
and automotive companies like AIRBUS and BMW [I0]. In this section we ex-
plain an approach proposed in [I0], which enables performability evaluation of
STATEMATE models. It applies various construction, optimisation and analysis
techniques including compositional modelling using IMCs. In fact, the use of
IMCs plays a crucial role in the model construction part of the methodology.
We first recapitulate an example taken from [I0] to show the applicability of
STATEMATE and then explain the function of IMCs in the methodology.

Ezample 17. Figure shows a STATEMATE design that represents the func-
tional behaviour of a heating system. It consists of a CONTROLLER, a MONITOR, a
SENSOR, and an 0BSERVER. The SENSOR repeatedly measures and stores the temper-
ature. However, it is an unreliable component, which means that it might become
inactive due to a defect and, therefore, does not update the temperature value.
As soon as the MONITOR detects a sensor failure, it shuts the system down in order
to avoid severe damage. The CONTROLLER constantly checks the current tempera-
ture and turns the heater on/off when the temperature is too cold/too hot. The
OBSERVER'’s role is to observe whether a safety-critical state has been reached. In
this example, the high level state TLE of the 0BSERVER, which specifies a situation
where the sensor has failed while the heater is still on, is safety-critical. There
are also delay transitions denoted by bold arrows. They specify the event that
is triggered as a delay passes. Here they signal a component failure; for example
FM and FC indicate failures of the monitor and the sensor respectively. ]

The question that is naturally raised in such models is whether the risk of
reaching some safety-critical state within a certain time bound is below a certain



threshold. Such a question can be answered by using the tool chain (Figure
devised in [10]. The input of the tool chain consists of several parts including
the STATEMATE model, specification of safety-critical states and distributions of
delay transitions. Based on these inputs, the tool chain computes the worst-case
probability to reach some safety-critical state within the provided time bound.
The given delay distribution is specified as a uniform IMC (uIMC), which is
then composed with the model generated from input STATEMATE design. The
result is later transformed into a uniform CTMDP (uCTMDP) by applying the
steps in Section Finally, a worst case time-bounded reachability analysis [6]
is performed on the uCTMDP. As a case study, the proposed technique has been
successfully employed in the area of train control systems [10].

6.3 Tool Support

IMCA [27] is a tool for the quantitative analysis of IMCs and was recently
extended to Markov automata. In particular, it supports the verification of
IMCs against unbounded reachability, time- and interval-bounded reachability,
expected-time objectives, and long-run average objectives. Hence, it supports
the model-checking algorithms presented in this paper, whereas it is not capable
of parsing a CSL formula. IMCA computes the maximum and minimum values
for a set of goal states.

CADP [I§] supports construction, minimisation and analysis of extended Marko-
vian models including IMCs. It compiles and generates the state space from a
specification. The compositional verification engine of CADP then composes a
network of communicating IMCs. The tool set also enables minimisation mod-
ulo strong and branching bisimulation. Furthermore, it supports the steady-state
and transient analysis of the final model via numerical verification techniques
or simulation. The analysis is, however, restricted to models that exhibit only
spurious nondeterminism.

SCOOP [57] is a tool that symbolically optimises process-algebraic specifications
of probabilistic processes including IMCs. Optimisations such as dead-variable
reduction and confluence reduction are applied automatically by SCOOP. The
optimised state spaces are ready to be analysed by, for instance, CADP or IMCA.
Moreover, SCOOP and IMCA constitute a tool chain called MAMA [2§], which
supports construction, minimisation and analysis of IMCs, among other models
(e.g. MA).

MRMC [42] is a model checker for discrete-time and continuous-time Markov
reward models. It supports the verification of PCTL and CSL as well as their
reward extensions CSRL and PCTRL. There is also a CTMDP extension avail-
ableﬂ which provides recent analysis techniques based on [16].

® http://depend.cs.uni-sb.de/tools/ctmdp/
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7 Conclusion

This paper presents an overview about IMCs, a fruitful combination of CTMCs
and LTSs which facilitates the modeling of and reasoning about probabilistic
systems. A great strength of IMCs is their compositional semantics which estab-
lished them as a prominent formalism for a wide range of applications. We pre-
sented the theoretical framework of IMCs and introduced related concepts such
as composition and schedulers. The main reason for the application of IMCs in
system models is the plethora of available analysis techniques. Given a certain
model, one typically wants to examine qualitative aspects such as reachability of
certain system states but also quantitative aspects such as time-dependent prob-
abilities and long-run behaviour. We provided an overview of state-of-the-art
algorithms to answer these questions. A key to efficient computations is the re-
duction of the state space of the underlying model by exploitation of behavioural
equivalences. In this context we introduced the notion of strong and weak bisimu-
lation and presented algorithms to derive bisimulation quotients. Equipped with
these techniques, IMCs have been successfully applied to a number of real-world
problems and integrated into various models, especially as semantical model.
We presented IMCs as the semantics of two industrial specification formalisms:
Dynamic fault trees and STATEMATE.

Despite extensive progress on theoretical results and numerous tools and
application developments over the last decade, IMCs still form a highly active
field of research. First progress towards the measurability and analysis of IMCs
has been made in [40] and future works might exploit IMCs’ close entangle-
ment with CTMDPs. Two extensions of IMCs, time-inhomogeneous IMCs and
Markov automata, have been introduced. The former exhibits inhomogeneity in
its embedded CTMC, while the latter adds the capability of random switching to
interactive transitions. Tool support for IMCs is already available, for instance
by CADP and IMCA. The latter has recently been integrated with SCOOP as a
fully-fledged tool chain, called MAMA, which supports modelling, reduction and
analysis of Markov automata, and IMCs as a special case of Markov automata.
However, there is still room for improvements in time-bounded computations and
possible extensions to Markov reward analysis. Given the advantages of IMCs,
especially their expressiveness and compositional semantics, one can investigate
opportunities to widen their application range to new concepts and formalisms.
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