
Design of a middleware for QoS-aware distribution transparent
content delivery

G. Fábián A.T. van Halteren M. van de Logt F. Stoinski

KPN Research
P.O. Box 421

2260 AK
Leidschendam

 The Netherlands
g.fabian@kpn.com

Twente University
Dept. of Computer Science

P.O.box 217
7500 AE Enschede
The Netherlands

a.t.vanhalteren@utwente.n
l

KPN Research
P.O. Box 421

2260 AK
Leidschendam

 The Netherlands
m.vandelogt@kpn.com

Humboldt University
Berlin, Dept. of

Computer Science
Rudower Chaussee 25,
12489 Berlin, Germany
stoinski@informatik.hu

-berlin.de

Abstract

Developers of distributed multimedia applications face
a diversity of multimedia formats, streaming platforms
and streaming protocols. Furthermore, support for end-
to-end Quality-of-Service (QoS) is a crucial factor for the
development of future distributed multimedia systems.
This paper discusses the architecture, design and
implementation of a QoS-aware middleware platform for
content delivery. The platform supports the development
of distributed multimedia applications and can deliver
content with QoS guarantees. QoS support is offered by
means of an agent infrastructure for QoS negotiation and
enforcement. Properties of content are represented using
a generic content representation model described using
the OMG Meta Object Facility (MOF) model. A content
delivery framework manages stream paths for content
delivery despite differences in streaming protocols and
content encoding. The integration of the QoS support,
content representation and content delivery framework
results in a QoS-aware middleware that enables
representation transparent and location transparent
delivery of content.

1. Introduction
The goal of the QUality Aware Middleware for

Multimedia Delivery (QUAM MD) platform is to provide
a software infrastructure that facilitates the development
of distributed multimedia applications. These applications
typically integrate off-the-shelf streaming platforms and
use existing multimedia stores. One of the design goals of
the QUAM MD platform is to provide a software
infrastructure that can integrate these existing hardware
and software system elements, and can easily
accommodate future ones. The complexity of distributed
multimedia applications and the shortened time-to-market
necessitates applying engineering methods when
developing these applications. The QUAM MD platform

defines a framework for distributed multimedia
applications to achieve faster development and to enhance
the quality of distributed multimedia systems. In the rest
of this section we present the key technical challenges
faced when designing the QUAM MD platform and also,
we give an overview of related work.

1.1 Technical challenges of content delivery
Multimedia Representation: Current trends in

multimedia production and provision show the increase in
the number of multimedia encoding schemes and the
volume of available digitised multimedia data. To enable
efficient multimedia information access and delivery, a
content representation model is necessary to provide
format independent content management. Such a model
must incorporate present and future media formats and
structures easily. For better multimedia data management,
a representation model must support access of multimedia
data in a distribution transparent way, in a similar way as
middleware offers distribution transparencies to client-
server objects in distributed object systems.

High-Quality Presentation: Today there is a growing
demand for high-quality multimedia applications. The
quality of a multimedia presentation is however
determined by several factors. Consumer tools vary from
powerful high-end desktop computers to handheld
devices with limited processing power and display
capabilities. Also, the connection bandwidth of
consumers varies from low bandwidth mobile
connections to dedicated high bandwidth connections. A
pre-requisite to high-quality content delivery is that
content format is matched to the end-user device
capabilities and also to the available connection
bandwidth. Furthermore, to provide high quality
multimedia presentations, the availability of system
resources must be guaranteed. In other words, a
guaranteed Quality of Service (QoS) is required from the

underlying software and hardware infrastructure. This
leads to the next technical challenge.

Quality of Service Aware Infrastructure: Multimedia
applications are typically distributed applications that run
in a heterogeneous environment. In such environments, a
middleware is used to provide location transparency and
to shield applications from the diversity of the underlying
software and hardware systems. For multimedia
applications, there is a new task; the QoS of the
underlying systems must also be controlled. This however
should not be done directly by the applications
themselves, in order to keep them portable, that is,
independent of the low level QoS mechanisms. Today, a
broad consensus exists in the research community that
QoS provisioning is the task of the middleware. To meet
this requirement, several initiatives exist that extend
existing middleware platforms, to provide QoS
provisioning for distributed applications. Applying this
capability for real-time multimedia streaming is one of the
goals of the QUAM MD platform.

1.2 Related work
There are several research initiatives for end-to-end

QoS support in distributed multimedia systems. This
overview concentrates on middleware-based solutions
that, next to providing QoS support, also define a
component framework for stream establishment and
control.

Requirements for a multimedia ORB have been
specified in the reTINA project [9]. The CORBA A/V
Streaming Service specification [1] defines an
architectural model for implementing distributed
multimedia streaming applications. This architecture
defines the entities that play a role in streaming and a set
of interfaces for stream establishment and control. By
standardizing these entities, the CORBA A/V Streaming
Service has set the goal of supporting multiple data
transfer protocols and many types of sources and sinks
within a single architecture. Another characteristic of the
CORBA A/V Streaming specification is that while
controlling signals are exchanged via the ORB’s
GIOP/IIOP path, data transfer takes place outside of the
ORB. This is important to be able to optimise data
transfer. MULTE-ORB [6] is another QoS-aware
middleware. In MULTE, a binding framework has been
developed, which is a composite of distributed objects
used to connect multiple interfaces. It defines explicit
stream bindings, stream interfaces, and flows. Per
binding, stream properties can be specified such as QoS
requirements and binding structures. Another QoS-aware
middleware capable of multimedia streaming is Quartz
[8]. In Quartz, QoS concepts are introduced at system and
application levels, with configurable mappings between
the two. A hierarchy of QoS agents implements the

mapping between the different levels of parameters and
resource trading. The CATS [2] offers a platform for
content composition and delivery. CATS uses a
multimedia metadata to describe the content structure
with activation and deactivation conditions. CATS
supports path set up and release between communication
sources and sinks, and can deliver media according to the
content schedule in a QoS-aware way using resource
adaptation.

2. Overview of the QUAM MD architecture
The technical challenges of content delivery lead to the

following design goals for the QUAM MD platform. The
middleware platform should not reveal the physical
location of content to a multimedia application. Hiding
the physical location of content is called location
transparency. In addition, the platform should deal with
the diversity of the streaming protocols and encoding
schemes for content. Hiding these aspects from a
distributed multimedia application is called
representation transparency.

To meet these design goals, a unified information
model is needed to represent the properties of multimedia
as distributed objects. Furthermore, an object-oriented
delivery framework is necessary to integrate the many
different hardware and software system elements that are
part of today’s streaming solutions. The solution should
be a QoS-aware middleware platform, where QoS
negotiation and establishment concerns content
streaming. QoS enforcement mechanisms are hidden from
applications, and applications remain portable across
different systems.

The QUAM MD platform defines a framework and a
set of interfaces that can be used to build QoS-aware
distributed multimedia applications. Below we outline the
functional components and the engineering considerations
of the QUAM MD platform. The QUAM MD
architecture reuses elements of the architecture of the
QoS Provisioning Service (QPS) [11]. QPS is a CORBA
service that provides QoS for remote method invocations
between a client and server object. In QPS, client
applications can express a required QoS level (Qrequired)
concerning a single binding, whereas server objects can
express an offered QoS level (Qoffered). For QPS, we have
implemented a QoS negotiation process that takes into
account Qrequired, Qoffered, and the available network and
computing resources. When successful, the negotiation
results in an agreed QoS level (Qagreed), which is then
maintained for the lifecycle of the binding. This
architecture has been extended in QUAM MD to establish
streams with QoS.

A stream is the transfer of content from a producer
device to a consumer device. A stream path is terminated
by a source and sink stream endpoint. Management and

signalling operations are conveyed by an ORB, whereas,
streams flow outside of the ORB. Stream Management
objects in the QUAM MD platform provide stream path
set up, QoS enforcement and path management
functionalities. The platform contains Content
Representation objects as well that are the run-time
representations of content properties. Figure 1 shows the
functional components of QUAM MD and their global
interactions.

Object Request Broker

Stream
Management

Stream
Endpoint
(Source)

Stream
Endpoint

(Sink)

Client
Computing

System

Content
Representation

Server
Computing

System

Network

QoS enforcement

Figure 1: QUAM MD functional architecture

Based on the QoS negotiation concepts of QPS, we
have implemented a negotiation process for multimedia
content in QUAM MD. Client applications can express
their Qrequired concerning the streaming of content. Again,
a matchmaking process follows, which also takes into
account that a) the same content can be encoded using
different encoders, and b) different streaming platforms
may be used. Successful negotiation results in a Qagreed
and a choice for a specific system configuration. When a
stream is set up, Qagreed is maintained for the lifetime of
the stream. To achieve this, in QUAM MD, we re-use the
QoS enforcement mechanisms that were already present
for QPS. We use the Resource ReSerVation Protocol
(RSVP) [10] to reserve dedicated channels for streaming.

In the rest of the article the QUAM MD platform is
explained in more detail. The article is further divided as
follows. Section 3 discusses the design of the content
representation model. Section 4 presents the QUAM MD
support for QoS negotiation and enforcement. In Section
5, the stream management objects are introduced and it is
illustrated how these objects collaborate with the content
representation and QoS support objects. Finally, in
Section 6 we present the conclusions.

3. Models for content
At the core of the QUAM MD design lays a generic

information model to describe content. This model uses
the OMG Meta-Object Facility (MOF) [4] to express

multimedia content descriptions. The MOF is a generic
framework to describe and represent meta-data. Meta-
data denotes any data that in some sense describes other
data. Two mappings of MOF models to external formats
have been standardised:
• MOF-IDL-mapping: This mapping generates the

IDL-specification for a meta-data service from a
MOF-meta-model specification. The resulting
service is a repository that can be used to store or
manipulate models.

• MOF-XMI (XML based Model Interchange)
mapping: This mapping defines rules a) to derive an
XML Document Type Definition (DTD) from an
model and b) to represent a model in an XML
document that is structured according to this DTD.

The MOF-IDL-mapping enables the automated
generation of a meta-data repository that allows CORBA
applications to access meta-data at run-time. This
mapping has been used for QUAM MD to create a
repository that stores content meta-data.

3.1 Content meta-data
This section shows an example of content meta-data.

The example concerns a promotional movie to promote
the activities of a company. To be able to view the movie
with different streaming players, the promotional movie is
encoded using QuickTime and Windows Media Format.
As a result, two clips are created with the same format
parameters, with the only difference being their formats.
Each clip is stored on its own content server.

The meta-data of a clip is described using a set of
descriptors. A descriptor is a name-value pair that
describes a particular aspect of content. An example of a
descriptor for a clip is the name CompressionFormat
with value QuickTime, which indicates how the clip
has been encoded. Descriptors can be grouped in a
description scheme. Such a scheme called
PromoA_Coding is shown in Figure 2.

DescriptionScheme PromoA_Coding realises
MediaCodingType {
 FrameWidth 800;
 FrameHeight 600;
 CompressionFormat QuickTime;
};

Figure 2: An example description scheme

A descriptor has a type. For example, in Figure 2
CompressionFormat has type string and the
FrameHeight has type unsigned short.
Descriptor types can be grouped together in a type for a
description scheme, which enables type checking of a
description scheme. Figure 3 shows the description
scheme type MediaCodingType that is realised by
the description scheme shown in Figure 2.

DescriptionSchemeType MediaCodingType{
 unsigned short FrameWidth;
 unsigned short FrameHeight;
 string CompressionFormat;
 };

Figure 3: A description scheme type

Different types of description schemes can be used to
capture different aspects of the content meta-data. For
example, a description scheme for the physical location of
the clip can be added. These description schemes can be
composed into a new description scheme called
CompanyPromoA that contains the PromoA_Coding
and urlA schemes shown in Figure 4.

DescriptionScheme CompanyPromoA{
 DescriptionScheme PromoA_Coding realises
MediaCodingType{
 FrameWidth 800;
 FrameHeight 600;
 CompressionFormat QuickTime;
 };
 DescriptionScheme urlA realises
MediaLocatorType{
 URL rtsp://serverA/promo.mov;
 };
};

Figure 4: A container description scheme

To further represent the alternative locations and
encoding of the clips, the container description scheme
can be contained in another description scheme called
CompanyPromos as is shown in Figure 5.

DescriptionScheme CompanyPromos{
// 1st alternative
DescriptionScheme CompanyPromoA{
 DescriptionScheme PromoA_Coding{ . . .
};
 DescriptionScheme urlA{ . . . };
};// 2nd alternative
DescriptionScheme CompanyPromoB{
 DescriptionScheme PromoB_Coding realises
MediaCodingType{
 FrameWidth 800;
 FrameHeight 600;
 CompressionFormat WMF;
 };
 DescriptionScheme urlB realises
MediaLocatorType{
 URL mms://serverB/promo.wmv;
 };
 };};

Figure 5: A set of alternative description
schemes

The nesting of description schemes must be
constrained, because some configurations are devoid of
logic. For example, it is not allowed to define a descriptor
and a description scheme in the same containing
description scheme. Therefore, a description scheme can
only contain one or more description schemes or one or
more descriptors.

3.2 The content meta-model
To create and manipulate content meta-data such as

presented in the previous section, a meta-model has been
developed for content descriptions. The objects
instantiated from this model are the content meta-data.
The content meta-model is inspired by the MPEG-7
standard [5].

The content meta-model is shown in Figure 6. The
modelling entities and their relations as described in the
previous section are represented as UML classes and
associations. To emphasise that the model is a meta-
model the classes have the postfix ‘Def’. The model uses
the container-contained pattern as found in the CORBA
Interface Repository specification, which is a variation on
the Composite design pattern [7].

Figure 6: The content meta-model

A DescriptionSchemeDef may be contained in
another DescriptionSchemeDef. As a result a
DescriptionSchemeDef may have arbitrary levels
of containment. However, the level of containment is
restricted to three. Such a constraint is expressed using
the Object Constraint Language (OCL), and is checked at
run-time to prevent inconsistencies. As a result, the
content meta-data processed by the QUAM MD platform
remains consistent.

4. Content streaming with QoS guarantees
To facilitate content streaming with QoS guarantees, in

QUAM MD a QoS control infrastructure has been built.
In this section, we describe the QoS dimensions for
multimedia, the QoS control infrastructure, and the
negotiation model for multimedia.

4.1 QoS Dimensions
The QUAM MD platform concerns the end-user QoS

which is the quality of the multimedia presentation that
the end-user experiences. These QoS values can be
verified by streaming platforms at streaming time.
Applications using the QUAM MD platform specify the

Formatted: Bullets and
Numbering

required end-user QoS (Qrequired). The offered QoS
(Qoffered) of a clip is determined at encoding time, when a
particular codec is selected for encoding with certain
parameters. Although, the QoS parameters are somewhat
different per streaming platform, in QUAM MD, we have
succeeded to settle with a small set of common QoS
dimensions. These are shown in Table 1 and Table 2
below.

The QoS dimensions for audio material are audio kind,
sample rate and frequency response. The sample rate and
the frequency response are much related; therefore, it
shall often be the case that only one of these dimensions
is specified, probably frequency response. The kind of
audio is in fact determined by the raw audio material,
which determines the codec choice.

Table 1: Audio QoS Dimensions in QUAM MD

Dimension Name Values

Audio kind Voice only, Mono, Stereo, Quad,
Dolby

Sample rate 8 kHz, 16 kHz, 32 kHz, 48 kHz
(DVD, DAT),
11,025 kHz, 22,5 kHz, 44,1 kHz
(CD)

Frequency
response

4–10 kHz (Voice only)
5–15 kHz (Mono music or low
bandwidth stereo)
15 –20 kHz (Stereo music with high
bandwidth)
20-22 kHz (Excellent quality stereo
music with high bandwidth)

For video material, the QoS dimensions are
motion/clarity factor, the absolute quality value and
resolution. The reason for choosing these dimensions is as
follows. During encoding information is lost, which is
realized either by dropping frames or reducing the
amount of information stored per pixel. How this
translates to end-user quality depends on the kind of
content (frame loss would be less acceptable for a fast
motion film than for a more still scenery). The end-user
QoS experience would also depend on the techniques
used in encoding algorithms to recover lost data.
Therefore, by concentrating on the end-user QoS, we
chose the two orthogonal QoS dimensions: the
motion/clarity factor and an absolute quality value. The
three video QoS dimensions are independent of each
other.

Table 2: Video QoS Dimensions in QUAM MD

Dimension Names Values
Motion/quality factor

[0..1] Indicates the preference
for better motion (1) or better
picture clarity (0).

Absolute quality value Excellent, Good, Fair, Poor.
Resolution 176x132, 240x180, 320x240,

640x480,
800x600, 1280x720,
1152x900, 1920x1080

QoS specifications are expressed using description
schemes. A description scheme that describes the QoS of
video material is shown in Figure 7. This description
scheme is constructed of two types: AudioQoSType
and VideoQoSType. Description schemes of type
MultimediaQoSType are stored per clip in the meta-
data repository.

DescriptionScheme MediaQoS realises
MultimediaQoSType{
 DescriptionScheme AudioQoS realises
AudioQoSType{
 AudioKind Stereo;
 SampleRate 44.1;
 FrequencyResponse 20;
 };
 DescriptionScheme VideoQoS realizes
VideoQoSType{
 MotionClarity 0.5;
 AboluteValue Good;
 FrameWidth 800;
 FrameHeight 600;
 };
};

Figure 7: The multimedia QoS description
scheme

4.2 QoS Agent Architecture
In QUAM MD, QoS is controlled by a coordinated act

of QoS agents. QoS agents represent individual software
or hardware entities that play a role in the streaming of
multimedia content, and thus influence the end-to-end
QoS. A QoS agent that represents such an entity controls
the configuration and resource use of the component. The
minimum requirement for an entity to be represented by a
QoS agent is that it provides a programmable interface for
configuration, resource use and status query. In QUAM
MD, the following kinds of candidate entities are
identified:
• multimedia devices: These are hardware devices

attached to server or player machines such as
network cards, sound cards or graphic cards. It is
also possible to consider a complete handheld device
as a multimedia device. Furthermore, software
devices such as a streaming server or player
program instances are also in this category.

• network resource managers: These are the known
resource manager daemons, such as the RSVP or
Differentiated Services (Diffserv) [3] daemons.
Network resource managers can reserve a dedicated
network channel between devices with a specified
bandwidth.

• processing resource managers: These are managers
that can influence the way a particular process or
thread is served by the operating system. Examples
are queue managers and schedulers, or other
programmable instances that determine the priority
of processes.

• storage devices: These are devices that may
influence the QoS of the multimedia streaming. An
example could be a multimedia content storage
device, if its throughput can be controlled.

QoS agents are composed hierarchically. On the top of
the QoS agent hierarchy is a master QoS agent that
coordinates and instructs the lower level QoS agents,
called the slave agents. An arbitrary tree of QoS agents
can be built in this way, with a root agent on the top. An
example can be seen in Figure 8. In this configuration, a
desktop computer acts as a multimedia client. QoS agents
represent the network card and the streaming player
software. One master agent controls these agents. The
QoS agent hierarchy is similar on the server side. The
network resources are managed by RSVP, and controlled
by one network QoS agent. The reason for using only one
network agent is that an RSVP channel can be set up
between client and server by communicating with the
RSVP daemon only on the server side. The root agent
controls the client and the server master agents and the
network agent.

Desktop Computer
RSVPRSVP

Real Player

Multimedia Server

RSVPRSVP

Real Server

Network
Card

Network agent

Server
master agent

Client
master agent

Root agent

Network
Card

Figure 8: Example QoS agent hierarchy

4.3 QoS negotiation and enforcement
QoS negotiation takes place during stream path set up

which is coordinated by the stream management objects
as will be explained later in Section 5. During this
operation, the task of the QoS agents is to carry out QoS
negotiation and reserve resources. The root QoS agent
coordinates all these activities.

The input for a QoS negotiation process is a
description scheme that may contain several alternative
representations of the same content and Qrequired. The
negotiation takes place in two steps. First, the
selectContent operation is called on the root agent.
During this operation, the root QoS agent selects those

content representations that satisfy Qrequired. This is
determined by comparing the values of Qrequired and
Qoffered for each QoS dimension. If the value of each QoS
dimension is equal or higher (“better”) than that of
Qrequired, then a representation satisfies Qrequired. The only
exception to this is the motion/clarity factor, where value
ranges have been introduced. If Qrequired and Qoffered are in
the same range, then Qoffered satisfies Qrequired.

The second step of the QoS negotiation is the
negotiateQoS operation. During this operation the
root agent gathers information from its slave agents about
the availability of system resources. Then, the root agent
chooses one content representation and one specific
system configuration. In QUAM MD we implement the
simple policy of choosing the representation that uses the
least resources. This step may use different policies
however to determine which content representation is
streamed eventually. At the end of a successful
negotiation, when a system configuration is determined,
the makeReservations operation is called and
subsequently, resource reservation takes place in a
distributed fashion. Each master agent calculates the
resources its slave agents must reserve, performs
necessary parameter translation and delegates the
reservation to its slave agents.

For a content representation selected by the
negotiateQoS operation, in the next step, all
resources are reserved that have been assumed during the
encoding of this clip. For example, for a video clip that
has been encoded with a 150 Kbps codec, 150 Kbps
bandwidth is reserved.

5. Content Delivery Framework
The QUAM MD framework is an object infrastructure

to provide the basic functionalities to set up and manage
streams using off-the-shelf streaming platforms. This
framework shields application developers from the
diversity of streaming platforms and streaming protocols.
Together with the content representation framework it
also provides representation and location transparent
content access. The framework uses the QoS agent
hierarchy to set up streams with QoS guarantees. This
section discusses the design of the content delivery
framework and the stream path set up operation.

5.1 Content Delivery Stream Path
We define the content delivery stream path as the path

from a content producer device to a content consumer
device. The end-to-end path can be composed of several
content stream paths as shown in Figure 9.

Content Stream Path Content Stream Path

End-to-end Content Path

proxy

Content
producer

Content
consumer

Content
producer

Content
consumer

Figure 9: Composed Content Delivery Paths

When setting up a stream path the QUAM MD
platform determines which streaming platforms are
available on the consumer and on the producer side and
selects one to be used for streaming. By abstracting from
specific streaming platforms, it is possible to define a
uniform control interface for stream paths. This interface
provides control functions like suspend, resume and
cancel for individual streams. Individual stream path
controls can be composed to create an end-to-end stream
path control. By doing so, the QUAM MD platform can
control and manage the complete stream path.

The QUAM MD framework defines the objects to
create, control and manage stream paths. Figure 10 shows
an example of stream path objects. In the rest of this
section we describe in detail the QUAM MD objects.

Desktop Computer Multimedia Server

Harddisk

Stream Path
Manager

Consumer
Multimedia Device

Stream Path
Control

Consumer
Medium Endpoint

Producer
Medium Endpoint

Producer
Multimedia Device

Real Player

Sound Card

Real Server

Figure 10: QUAM MD Delivery Framework

Stream Representation

The Stream Path Manager is a factory for Stream Path
Controls. When an application wants to set up a new
stream path, it calls the createStreamPathControl
operation which is explained further in Section 5.2. The
Stream Path Manager uses the Stream Path Control
objects to control and manage individual streams. The
Stream Path Manager uses the root QoS agent, introduced
earlier in Section 4.2, for QoS support operations such as
resource reservation. The root QoS agent is associated
with the Stream Path Manager using the setQoSAgent
operation.

Multimedia Devices are representations of actual
physical devices. In Figure 10 the producer and consumer
Multimedia Devices represent the specific hardware and
software components of a multimedia server and desktop
computer respectively. They describe device capabilities

such as the supported content formats and display size.
These capabilities can be queried using the
canSupport operation of the Multimedia Device
interface.

Medium Endpoints represent Multimedia Devices for
one specific stream path. They are created by Multimedia
Devices when the createMediumEndpoint
operation is called. Medium Endpoint objects provide
real-time stream related information, like the number of
frames dropped by a content player or the packets lost
when receiving the content.

Stream Path Control objects control individual
streams. When created, they query the Multimedia
Devices that have to be connected and instruct them to
create Medium Endpoints. When a stream is established,
the Stream Path Control enables run-time manipulation of
the stream and provides monitoring information.

5.2 Stream Path Set Up
The stream path set up is initiated by calling the

createStreamPathControl operation on the
Stream Path Manager as shown in Figure 11. The first
parameter of this operation is a description scheme that
contains the alternative content representations (see
Figure 5) of the same content. The second parameter is
the consumer Multimedia Device. The third parameter is
the required QoS, also in the form of a description
scheme, as explained earlier in Section 4.1.

Stream Path
ManagerApplication

Consumer
Multimedia Device

createStreamPathControl(DescriptionScheme contentRepresentations, MultimediaDevice consumer, DescriptionScheme requiredQoS)

createMediumEndpoint(DescriptionScheme negotiatedContentRepresentation)

StreamPathControl createStreamPath(DescriptionScheme contentRepresentations,
MultimediaDevice consumer,
DescriptionScheme requiredQoS)

Stream Path
Control

Producer
Multimedia Device

createMediumEndpoint(DescriptionScheme negotiatedContentRepresentation)

Root
QoS Agent

Boolean reserve(QoS agreedQoS)

DescriptionScheme canSupport(DescriptionScheme contentRepresentations)

DescriptionScheme selectContent(DescriptionScheme supportedContentRepresentations,
DescriptionScheme requiredQoS)

DescriptionScheme negotiateQoS(DescriptionScheme selectedContentRepresentations,
QoS requiredQoS,
DescriptionScheme negotiatedContentRepresentation)

1

2

3

4

Figure 11: Stream Path Set Up

The remainder of this section discusses the four steps
to set up a stream path, as shown in Figure 11.

The first step is the Multimedia Device Capability
Check. For each content representation in the description
scheme, the consumer Multimedia Device is checked
whether it is capable of playing back that content. This is
done using the canSupport operation on the consumer
Multimedia Device. This operation returns a
DescriptionScheme that contains those content
representations that can be played on the consumer
Multimedia Device.

The second step is the Content Representation
Selection. First, the selectContent operation is called

on the root QoS agent (see Section 4.3) that selects the
content representations that satisfy the required QoS.
Second, the negotiateQoS operation (see Section
4.3) is called on the root QoS agent. The root QoS agent
now determines which content representation will be
streamed and the system configuration for the streaming.

Initialisation, the third step, comprises of creation and
configuration of the Medium Endpoints for the stream
path. The Stream Path Control calls the
createMediumEndpoint operation on the consumer
Multimedia Device and the producer Multimedia Device,
which results in a consumer and producer Medium
Endpoints that are configured for delivery of presentation
of the selected content representation.

Resource Reservation, the final step, is initiated when
the Stream Path Control calls makeReservation(see
Section 4.3) on the RootQoSAgent. The RootQoSAgent
reserves the resources needed to deliver the selected
content representation with the agreed QoS. Should the
reservation fail, the stream path set up continues with step
two, removing the initially selected content
representation. When no more content representations are
available, the stream path set up fails.

QUAM MD also allows stream paths to be set up
without QoS enforcement, resulting in a stream path
based on a best effort service. In this case step four of the
stream path set up is skipped. Also, the negotiateQoS
operation executes an alternative implementation, with an
empty required QoS.

6. Conclusions
In this paper we have presented the QUAM MD

platform that is a middleware-based software
infrastructure for developing QoS-aware distributed
multimedia applications.

In QUAM MD a meta-data based information model
has been developed for content representation. A CORBA
IDL run-time representation of this information model
enables other CORBA objects to access content
representation data. As a result the QUAM MD platform
offers representation and location transparencies to the
developers of distributed multimedia applications.

Similarly to the CORBA A/V Streaming specification,
QUAM MD defines an object infrastructure for
multimedia delivery. This architecture abstracts from
specific streaming platforms and provides an integrated
central approach for setting up streams, and for control
and management of content delivery. Even in a best effort
service environment, the delivery architecture provides
substantial benefit by hiding from application developers
the heterogeneity of multimedia formats, streaming
protocols and streaming platforms in a heterogeneous
environment.

The architecture of the platform is based on QoS
Provisioning Service (QPS), developed earlier for QoS
provisioning of object invocations. The QoS mechanisms
available for QPS have been re-used to support QoS for
multimedia streaming. This middleware-based approach
of QUAM MD ensures that low-level QoS enforcement
mechanisms are hidden from applications. This reduces
development time and results in more portable
applications.

Future work on the platform includes an import utility
for MPEG-7 descriptions. Such a utility could benefit
from XSLT technology to convert MPEG-7 documents to
an XMI representation that complies with our content
meta-model. The result of this conversion can then be
imported directly into the QUAM MD meta-data
repository. Furthermore, the platform should be extended
with support for security. We are currently investigating
the use of IPSec to create a secure stream path. The QoS
agents can be employed to negotiate and enforce such a
secure stream path.

7. References
[1] Object Management Group, Control and Management of
A/V Streams specification. OMG Document telecom/97-05-07
edition.
[2] O. Kath, F. Stoinski, W. Takita, Y. Tsuchiya, “Middleware
Platform Support for Multimedia Content Provision”,
Proceedings of EURESCOM Summit 2001: 3G Technologies
and Applications, Heidelberg 2001.
[3] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E.
Davies, An Architecture for Differentiated Services, IETF
document. RFC 2475, December 1998.
[4] Object Management Group, Meta Object Facility, Version
1.3, OMG document ad/99-07-03.
[5] P. Salembier and J.R. Smith, MPEG-7 multimedia
description schemes, IEEE Transactions on circuits and systems
for video technology, Vol. 11, No. 6, June 2001.
[6] T. Plagemann, F. Eliassen, B. Hafskjold, T. Kristensen, R.H.
Macdonald, and H.O. Rafaelsen, Flexible and Extensible QoS
Management for Adaptable Middleware, in Proceedings of
International Workshop on Protocols for Multimedia Systems
(PROMS 2000), Cracow, Poland, October 2000.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides Design
Patters: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA. 1995.
[8] F. Siqueira and V. Cahill, Quartz: A QoS Architecture for
Open Systems, 20th International Conference on Distributed
Computing Systems (ICDCS’00), Taipei, Taiwan, April 2000.
[9] Chorus Systems, Requirements for a Real-Time ORB,
ReTINA, Tech. Report RT/TR-96-8, May 1996.
[10] M. Karsten, J. Schmitt, and R. Steinmetz, Implementation
and Evaluation of the KOM RSVP Engine, IEEE InfoCom 2001.
[11] A.T. van Halteren, G. Fábián and E. Groeneveld. Design
and Evaluation of a QoS Provisioning Service (QPS) In
Proceedings of Third IFIP International Working Conference on
Distributed Applications and Interoperable Systems (DAIS
2001) Krakow, Poland, 2001, pp. 189-200.

