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Abs t rac t .  The notion of institution is dissected into somewhat weaker no- 
tions. We introduce a novel notion of institution morphism, and characterize 
preservation of institution properties by corresponding properties of such 
morphisms. Target of this work is the stepwise construction of a general 
framework for translating logics, and algebraic specifications using logical 
systems. Earlier translations of order-sorted conditional equational logic and 
of conditional equational logics for partial algebras into equational type logic 
axe revisited in this light. Model-theoretic results relating to compactness axe 
presented as well. 

1 I n t r o d u c t i o n  

In [5] the following question is proposed (among others): 

"Anyone who has worked with extensions of L~,,w knows that some results 
are entirely "soft" in that they use only very general properties of the logic, 
properties that  carry over to a large number of other logics. Shouldn't  such 
results be part  of an axiomatic treatment of logics?" 

The meaning of "soft" in the title of this paper is precisely as explained in the 
question quoted above. Target of our investigation is the notion of institution, which 
was introduced in [13] a s  a vehicle for the application of abstract model theory to 
computer science. The theory of institutions became rapidly popular in computer 
science, within the algebraic specification community especially, thanks to the neat 
conceptual support that  it offers to modeling of, and reasoning about, a wide variety 
of specification and programming phenomena. The category-theoretic design of this 
theory is part of the explanation of that  success. 

In our case, concrete motivation for the choice of working with institutions was 
the following, instructive experience. In the elaboration of a few results relating 
to the expressiveness of equational type logic [18] in comparison to other logics, a 
number of technical aspects, relating to the translation of the target logic into our 
framework, show a striking formal commonality over the different translations. These 
aspects essentially are: representation of models, translation of sentences, structure 
of completeness proofs. The search for a more general framework, where as much as 
possible of that  commonality could be factored out, is just as natural. For such an 
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aim, the category of institutions, rooted as it is in abstract model theory, seems to 
offer the obvious framework to work with. Two facts, however, concur to indicate 
that  this choice is not entirely obvious. 

In the first place, we are interested in general tools for lifting results of work 
done for one logic to other logics, without having to do the work all over again 
for each of them. In fact, that  is the main reason for the popularity of institutions 
in computer science. However, from the way in which the expressiveness results 
in [18] are obtained, we are led to observe that  pointwise translation of sentences and 
models is not always that easy to work with. More generally, we wish to translate 
presentations (i.e. sets of sentences) to presentations, and to associate a class of 
models in the target logic to each model of.the source logic. The notion ofinstitution 
morphism proposed in [13] deserves generalization, thus. 

In the second place, we observed that not every feature of the institution concept 
had some r61e to play in the trial applications of our interest. The softness of the 
satisfaction condition, in particular, seems to depend on the scales one is using (more 
precisely, on the planet where the scales are taken). Although "style has to count 
for something", in the sense that the temptation toward maximum generality at the 
expense of intuition should be resisted [5], style and intuition deserve analysis and 
testing, once in while. 

The net result of putting together the two facts that  occurred to our observation 
is thus a strong motivation for a twofold effort towards generality. That  is, we wish to 
dissect the notion of institution into somewhat weaker notions, on the one hand, and 
to manipulate the resulting weaker structures by means of easier-to-use morphisms, 
on the other hand. In both directions, of course, we should be able to find the notions 
considered in [13] as particular cases, when appropriate steps along the Specialization 
'stairway' are taken. Isolating and characterizing such steps, each independently of 
the others, meets a principle of orthogonality in the analysis of concepts, appears 
sensible to intuition, and may yield useful results--for example it might lead one to 
uncover a wider applicability of known facts. 

The sense of, and motivation for (the title of) this paper being now clear, a short 
outline of the organization of the paper with a summary of results are as follows. 

In Sect. 2 we introduce pre-institutions and transformations thereof, and define 
a few properties that  these structures may have, such as satisfaction preservation in 
pre-institutions, or (full) adequacy and finitarity of pre-institution transformations. 
The relative expressiveness of pre-institutions is characterized by the existence of 
suitable transformations. We show how the classical notion of relative expressiveness 
of logical systems fits in our more general setting. 

In Sect. 3 we first show that pre-institutions, with transformations as morphisms, 
form a category, of which subcategories are obtained by requiring transformation 
properties--which prove preserved by composition, thus. We also show that preser- 
vation of institution properties by transformations is ensured by corresponding prop- 
erties of those transformations, and that, while every transformation is sound with 
respect to consequence, adequate transformations are also complete. Invertibility of 
transformations is then characterized, and sufficient conditions for invertibility are 
given, which thereby ensure exactly equivalent expressiveness of pre-institutions. 

In Sect. 4 a compactness theorem is presented, showing that  fully adequate trans- 
formations ensure contravariant preservation of compactness, and that  consequence- 
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compactness (a stronger property) is so preserved if the t ransformation is also fini- 
tary, modulo logical equivalence. 

In Sect. 5 a couple of expressiveness results for equational type logic given in [18] 
are revisited. We show how easily the completeness of the t ransformations can be 
proven in the present framework. 

In Sect. 6 we quickly review related work; in particular, we indicate how the 
notion of institution simulation proposed by [4] is related to our notion of pre- 
institution transformation.  

Conclusions are drawn in Sect. 7, where we also mention a few directions for 
further work. 

2 B a s i c  N o t i o n s  a n d  N o t a t i o n s  

A prel iminary word about  foundations. In this paper we use the te rm 'set '  in a 
rather comprehensive meaning, that  generally includes proper classes. Whenever a 
need arises to exclude proper classes, we talk of 'smM1 sets'. SET is thus actually a 
'metacategory  '3, according to [15]. 

D e f i n i t i o n l .  A pre-institution is a 4-tuple Z = (Sig, Sen, Mod, ~ ) ,  with: 
(i) Sig a category, whose objects are called signatures, 

(it) Sen : Sig---~SET a functor, sending each signature S to the set Sen(G) of 
S-sentences,  and each signature morphism r : ~U---~S I to the mapping  
Sen(r) : Sen(S)--*Sen(S')  that  translates G-sentences to S'-sentences,  

(iii) Mod : Sig~ a functor, sending each signature S to the set Mod(S)  of 
G-models,  and each signature morphism r : S---*S ~ to the v-reduction function 
Mod(r)  : Mod(S ' ) - *Mod(S) ,  

(iv) ~ :  ISigl--*llaELII a function, 4 yielding a binary relation ~ C_ M o d ( S ) x S e n ( S )  
for each signature S ,  tha t  is the satisfaction relation between S-models  and 
E-sentences. [] 

D e f i n i t i o n  2. Let 27 = (Sig, Sen, Mod, ~ )  be a pre-institution, r : S - -*S '  a signature 
morphism in Sig, ~ a E-sentence and M I a S ' -model .  With  henceforth adoption of 
the abbreviations: 
(a) v~ for Sen(r)(~) ,  
(b) M'v  for Mod(r)(M') ,  
we say tha t  
(i) reduction preserves satisfaction in 27, or that  7: has the rps property (or that  77 

is rps, for short), iff 27 meets the following requirement: 
V S , S ' e S i g ,  V r : S - - , S ' ,  V~eSen(S) ,  VM'eMod(S ' ) :  

(it) expansion preserves satisfaction in 77, or that  27 has the eps property (or tha t  77 
is eps, for short),  iff 77 meets the following requirement: 
V S , S ' e S i g ,  Vr :S- -*S ' ,  V~eSen(S) ,  VM'eMod(S ' ) :  
($) M'T ~ ~ ~ M' ~ s ,  v~ 

z resting at some floor of 'palais Grothendieck' 
4 REL is the category of sets with binary relations as morphisms; IIcII is the set of mor- 

phisms of category C. 
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(iii) 77 preserves satisfaction, or that  2- has the ps property (or that  2- is ps, for short), 
�9 iff :2 is both rps and eps. [] 

R e m a r k  3. An institution [13] is thus a pre-institution that  preserves satisfaction 
and where model sets and reduction have categorial structure, that  is, an institution 
rather has a functor Mod:Sig~ sending each signature S to the category 
Mod(,U) of S-models,  and each signature morphism v:Z--*S '  to the v-reduction 
functor Mod(v) :Mod(S') -~Mod(Z).  [] 

It seems interesting to investigate which properties of institutions do actually 
depend on requirements (t) and/or  (it) of Definition 2, and/or  on the categorial 
structure of model sets and reduction, and which do not, thus holding for larger 
classes of pre-institutions as well. 

According to the motivation proposed in Sect. 1, we are interested in general 
tools for lifting results from one pre-institution to another pre-institution. Pointwise 
translation of sentences and models is not always easy to use for this purpose. For 
example, to recover and possibly further extend the results obtained in [18] we need, 
more generally, to translate presentations to presentations, and to associate a set of 
models (in the target pre-institution) to each model of the source pre-institution. A 
suitable notion of pre-institution morphism will serve to this purpose, for which a 
few preliminaries are needed. 

We recall that  the powerset functor p : S E T - + S E T  sends every set to the collection 
of its subsets 5, and every function f : S---~S' to the function yielding the f-image of 
each subset of S. The functor p+ is analogously defined, except that  the empty set 
is excluded from the collection p+(S), for all sets S. 

In every pre-institution 2" = (Sig, Sen, Mod, ~)  we thus define the functor Pre = 
posen : Sig---*SET that  sends each signature S to the set Pre(L') of Z-presentations, 
and each signature morphism 7- : S- -*S '  to the mapping Pre(r) : P re (Z) -+Pre ( r ' )  
that  translates Z-presentations to S'-presentations. For convenience, we often write 
27 = (Sig, Pre, Mod, ~ )  instead of the more customary notation introduced in Defi- 
nition 1. 

D e f i n i t i o n 4 .  A pre-institution transformation T : I ~ I ' ,  
where 77 = (Sig,Pre,Mod,~) and 2 " =  (Sig ' ,Pre ' ,Mod' ,~ ')  are pre-institutions, 
is a 3-tuple T = (SIT, PrT, MOT), with: 

(i) SiT : Sig--+Sig' a functor--we shall henceforth write rUT for SiT(S),  and rT for 
SiT(r), 

(ii) PrT : Pre-+Pre'oSiT a natural transformation, i.e. for each S6Sig  a function 
PrT~ : Pre(S)---~Pre'(ST) sending Z-presentations to ST-presentations, such 
that  for every signature morphism r : S1--*$2 in Sig the following diagram 
commutes, 

5 rives in the elevator of 'palais Grothendieck', thus, rifting its argument up one floor. 
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PrTu 
Pre'(EIT) 

Pre('r') Pre'('r,r) 

P r2"z;2 
Pre(~':~) �9 Pre'(~'2T) 

(iii) MoT : Mod--~p+oMod~oSi7 - a natural transformation, i.e. for each kSESig a map 
MoT-r : Mod(s assigning a nonempty set MoT~(M) of S•-- 
models to each Z-model M, such that for every signature morphism 7- : Z:I--~L'~ 
in Sig the following diagram commutes, 

Mo:r== 
Mod(~2) , $o+(Mod'(Z2:r)) 

Mod(r) ~+ oMod'(v=r) 

Mod(~l)  
MoT=~ 

, ~+(Mod'(~l :r))  

such that the following satisfaction invarianl holds: 

V2~eSig, VEEPre(Z:), VMEMod(E): M I= E r MT h'  ET 

where satisfaction is extended to presentations and model sets in the usual way, and 
with henceforth adoption of the following abbreviations: 
(a) rT- for erT~ (E), 
(b) ~07 for {~}T, for a one-sentence presentation {in}, 
(c) MT for MoT-~(M), 
(d) ~ for ~,v and ~ '  for ~ '~T  (and even ~ for ~ ' ,  if no ambiguity arises). [] 

The intuitive reason for the non-emptiness requirement on MoT-~ (M) is that the 
existence of a pre-institution transformation is intended to entail the 'representabil- 
ity'  of every source model by some target model. 

The reason for the requirement expressed by the satisfaction invariant is the 
soundness of deduction in the image of the transformation with respect to deduction 
in the source, which fact is apparent from the simple proof of Proposition 16(i). 

It  may seem strange that presentation transformation is allowed not to respect 
the set-theoretic structure of presentations, that is, it need not be constructed ele- 
mentwise. Our design principle, in this case as well as everywhere else in this paper, 
is that requirements restrict generality, hence there must be sufficient evidence of 
their necessity to set them a priori rather than introducing them as properties a 
posteriori. As an instance of the classical "Occam's razor", we have adopted the 
rule: leges non sunt mulliplicanda pr~eter necessitatem. 
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Definition 4(iii) doesn't require M=r to be closed under 'isomorphism'. In fact, no 
notion of isomorphism between models in a pre.-institution is available at all. In some 
cases, one can replace isomorphism between models by the weaker equivalence that 
reflects indiscernibility of models by the logical means that is available 'inside the 
pre-institution', viz. the straightforward generalization of elementary equivalence 
that is formMized in the first part of the next definition. The second part of the 
definition formalizes logical equivalence of sentences inside a pre-institution, which 
fact justifies the overloading of the equivalence symbol. 

Def in i t ion5 .  Let 27 = (Sig,Pre,Mod,~) be a pre-institution, E a signature in Sig. 
(i) Any two models M1,M~EMod(23) are Z-equivalent, written MI--zM2, iff 

VEEPre(Z:): M1 ~ E r Ms ~ E. 
(ii) Any two sentences ~,r are 2:-equivalent, written ~--zr  iff 

VMEMod(22): M ~ ~0 ~:~ M ~ r [] 

R e m a r k  6. In a pre-institution Z, two Z-sentences are Z-equivalent iff no E-model 
distinguishes them. Conversely, two ,U-models are Z-equivalent iff no ,U-presentation 
distinguishes them. The latter notion enables us to introduce a few properties of 
pre-institution transformations, that we propose without further analysis. 
(i) a pre-institution transformation 7" : Z-*Z'  is insensitive to Z-equivalence iff 

MI-=zM2 =~ M17- = M2T, 

(ii) a pre-insti~ution transformation 7- : Z--~27' is closed under Z'-eqnivalence iff 
(M'EMT A M " - z , M ' )  ==~ M"EMT, 

(iii) a pre-institution transformation T : Z--*Z' abstracts from indiscernibility iff it 
is both insensitive to Z-equivalence. and closed under Z'-equivMence. [] 

Additional requirements characterize certain classes of pre-institution transfor- 
mations that will prove useful later. 

Def in i t ion7 .  Let 7- : Z---~Z' be a pre-institution transformation, with 27, 27' as in 
Definition 4. 

(i) 7- is adequate iff it meets the following requirement: 
VEESig, VEEPre(~), VM'eMod ' (Zr) :  
(w167 M' ~ '  E r  ~ 3MEMod(Z): M'EMz ^ M ~ E 

(ii) 7- is fully adequate iff it meets the following requirement: 
VZ:ESig, VM'EMod'(ZT:r), for all indexed families {Ej}je J of G-presentations: 
(w167167 M' ~ '  Ujej(Ej)~- ~ 3MEMod(,U): M'EMT A M ~ U/e.iE/. [] 

Although, at a first glance, our definition of adequacy of pre-institution transfor- 
mations may seem to resemble that of soundness of institution morphisms in [13], 
such a resemblance is merely formal and has no significance, since model mapping 
has opposite directions in the two notions. 6 As we shall see in the next Section, ade- 
quacy ensures completeness of the transformation with respect to consequence. Full 
adequacy is just a stronger form of adequacy (clearly, every fully adequate transfor- 
mation is adequate as well), that proves connected to compactness ofpre-institutions, 
as shown in Sect. 4. 

A sufficient criterion for full adequacy is as follows. 

6 The credit for this clarification is given to Andrzej Tarlecki. 
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L e m m a 8 .  Let T : I - - ~ I '  be a pre-institution transformation,  with I ,  E'  as in Def- 
inition 4. If 7- is adequate and meets the following condition: 
VSESig, VM1,M~EMod(S), VM'EMod'(ST-): (M'EM17- A M'EM2T) :r M1T = M~7-, 
then 7- is fully adequate. 

Proof. Let {Ej }j e j  be a family of Z-presentat ions and M' ~ '  Uj eJ (Ej)75 thus ViE J: 
M' ~ '  (Ej)7-. 7 is adequate, so for each jCJ 3MjEMod(2?): M j ~ E j  A M'E(M/)T .  
Then (Mi)7- ~ '  (Ej)T by the satisfaction invariant, and Vj, kEJ (Mj)=r = (Mk)~r 
by hypothesis, hence (Mk)T ~ '  (Ej)T,  thus Mk ~ Ej by the satisfaction invariant. 
Choose then any kEJ; M~ ~ UjejEj and M'E(Mk)T follow at once. [] 

Our notions of adequacy play a significant r61e in the following definition. 

D e f i n i t i o n  9. Let 77 and 77' be two pre-institutions. 

(i) 77' is adequately expressive for 77, written 77 -~ 77', iff there exists an adequate 
pre-institution transformation T : 77~77': 

(ii) 77' is fully expressive for 77, written 7: _E 77', iff there exists a fully adequate 
pre-institution transformation 7- : 77--*77'. [] 

Pac t  10. _ and _ are pre-orders. [] 

D e f i n i t i o n  11. Let 7? and E' be two pre-institutions. 

(i) 77 and 77' have equivalent expressiveness iff 7? ___ 77' and 27' ___ 77. 
(ii) 2: and 77' have fully equivalent expressiveness iff 77 E 77' and 77t E 77. [] 

The formal notions of relative expressiveness introduced above generalize the 
classical notion of relative expressiveness of logical systems in the sense of abstract  
model theory (see [11]). These have the l imitation of being based on first-order mod- 
els; as a consequence, also the category of (first-order) signatures is fixed for all logical 
systems. Our notions are more liberal in that  only a functor is required between the 
signature categories, and model-independence is achieved in a most general manner.  
To clarify this comparison, we show how the classical notion of relative expressive- 
ness between logical systems can be captured by a particular t ransformation of the 
corresponding pre-institutions. 

E x a m p l e  12. Let s  /~' be logical systems. According to [11] (p. 194, Definition 
1.2), and [10] (p. 27, Definition 1.1.1),/~' is at least as strong as f~, which is written 
/~ < /~ ' ,  ifffor every first-order signature S ,  for every Z-sentence ~ in / :  there is some 
Z-sentence r in s that  has the same models. Let Z:i,/:~ be the pre-institutions that  
respectively correspond to/~,/2 ' ,  with Sig = Sig' the category of first-order signatures 
having only renamings 7 as morphisms. A transformation 7" : Z : t - - -~  which captures 
the classical notion of relative expressiveness mentioned above is as follows: whenever 
s < /~', define S T  = S,  ET = {r I B~EE: Mod(~) = Mod'(r  }, My = {M}. It  is 
easy to see (using Lemma  8) that  7- is a fully adequate transformation.  [] 

7 that is, bijective arity-preserving maps 
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3 B as i c  Facts  

The extent to which the properties introduced in Definition 2 for pre-institutions, 
and in Definition 7 for pre-institution transformations, are (not) relevant is revealed 
by the following facts. 

P ropos i t ion  13. Let 7" : 2---+2-' be a pre-institution transformation, with 2", 2" as 
in Definition 4, and 2YESig. 

(i) If M~EM7 - for some M, then M ~ ~ 0:r (where $ is the empty 2~-presentation). 
(ii) Let RC_Mod(S) and ~ESen(S). Then R ~ ~ r UMeRM:r ~ '  97"- 

(iii) Let MEMod(S) and EEPte(S). Then Mzr ~ '  nT- r MT- ~ '  U~eEtaT-- 

Proof. 

(i) and (ii) are immediate consequence of the satisfaction invariant (Definition 4). 
(iii) If M~r ~ '  ET, then M ~ E by the satisfaction invariant, that is M ~ ~ for all 

~EE, which entails M~r ~ '  ~v~r again by the satisfaction invariant. 
Conversely, ifV~EE M~r ~ '  ~r ,  then V~EE M ~ ~ by the satisfaction invariant, 
therefore M ~ E, whence M T ~ '  E~r again by the satisfaction invariant. [3 

We introduced pre-institution transformations as "morphisms', but we did not 
fully justify that terminology as yet. The following proposition deals with this kind 
of details. 

Propos i t ion14 .  (pre-instilution categories) 

(i) The identity transformation Ex : 27---I (where Sc~ = ~', Ecz = E, Met = {M}) 
meets the satisfaction invariant, and is fully adequate. 

(ii) If T : 27--*27' and 7-' : 27~--*E" are pre-institution transformations, then so is their 
composition 7-%7" : I--~27", where: 
ST,oT  = (S~-)~, ,  

= 

E~r,oT = (E~r)T,, 
MT'oT = UM,EMTMIT ,. 

(iii) T ' o T  is adequate if both T and T'  are adequate. 
(iv) T % T  is fully adequate if both 7" and 7"' are fully adequate. 
(v) Pre-institutions, together with transformations as morphisms form a category 

PT, of which a subcategory APT is obtained by taking only adequate trans- 
formations as morphisms, of which a subcategory FAPT is obtained by taking 
only fully adequate transformations as morphisms. 

Proof. 

(i) Immediate, using Lemma 8. 
(ii) We have only to check that 7"%7" meets the satisfaction invariant, which easily 

follows from the definition of 7"%7". 
(iii) If M" ~ ET,OT then, since T'  is adequate, there exists M'qMod(E~r) such that 

M"EM'T, and M' ~ E~r. This, and the adequacy of T entail that there exists 
MEMod(2?) such that M'EMT and M ~ E. Then M"EM'T, and M'EM~r together 
imply M"EMT,oT, and since M ~ E, it follows that 7-'07- is adequate as well. 
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(iv) If M" ~ (Ej)7-,oT for all jEJ, then the full adequacy of T '  entails the exis- 
tence of a M'EMod(Zzr) such that M"EM'T, and M' ~ (Ej)7- for all jeJ. 
The full adequacy of 7- then entails that there exists MEMod(2Y) such that 
M'EMT- and M ~ Ej for all jEJ. Then M"EM'T, and M'EMzr together imply 
M'EUM,eM~M~7-,=Mz-,OT, and since M ~ Ej for all jEJ, it follows that 7"off" 
is fully adequate as well. 

(v) Validity of the standard categorial laws in P T  is easily verified. A P T  is a subcat- 
egory of P T  since identities are adequate and composition preserves adequacy. 
F A P T  is a subcategory of A P T  since identities are fully adequate and compo- 
sition preserves full adequacy. [] 

Note that the identity transformation of proposition 14(i) enjoys none of the 
properties introduced in Remark 6. Clearly, this is the 'safest' identity, in that coarser 
identities can always be obtained by appropriate quotients. For example, the coarser 
identity transformation A1 : I--*:/:, where .U.~, = Z, E.4~ = E, M.a, = {M'IM'=zM}, 
abstracts from indiscernibility (proof: .41 is eyidently closed under I-equivalence; its 
insensitivity to I-equivalence follows from extensionality of sets). 

The following fact shows that pre-institution transformations enjoy 'contravari- 
ant '  preservation of the rps and eps properties. This fact seems to be only the first 
phenomenon of a wealthy situation; the compactness theorem in the next Section is 
another such case. Preservation is 'contravariant' in the sense that, if 7- : /7 -~I '  is a 
pre-institution transformation and I '  has the property under consideration, then I 
has that property as well. 

These results demonstrate the usefulness of our notion of transformation, in 
that they support interesting proof techniques. For example, if a proof of a certain 
theorem in a pre-institution /7 is sought, and the theorem is known to hold in a 
pre-institution :l-', it will suffice to find a transformation 7" : I--~/7', since this allows 
the transfer of the known result back to 2:. 

Another, perhaps more interesting application of these results is concerned with 
negative results on comparing the expressiveness of pre-institutions, in the sense 
of Definition 9. The proof technique, which has a 'contrapositive' flavour, simply 
consists in showing that some of the properties which are contravariantly preserved 
by (possibly 'suitable') pre-institution transformations is enjoyed by I '  but not by I .  
In such a case, then, one can infer that no ('suitable') pre-institution transformation 
if" : I - , / 7  exists (where 'suitable' means: with some additional property, such as 
adequacy). An application of this proof method is in Sect. 5.1 below. 

P r o p o s i t i o n 1 5 .  Let 7- :/7--+/:' be a pre-institution transformation, with/7, I '  as 
in Definition 4. 
(i) If I '  is rps, then/7 is rps. 

(ii) If I '  is eps, then/ :  is eps. 
(iii) If I '  is ps, then I is ps. 

Proof. For all signature morphisms r : ,U2---,E1 in Sig, VMEMod(,U2), V~pESen(~'1): 

(i) If M ~ r~,  then VM~EMT-: M' ~ '  (r~)7- by the satisfaction invariant, therefore 
VM'EMT-: M'rT- V ~ r  by hypothesis and since (r~)~- = rT-~r according to the 
commutativity of the diagram in Definition 4(ii). Moreover, the commutativity of 
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the diagram in Definition 4(iii) entails that (Mv)T = {M'r7-IM'eMT}, therefore 
(Mr)7- ~ '  ~7", whence Mr ~ ~o by the satisfaction invariant. 

(ii) If Mr ~ to, then (Mr)7- ~ '  ~7- by the satisfaction invariant, therefore VM'EMT-: 
M'rT- ~ '  ~7" since the commutativity of the diagram in Definition 4(iii) entails 
that (Mr)7" = {M'rT-IM'EMT-}. Then VM'EMT: M' ~ '  (r~)7- holds by hypothe- 
sis and since (r~)T ~- rT~OT according to the commutativity of the diagram in 
Definition 4(ii), therefore M ~ r~  by the satisfaction invariant. 

(iii) From (i) and (ii), according to Definition 2(iii). [] 

The reason why (full) adequacy of the transformation is required as a criterion 
for (full) expressiveness is apparent from the following fact, where ~ denotes logical 
consequence, defined in the usual semantical way. 

P ropos i t ion  16. Let 7" : I--+I' be a pre-institution transformation, with I ,  I '  as 
in Definition 4. Then V~oESen(Z?), VCESen'(Z'T), VE,Ej~Pre(~:): 
(i) E r ~ z  ~ E ~ .  

(ii) E ~ =~ ET- ~ 7 -  if T is adequate. 
(iii) Ujej(Ej)T ~ r :=V (UjejEj!7- ~ r ifT- is adequate. 
(iv) (UjejEj)T ~ r ~ Ujes(Ej)T ~ r ifT- is fully adequate. 

Proof. 
(i) Let MEMod(kS), assume M ~ E. By the satisfaction invariant MT- ~ ET-, there- 

fore MT- ~ ~7- by hypothesis, whence M ~ ~ by the satisfaction invariant. 
(ii) Let M'EMod'(s assume M' ~ ET. By adequacy ofT,  there exists MEMod(,U) 

such that M~EMT and M ~ E, hence M ~ !a by hypothesis, whence M' ~ ~'7" 
by the satisfaction invariant. 

(iii) Let M'EMod'(k:T), assume M' ~ (UjesEj)7-. Then there exists MEMod(Z:) 
such that M'EMT- and M ~ U ; o E j ,  by adequacy of 7-. Thus VjEJ: M ~ Ej, 
hence VjEJ: MT- ~ (Ej)7- by t~ae satisfaction invariant, so MT- ~ Uje2(Ej)T, 
whence MT ~ r by hypothesis. Since M'EMT-, M' ~ r follows. 

(iv) Let M'EMod'(ZT-), assume M' ~ Uje](Ej)7-. Since 7- is fully adequate, there 
exists MEMod(Z) such that M'EMT and M ~ UjesEj,  hence M~r ~ (U/r 
by the satisfaction invariant, whence MT- ~ r by hypothesis. Since M'EMT-, it 
follows that M I ~ r [] 

If two pre-institutions enjoy equivalent expressiveness, it is sensible to wonder 
whether the transformations that establish the equivalence are 'inverse' to each other 
in some sense. The first such sense which comes to mind is the categorial one, viz. 
that of pre-institution isomorphism, which requires the composition of the two pre- 
institution transformations, in either order, to be the identity transformation on 
the corresponding pre-institution. Clearly, the isomorphism condition is stronger 
than that required for equivalent expressiveness, and is veritably too strong for 
practical purposes--based as it is on the smallest identity at all levels: signatures, 
presentations, models. 

The strength introduced by the isomorphism condition can be weakened in var- 
ious ways, e.g. according to coarser equivalences on presentations or on models. 
Among such possibilities, we formalize a notion of equivalence that requires the 
transformation of logical theories to be the identity; more precisely, the presentation 
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obtained by applying such a transformation and then its inverse to any given presen- 
tation is required to have exactly the same consequences as the original presentation. 
As usual, if E is a S-presentation, Th(E) denotes the closure of E under consequence, 
whereas if M is a Z-model, then Th(M) denotes the largest Z-presentation that is 
satisfied by M. 

Def in i t ion  17. Let T :/7--~2-' be a pre-institution transformation, with 77, 77 as in 
Definition 4. T is invertible if there exists a pre-institution transformation 7"4 : 77-+77 
such that V27ESig, VEEPre(S): Th(E) = Th((ET-)Tr in which case 7"6 is termed 
inverse of 7-, and the two pre-institutions 2", 2 -~ have exactly equivalent expressiveness. 

[] 

As a simple illustration, with reference to Example 12, it is easily seen that if 
s t and/Y_<L;, then the transformation 7" : s163 is invertible (indeed it has a 
fully adequate inverse), i.e./~I a n d / ~  have exactly equivalent expressiveness. 

The Galois connection nature of invertible pre-institution transformations is re- 
vealed by the following characterization. 

P r o p o s i t i o n  18. Let 7" : I--~77 and ?'4 : 77-~I be two pre-institution transforma- 
tions, with 77, 171 as in Definition 4. The following conditions are equivalent: 

(a) Tr is inverse of 7" 
(b) 7" is inverse of Tr 
(c) VZ'ESig, VEEPre(S), VMIEMod(Z'T): M' [:=' ET- ~ (M')zr I= E 
(d) VS'ESig', VE'EPre'(S'), VMEMod(S'Tz): i ~ E'vz r M~r ~ '  E I 

Proof. It is sufficient to show the two implications (a) =~ (c), (d) =r (a), since the 
two implications (b) ::~ (d), (c) :~ (b), respectively follow by symmetry. 
(a) (c): 
Let E be a Z-presentation and M' a ST-model. Then M' ~ '  E~r r (M~)~ ~ (E7-)~r 
by the satisfaction invariant, and (M~)n ~ (ET-)Tz <=~ (U')~r ~ E by hypothesis (a). 
(a) (a): 
Let E be a S-presentation and M a S-model. Then M ~ E r MT- ~ ET- by the 
satisfaction invariant, and Mr  ~ '  ET- r M ~ (ET-)Tz by hypothesis (d). [] 

Sufficient conditions for exactly equivalent expressiveness may be of help in the 
construction of such equivalences. Of the two conditions given below, the second one 
is stronger, but may turn out to be more useful in practice. 

P r o p o s i t i o n  19. Let 7" : Z--*Z' and Tr : Z1--+Z be two pre-institution transforma- 
tions, with 7~, 771 as in Definition 4. The following conditions are sufficient for 7~ to 
be inverse of 7". 
(i) V27ESig, VMEMod(S), VEIEPre(S~-): ME(M~r)Tz A (U ~ E'zr :r UT- ~ '  S') 

(ii) VSESig, VMEMod(S): ME(Mcr)vz A (MT-)zcCMod(Th(M)) 

Proof. 
(i) Let M be a S-model and E a S-presentation. If M ~ E, then (MT-)~ ~ (ET-)zr 

by the satisfaction invariant, hence M ~ (E7-)7r by the hypothesis ME(MT-)x. 
On the other hand, M ~ (ET)n entails M:r ~ '  E~r by hypothesis, hence M ~ E 
by the satisfaction invariant. 
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(it) (MT)~CMod(Th(M)) entails the implication M ~ E'n ~ (Mr )n  b E'7~, whence 
the validity of condition (i) under condition (it) follows from the satisfaction 
invariant. [] 

The conditions in the previous proposition also ensure full adequacy of the inverse 
transformation, as shown by the following. 

P r o p o s i t i o n 2 0 .  If ~ : 27'--*27 is an inverse of 7" : 27-+27' such that 
VSESig, VMEMod(S): ME(M:r)~, then 

(i) ~ is fully adequate 
(it) T~oT" is fully adequate 

Proof. 
(i) Let M ~ (E~)7~ VjEJ. Since ME(MT)T~ by hypothesis, 3M'EMT-: ME(M')~. 

Furthermore, M ~ (E~)n =r MT- ~ '  E~ by Proposition 18(d) and (a), therefore 
M' ~ '  E~ for all jEJ. 

(it) Let M ~ (EjT-)Tz for all jEJ. Then M:r ~ '  (Ej)7- for all jEJaccording to Propo- 
sition 18(d) and (a), hence M ~ E i for all jEJ by the satisfaction invariant, and 
M6(MT)~ by hypothesis. [] 

4 C o m p a c t n e s s  

In this Section we show the relevance of the basic framework outlined so far to the 
model-theoretic concept of compactness. In particular, we shall show the 'contravari- 
ant' (in the sense explained in Sect. 3) preservation of (two notions of) compactness 
by 'suitable' pre-institution transformations. The pre-institution transformation is 
to be 'suitable' in the sense that it. may have to fulfil certain requirements, such as 
(full) adequacy, depending on the property under consideration. 

Def in i t ion21.  (Compactness) 
Let 27 = (Sig, Sen, Mod, ~)  be a pre-institution, with Pre = poSen : Sig---~SET. 

(i) 27 is compact iff VSESig, VEEPre(L') : E is satisfiable r E is finitely satisfiable. 
(it) 27 is consequence-compact iff VSESig, VEEPre(S), VpESen(S): 

E ~ ,  =r 3FC_E:Ff in i teAF ~ p .  [] 

The two notions of compactness are equivalent for pre-institutions that are closed 
under negation (see [11], p. 196, Lemma 2.1), where 27 is closed under negation 
whenever VSESig, VpESen(Z), 3r VMEMod(Z): M ~ p iffnot M ~ r 

Since finiteness of (sub-)presentations plays an essential r61e in both notions of 
compactness, one may expect that 'suitable' pre-institution transformations for such 
notions ought to preserve that finiteness somehow. The basic, most intuitive idea is 
that every sentence should be transformed into a finite set of sentences. This idea is 
affected by too much of 'syntax', though, in the following sense. 

If one accepts the abstract model-theoretic purpose proposed in [16], that is "to 
get away from the syntactic aspects of logic completely and to study classes of 
structures more in the spirit of universal algebra" then two softenings of the basic 
idea are in place. First, 'finiteness' of the transform PT of any sentence p should be 
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measured excluding the 'tautological' part of ~7- ('tautological' relatively to 7-, in a 
sense made precise below), since model classes are insensitive to tautologies. Second, 
and more generally in fact, 'finiteness' of sentence transformation should only be 
'up to logical equivalence' in the target pre-institution, since logically equivalent 
sentences specify identical model classes. 

The following definition tells, for a given pre-institution transformation, which 
sentences of the target pre-institution are 'viewed as tautologies' in the source pre- 
institution; we are thus considering a sort of 'stretching' of the classical notion of 
tautology along the transformation arrow. The subsequent definition, then, formal- 
izes the two 'soft' forms of the property we are looking for, according to the rationale 
given above. The second, softer form is just what we need to prove the relevant part 
of the main theorem, which concludes the present analysis of compactness. 

Def in i t ion  22. Let 7" : 2;--+7:' be a pre-institution transformation, with Z, Z' as in 
Definition 4. Then, for every SESig : 
(i) a sentence CESen(S~r) is a 7.-tautology iffVMEMod(S), VM'EMT : M' ~ '  r 

(ii) Taut~-(27) is the set of 7.-tautologies in Sen(z~T). 0 

Clearly, every 2YT--tautology (in the classical sense) is in TautT-(,U). This may 
contain more sentences, however, e.g. if 0~ is the 'empty' E-presentation, then clearly 
(0,v)7- C TautT(~U), and the sentences in (0~)7- need not be ~77--tautologies. 

Def in i t ion23 .  Let 7- : 77--+I' be a pre-institution transformation, with I ,  77' as in 
Definition 4. 
(i) 7- is finitary iff VSESig, V~eSen(S): ~7--TautT(Z) finite. 
(ii) 7- is quasi-finitary iff VSeSig, V~aeSen(S): (~T-TautT-(S))/=--_Z, finite. 13 

The difference between finitarity and quasi-finitarity is illustrated by the trans- 
formation in Example 12, which is quasi-finitary but not necessarily finitary. 

T h e o r e m 2 4 .  (Compactness) Let 7" : 2---~77' be a fully adequate pre-institution 
transformation, with Z, Z' as in Definition 4. 
(i) If I '  is compact, then 77 is compact. 

(ii) If 271 is consequence-compact and 7" is quasi-finitary, then 77 is consequence- 
compact. 

Proof. 
(i) One direction of the compactness condition is trivial. Let then E be finitely sat- 

isfiable. If we can show that UceEr is finitely satisfiable as well, then UceEr 
is satisfiable by the hypothesis of compactness of 77', viz. there is a model M 1 in 
771 such that M' ~1 UceEr Since 7- is fully adequate, MIEM~r and M ~ E for 
some model M in 77. 
The finite satisfiability of Ur is shown as follows. 
Let G be any finite subset of UceEr 
For each xEG pick a CxEE such that XE(r 
So F = {r215 IxEG} is a finite subset of E, thus satisfiable by hypothesis. 
There exists then a model M in 2" such that M ~ F, thus VxEG: M ~ Cx, whence 
VxEG: MT ~' (r by the satisfaction invariant. Since VxEG: XE(r we 
must conclude that M~- ~1 G, thus UceECT is finitely satisfiable. 
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(ii) Let E ~ ~ in 2", with ~ESen(IY) and EEPre(2Y) for some EeSig. Then ET ~ TT 
by adequacy of 7" and Proposition 16(ii), thus UCeECT ~ ~flT by full adequacy 
of 7" and Proposition 16(iv), that is UCeECT ~ ~ for all ~E~T. Consequence- 
compactness of J[~ implies that for each ~E~=r there exists a finite G~cUceEr 
such that G~ ~ ~. 
Now, for each xEGr pick a r215 such that XE(r215 
Let Fr = {r IxEGf } C E. Moreover, let ~ be a set of representatives for 
the equivalence classes in the quotient (~T-TautT(bY))/=z,, with ~'~ consisting 
of exactly one representative per equivalence class. Define then F = U c e ~ F ( .  
Clearly FEE. 
F is finite since G~ finite implies F( finite and 7" quasi-finitary implies that 
(~T-TautT(Z))/=_Z, is finite, hence ~ finite. G~ ~ ~ and G(C_Ux~a ~ (r215 
together entail U• (r215 ~ ~, which, by the definition of F(, is equal to 

UCeF(VT ~ (. This, together with the definition of F thus yield Ur162 ~ ~--T, 
therefore UceFr ~ T:r-TautT(Z) since consequence in Z' is preserved under 
2"-equivalence. Now, Ucefr  ~ Taut:r(Z) if for some r r ~ Tauter(bY), 
which easily follows from adequacy of 7" and Proposition 1600 together with 
Definition 22. Thus Ur162162 ~ T~r, whence F=r ~ ~=r by adequacy of 7" and 
Proposition 16(iii), and thus finally F ~ ~ by Proposition 16(i). [] 

5 A p p l i c a t i o n  E x a m p l e s  

In [18], among others, translations of order-sorted conditional equational logic [14] 
and of conditional equational logics for partial algebras [1, 2, 7, 8, 22] into equational 
type logic [17] were made available, and ~vere shown sound and complete with respect 
to deduction, as well as with respect to translation of signature declarations by 
equational type axioms. 

In this Section, we slightly extend each of the aforementioned translations, to ob- 
tain pre-institution transformations which are easily shown to be fully adequate. The 
completeness results are then immediate consequence of Proposition 16 (soundness 
being ensured by the satisfaction invariant). 

5.1 Order -Sor ted  Algebra  

We recall the translation defined in [18] for order-sorted conditional equational logic, 
that consists of the following: 

1. If S = (S,G,Zop) is an order-sorted signature, its translation ST is the unsorted 
signature that has as 0-ary operators the nullary operators of ~Y and the sorts 
in S, and as k-ary operators the operators of Sop with k arguments, for k>0. 

2. If E is a set of order-sorted Z-sentences, thus a set of conditional equations 
over an order-sorted signature Z as in 1 above and a system of variables V 
on E, let VT=IVIUY, where IVI is the underlying set of variables in V and Y 
= {Y, Yl,... ,yn, . . .  } is a countable set of new variables (viz. IVlf3V=$). The 
translation E=r is the smallest set of E':r-sentences of equational type logic that 
contains: 
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(a) for each operator w:s l , . . .  ,sn---~s in Sop, the ST-sentence 
de] 

(W)T = Yl : S l , ' ' ' , Y n : S n  ~ W ( y l , . . . , y n ) : S ;  
(b) for each sort inclusion s<s '  in S ,  the ST-sentence 

(s<s ' )T  d~Y _ --- y : s - - . y  : st; 

(c) for each S-sentence ~ = VX.el , . . . ,en --* e in E, the ST-sentence 
de] 

~ T  ~ X1 : S l ~ . . . , X r n  : S i n ,  e l , . . . , e n  --.-~ e~ 

with x l , . . .  ,x,~ the variables of ~, thus in X, Sl , . . .  ,sin their respective sorts 
therein. 

3. If M is an order-sorted S-algebra,  its translation M~r is the closure under iso- 
morphism of the set of S T  :-algebras M ~ that  meet the following requirements: 
carrier: [MI[ _3 . U  Ms 

typing: for every sES, a :M ~ s M~ r aEMs 
operations: for every w:s l , . . .  ,sn---~s in Sop, 

M ! M ! M ! ( a l , . . . , an )  = ~ M ( a l , . . . , a ~ )  ira1 :M' s l  , . . . , a n  :M' sn �9 

To obtain a pre-institution transformation from the above translation, one must  
define the translation of order-sorted signature morphisms,  check the naturali ty of 
the presentation as well as model transformations,  and check the validity of the 
satisfaction invariant. 

The first i tem in this task is easy: if r:S1--+S2 is an order-sorted signature mor- 
phism, define rT-w = r ~  for all w in S1T. This yields naturali ty of the presentation 
transformation,  as it is easy to check. 

The remaining items preliminarly require the choice of the appropriate  notion 
of model reduction in equational type logic. Order-sorted ( a s  well as many-sorted) 
reduction may forget not only operations but also carriers; precisely, it forgets those 
carriers that  have no designation in the image of the signature morphism. In [17] we 
argued, on intuitive grounds, that  algebraic (1:0)-reduction in equational type logic 
was an appropriate  reflection of this feature.. To see this, we first recall a few notions 
relating to algebraic reduction in equational type logic. 

First, relatively to a signature morphism s r:12~12',  the s tandard reduct of an 
12'-signed type algebra (or 12':-algebra) A ~ is the 12:-algebra A that  has the same 

carrier and typing, and operators '  interpretation w.a a&y (rw).a, for all wEl2. Thus, 
like with universal algebras, no elements are forgotten by standard reduction, but 
only operations. Then, relatively to a signature morphism r:12~12',  the (0:0)-reduct 
(actually a subreduct) of an 12':-algebra is the least 12-subalgebra of the s tandard 
reduct of that  type algebra. Finally, relatively to a signature morphism as above, 
a (l:0)-reduct of a type algebra is the least subalgebra of the s tandard reduct tha t  
contains every element that  is typed by some element of the (0:0)-reduct (which is 
thus a subalgebra of the (l:0)-reduct as well). 

Now, the present framework enables us to confirm our aforementioned expec- 
tat ion on formal grounds, since the model t ransformation as defined above enjoys 
natural i ty under (1:0)-reduction only. 

s i.e., an arity-preserving map on the operation symbols 
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In  pass im,  we note that  equational type logic with (1:0)-reduction is rps (see Def- 
inition 2), but not eps, 9 hence not ps, whilst the order-sorted logic of our concern, as 
well as many-sorted conditional equational logic, do enjoy the p s  property. Proposi- 
tion 15 then entails that  the transformation above has no inverse; more generally, it 
entails that  a search for a pre-institution transformation in the converse direction to 
that  here exemplified makes sense for equational type logic with standard reduction 
only. 

Validity of  the satisfaction invariant is the content of Proposition 3.5 in [18], 
whose Proposition 3.6 shows adequacy of the transformation above. Finitarity of 
the transformation is evident. Note that  adequacy and full adequacy coincide in this 
example because of the elementwise definition of the presentation t ransformat ion--  
which may be expected to be the case in many practical situations. 

5.2 P a r t i a l  A l g e b r a  

We recall that  unsorted partial algebras differ from total ones in that  the carrier of a 
partial algebra need not be closed w.r.t, application of the operations of the algebra. 
As a matter  of notation, wct l (a l , . . . ,a~)  means that  the application of  the n-ary 
operation w "a to argument (a l , . . .  , .)EIxp is defined in A. A strictness requirement 
applies to definedness of terms representing such applications, saying that  if the 
interpretation of a ground term is defined, then so must be the interpretation of 
every subterm of that  term. 

We further recall that  the conditional equational logics of unsorted partial al- 
gebras considered in [18] may have weak as well as s t rong conditional equations as 
sentences. These respectively follow two variants of the common form el ,. �9 �9 ,en -~ e, 
with e l , . . . ,en  weak equations in both 'cases, and e a weak, resp. strong equation. 
The two variants differ in the conclusion of the conditional, thus. This form can 
cater for definedness predicates, since D(t) is equivalent to the weak equation t w t, 
but not for the partial conditional equations considered in [3], which admit  strong 
equations in the premiss; that  logic does not always have initial models, hence its 
faithful translation in equational type logic is not possible. 

The translation in [18] of the aforementioned logics into equational type logic 
consists of the following: 

1. I f /2  is an unsorted partial algebra signature, its translation/-2T is the extension 
o f /2  with the nullary operator T (assuming T g / 2 ) .  

2. If E is an unsorted conditional equational partial algebra presentation, viz. a 
set of weak or strong conditional equations over an unsorted signature 12 and a 
set of variables V, le t /2:r  be the signature as in 1 above, and VT=VUY, where 
Y = {Yt,...,Yn, . . .  } is a countable set of new variables (viz. VNY=0). The 
translation E~r is then the smallest set of/2T-sentences of equational type logic 
that contains: 

9 Failure of the eps property in equational type logic with (l:0)-reduction is shown by the 
following counterexaanple. Consider a two-element type algebra, on a signature consisting 
of one nullary operator only, and with the typing relation empty. Relatively to the identity 
signature morphism, the (l:0)-reduct coincides with the (0:0)-reduct in this case, hence 
it satisfies the equation x = x, which is not valid in the original type algebra. 
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(a) for each n-ary operator w in 12, the following n 127--sentences: 
w(y l , . . . ,yn)  : T --+ YI : T , . . . ,  w(y l , . . . ,yn)  : T --+ Yn : -l- 

(b) for each weak conditional equation tl w_ ul, . . . ,  t,~ w un --~ t ~ u the 
following two 12zr-sentences: 
t l  : T ,  . . . ,  t n  : T , t l  =_ Ul ,  . . . ,  tn  --  Un - - ~ t : T  
t l  : T ,  . . . ,  t n  : T , t l  = Ul ,  . . . ,  t n  - Un - - + t = u  

(c) for each strong conditional equation tl ~ ul . . . .  , t,~ ~ un --+ t s u the 
following two 12~r-sentences: 
tl : T,  . . . ,  tn : T  , t l  ~ U l ,  . . . ,  tn --=Un , t  : T--~ t = u 
tl : q-, . . . , t n  : ' 1 - , t l  ~ u l , . . . , t n - - - - U n  , u : T - - + t =  u 

3. If M is an unsorted partial 12-algebra, its translation MT is the closure under 
isomorphism of the set of 127-:-algebras M ~ that  meet the following requirements: 
c a r r i e r :  [M'[ _.D IM[ 

t y p i n g :  a: M, -]-M' iff aEIMI 
o p e r a t i o n s :  the constant -I -M~, and for each n-ary operator wE12, Val , . . .  ,anE]Mq: 

(i) (al  :M' TM '  A . . .  A an :M t -1 -M' A wM~.(al,...,an) ) 
=r wM'(a l , . . . , an)  = wM(al . . . .  ,an) 

(ii) w M ' ( a t , . . . , a n ) : M '  TM' 

(al :M' TM' A . . .  A an :M' T~ '  ^ ~ ( a l , . . . , a n )  ) 

To obtain a pre-institution transformation from the above translation, we de- 
fine the translation of signature morphisms as follows: if r:121--~122 is an unsorted 
signature morphism, then ~'7-T = T and r7-r = rw for all remaining w in 1217". 
It is easy to check that  this yields naturality of the presentation transformation, 
and naturali ty of the model transformations as well as validity of the satisfaction 
invariant, under the standard algebraic reduction in equational type logic (because 
of the unsortedness of the partial algebras of our concern, here). 

Validity of the satisfaction invariant is the content of Proposition 4.6 in [18], 
whose Proposition 4.7 shows adequacy of the transformation above. Finitarity of the 
transformation is evident. Adequacy and full adequacy here coincide, again because 
of the elementwise definition of the presentation transformation. 

We conclude by noting that,  in this example, the possibility of translating a 
sentence by a s e t  of sentences proves indeed useful; had one to work with pointwise 
sentence translation, a preliminary lifting to pre-institutions with sentences formed 
by (finite) sets of sentences would have been necessary, which would have made the 
translation quite indirect. 

6 R e l a t e d  W o r k  

This work shares with [4] the motivation for focussing on the morphisms of insti- 
tution categories more than on their objects. Clearly, reason for this is the interest 
that  institution-independent specification [24] and general logics [10, 19] naturally 
find in computer science. It may be source of some surprise, thus, that  so far no 
general agreement has been reached on the most convenient notion of institution 
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morphism. A careful analysis and comparison of several, quite distinct such notions 
can be found in [4]. To that, we wish to add the following, necessarily quick and 
preliminary considerations. 

In comparison with the notions of institution morphism proposed in [13, 19, 4], 
our notion is the only one where the three arrows (respectively relating to signatures, 
sentences, models) are all covariant. Of those three notions, the one which seems 
closest to ours is that of basic simulation [4], which essentially differs from ours in 
two respects: 1) it sends sentences to sentences, whereas ours sends presentations 
to presentations, and 2) model transformation is contravariant, but by a surjective, 
partial natural transformation. The latter could thus be turned into a covariant, total 
natural transformation, sending models to sets of models, like in our case. Of course, 
the model sets ought to be disjoint; this condition, arising from well-definedness of 
the model transformation as defined for basic simulations, closely corresponds to 
the sufficient condition for full adequacy given in Lemma 8 above--modulo some 
equivalence of models in the source institution, however. 

Although more interested in the morphisms than in the objects, the less re- 
strictive definition of the objects in our framework also contributes to widening the 
applicability of abstract model-theoretic tools in algebraic specification. Most of the 
specification frameworks studied so far, fit the institutions scheme, yet not all of 
them do. Cases where (at least the eps half of) the satisfaction condition is known 
to fail include equational type logic with non-standard reduction (as exemplified 
in Sect. 5) and, most notably, behavioural semantics [6, 20, 21]. These frameworks 
fit the pre-institutions scheme, as well as the drastically general scheme proposed 
in [12J--where hardly anything of the abstract model-theoretic approach underlying 
the theory of institutions can be recognized, though. 

7 C o n c l u s i o n s  

We revisit the motivation for the present work in the light of the results obtained 
in Sects. 3 and 4, and draw a couple of conclusions from the application examples 
worked out in Sect. 5. We finally mention a few topics of future work. 

We motivated our present study by arguing the interest of investigating which 
properties of institutions do actually depend on the satisfaction condition and/or on 
the categorial structure on models, and which do not. Now, the results in Sects. 3 
and 4 of the present paper offer a first blend of properties which do not depend on 
either feature of institutions, thus holding for the larger class of pre-institutions. 

The blend is further, significantly extended in [23]; there, however, we also ob- 
tain a result where a slightly weaker form of the ps property is made use off This is 
the renaming property [10], which is just the ps property but limited to signature 
isomorphisms only. The result which depends on this property is a straightforward 
generalization of the Hanf theorem to pre-institutions with cardinal numbers. The 
Hanf theorem, giving 'smallness' conditions that ensure existence of Hanf numbers 
(and a similar theorem on the existence of LSwenheim numbers) is quite fundamen- 
tal in abstract model theory, and certainly does make a strong case for the renaming 
property. This does not invalidate the approach followed in the present paper, how- 
ever, where we have favoured the analysis of the effect of properties a posteriori to 
their a priori requirement. 



328 

A not dissimilar viewpoint motivates the absence of categorial structure on mod- 
els in pre-institutions, Morphisms between models 'exist in nature'; no account of 
them is taken in the notion of pre-institution for the simple reason that they play 
no rSle in establishing merely logical results like those presented in this paper, as 
well as those in [23J--and potentially many others, we guess. But model morphisms, 
and (properties of) their transformations especially, certainly have a rSle to play for 
investigations of greater mathematical depth, such as algebraic ones. There, the cat- 
egorially richer structure of institutions is surely well-motivated, in fact necessary. 
We expect the work on pre-institutions to prove still useful in that wider context, for 
instance to gain more modularity in the application of the theory of institutions-- 
which fact seems interesting from a 'theory engineering' viewpoint. 

So far about theory and its motivations. Concerning applications, two facts seem 
apparent from the analysis worked out in Sect. 5. On the one hand, the recasting of 
the translations of our concern into the formal structure of a pre-institution transfor- 
mation slightly increases the construction work (translation of signature morphisms) 
and slightly decreases the proof work (completeness with respect to deduction). On 
the other hand, however, the proof work is made easier somewhat, in that gen- 
eral requirements and facts which ensure soundness and other desirable properties 
are known in advance. In other words, a proof structure is available in the general 
framework, that the specific transformation design has to 'fill in' with appropriate 
details. 

Finally, topics for future work that attract our current interest include: the gen- 
eralization of abstract model theory towards model independence (what could be 
properly understood as 'soft model theory', where 'soft' applies to 'model' no less 
than to 'theory'); the investigation of initiality and freeness in this framework (for 
which [25, 26] offer a solid starting point); the study of whether and how could the 
present framework be extended to cater for proof calculi [19]; and, last but not least, 
the investigation of applications, whereby further insight is to be expected. 
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