
Scope Management of Non-Functional Requirements

M. Kassab1, M. Daneva2, O. Ormandjieva3

University of Twente1,2, Concordia University3
1,2{m.kassab,m.daneva}@utwente.nl

3ormandj@cse.concordia.ca

Abstract

In order to meet commitments in software projects,
a realistic assessment must be made of project scope.
Such an assessment relies on the availability of
knowledge on the user-defined project requirements
and their effort estimates and priorities, as well as
their risk. This knowledge enables analysts, managers
and software engineers to identify the most significant
requirements from the list of requirements initially
defined by the user. In practice, this scope assessment
is applied to the Functional Requirements (FRs)
provided by users who are unaware of, or ignore, the
Non-Functional Requirements (NFRs). This paper
presents ongoing research which aims at managing
NFRs during the software development process.
Establishing the relative priority of each NFR, and
obtaining a rough estimate of the effort and risk
associated with it, is integral to the software
development process and to resource management.
Our work extends the taxonomy of the NFR framework
by integrating the concept of the “hardgoal”. A
functional size measure of NFRs is applied to facilitate
the effort estimation process. The functional size
measurement method we have chosen is COSMIC-
FFP, which is theoretically sound and the de facto
standard in the software industry.

1. Introduction

In order to meet commitments in software projects,
a realistic assessment must be made of project scope.
Such an assessment relies on the availability of
knowledge on the user-defined project requirements
and their effort estimates and priorities, as well as their
risk. This knowledge enables analysts, managers and
software engineers to identify the most significant
requirements from the list of requirements initially
defined by the user. For instance, a requirement
deemed critical, but which takes a great deal of
implementation effort and poses a high risk, may be a

good candidate for immediate resourcing. In most
software projects, this scope assessment is performed
on the user’s functional requirements (FRs), while the
non-functional requirements (NFRs) remain, by and
large, ignored. The NFR is very important, as it is the
key factor that discriminates among competing
software products. Empirical reports consistently
indicate that improperly dealing with NFRs leads to
project failures, long delays or significant increases in
final costs [1,2], and hence the need to deal
comprehensively with them. While NFRs have a long
history in Requirements Engineering (RE), the NFR
framework [3] was the first to include a process-
oriented and qualitative decomposition approach to
handling NFRs. A cornerstone of the framework is the
“softgoal” concept for representing the NFR. A
softgoal is a goal that has no clear-cut definition or
criteria to determine whether or not it has been
satisfied. In fact, in this framework, softgoals are
referred to as being satisficed rather than satisfied, to
underscore their ad hoc nature with respect to both
their definition and their satisfaction.

Approaching the specification of NFRs through the
NFR framework makes sense for stakeholder’
requirements when they describe the system qualities
they want built in laymen’s terms, qualitatively citing
specifications with accompanying verbal descriptions
of how the functionality should be used [5]. However,
for the satisfaction method to be performed on more
concrete basis, stakeholders may agree to identify the
NFRs with crisp indicators with defined acceptable
values for those indicators to be satisfied; for instance,
a scalability requirement may be specified as follows:
“The system shall be capable of providing its
functionalities when all 500 business units of our
multinational company share it.” This NFR describes a
verifiable criterion (through the acceptable value of
500 business units simultaneously sharing the system)
for testing the system’s scalability quality. The NFR

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

framework treats all NFRs as softgoals, but, as NFRs
tend to be identified with crisp indicators, they are no
longer soft and thus they should be modeled as
“hardgoals”. This is an omission from the NFR
framework. Furthermore, there is a tight connection
between the use of the NFR’s crisp indicators on the
one hand, and the quality of the process of acquiring
knowledge on effort estimates, priority and risk on the
other [8]. Having NFRs concretely defined in terms of
the indicators leads to a more realistic assessment.
Having performed the assessment, project decision-
makers may then call for a revision of the crisp
indicators to adjust the acceptable values. For example,
if response time is a high priority for the system, then
the acceptable value for the response time may need to
be adjusted.

The argument of this paper reflects the above
discussion and contributes towards achieving the goal
of managing the attainable scope of NFRs using the
NFR framework. Based on our analysis of the

drawbacks to the NFR framework, we recommend
improvements to the use of the original concept of the
softgoal and to NFR satisfaction. Then, we use the
improved NFR framework to acquire knowledge on the
effort estimates, priority and risk of NFRs. This
knowledge will be instrumental in achieving a proper
assignment of project resources, and, as a result, an
efficient mapping of NFRs from the requirements
domain to the solution space.

The rest of this paper is organized as follows:
Section 2 introduces the NFR framework and related
work. In section 3, the proposed approach for
extending the NFR framework taxonomy is introduced
and the characteristics of the goal are provided. Section
4 describes our approach to NFR scope management.
Section 5 provides a critical discussion of the
approach. Section 6 concludes the paper and discusses
our future research agenda.

Figure 1: Softgoal interdependency graph for performance and security in a credit card system

2. The NFR Framework
The NFR framework [3] is a process-oriented and

goal-oriented approach aimed at making NFRs explicit
and placing them at the forefront of the stakeholder’s
mind. Putting it into practice involves executing the
following interleaved tasks, which are iterative:

1. Acquiring knowledge about the system domain,
the FRs and the kinds of NFRs associated with the
particular system;

2. Identifying NFRs as NFR softgoals and
decomposing them into a finer level;

3. Identifying the possible design alternatives for
NFRs in the target system as operationalizing
softgoals. Operationalizations correspond to

Performance[Account] Security[Account]

ResponseTime
[Account]

Integrity
Confidentiality Availability

Complete
accounts

Accurate
 accounts Authorize access to

account information

Validate
[AccountAccess]

Identify[users]

Authenticate
[userAccess]

Use P.I.N. Compare
[signature]

UseUncompressed
Format

UseIndexing

+
+

+

-

Audit
[Account]

√

√ √

√ √

x

+
++

+

Require
additional ID

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

functionalities, operations, processes, data structuring,
constraints and agents in the target system;

4. Dealing with ambiguities, tradeoffs, priorities
and interdependencies among NFRs and their
operationalizations;

5. Selecting operationalizations;
6. Supporting decisions with a design rationale;
7. Evaluating the impact of operationalization

selection decisions on NFR satisfaction.
The operation of the framework can be visualized in

terms of the incremental and interactive construction,
elaboration, analysis and revision of a softgoal
interdependency graph (SIG). Figure 1 presents an
example of a SIG, with NFR softgoals representing
performance requirements and the security of customer
accounts in a credit card system. In the SIG, all
softgoals are given Type[Topic1, Topic2,…]
nomenclature. For the NFR softgoal, Type indicates the
NFR concern and Topic indicates the NFR context.

High-level softgoals are refined into more specific
subgoals or operationalizations. In each refinement, the
offspring can contribute fully or partially, and
positively or negatively, towards satisficing the parent.
In the example in Figure 1, both space and response
time should be satisficed for the performance to be
satisficed. The AND contribution is represented by a
single arc, and the OR by a double arc. Further
discussion on the original concept of the softgoal is
presented in [5, 6]. A major drawback in the NFR
framework is that “satisficing” a goal is defined in a
fuzzy way. It is impossible to make a system satisfy a
softgoal like “usability'” because the goal cannot be
clearly defined. So, we also cannot use the satisficing
process to plan for this situation. But, if we agree with
the stakeholders on some definition of the goal in
terms of crisp indicators, then we can set acceptable
values for those indicators to satisfy them. Thus, we
state that “to satisfice a goal x” is to “satisfy the first
acceptable values for defined indicators for x”. In
section 3, we address the need to model NFRs defined
with crisp indicators within the NFR framework.

Further work on NFR’s satisfaction and the factors
contributing to the satisfaction task is presented in [11,
19, 20, 21, 22].

3. Extending the NFR framework

The tendency to treat NFRs as softgoals can often
add ambiguity to the requirements specifications. For
example, the response time in a user interface is
typically soft, whereas response time requirements in
real-time systems can be hard. This situation calls for
extending the taxonomy of the NFR framework so that
it can identify those NFRs that need to be stated in
terms of crisp indicators and their acceptable values.

3.1 Hardgoal notation

In response to this need, we propose an extension of
the NFR framework and its softgoal notation. The
element that is essential to the extended SIG is shown
in Figure 2.

Figure 2: NFR hardgoal notation

To illustrate the use of this extension, we refer back
to the credit card example we presented in section 2.
Suppose there is agreement with the stakeholders that a
good system performance implies the following:
“Maintain the response time within 3 seconds.” This
statement represents an NFR hardgoal requirement that
is concerned with the quality of the system under
development, and, as such, it needs to be absolutely
satisfied. Figure 3 shows the updated graph
considering a performance softgoal with the new
condition on response time.

Figure 3: Employing the hardgoal concept in the

credit card example.

NFR hardgoals are named using Type[Topic1,

Topic2,…]{Condition1, Condition2,…} nomenclature.
In our extension of the NFR framework’s earlier
notation, Condition indicates a relation to the
acceptable values to verify the satisfaction level on
NFR achievement. An NFR hardgoal is depicted by a
star.

One of the uses of hardgoals is to cope with the
need to make explicit the availability of knowledge on
the user-defined requirements. For NFRs to be able to
be verified when the software is deployed, they have to
be clearly defined in terms of crisp indicators. These
clearly defined NFRs are hardgoals. Defining the NFR

NFR Hardgoal

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

as a softgoal could serve as an initial step towards our
understanding of the NFRs required for the system, but
eventually the softgoals will be further defined, and
thus presented as hardgoals.

Adopting the new elements suggests that we rename
the construction that visualizes the goal-oriented
process from SIG to a more expressive title, like Goal
Interdependency Graph (GIG). Thus, a SIG is a special
type of GIG in which all the stated NFRs are soft.

3.2 Goal characterization

In a GIG, we are stating a goal in compact form,
such as described earlier (e.g. “The response time
should be within 3 seconds”), but it can also be stated
in extended form, using a frame-like notation to show
more of the goal’s characteristics. Below is an example
of the long notation form.

Goal Description: The response time should be
within 3 seconds.
Author: James Xion
Creation Time: 15 September, 2006
Kind: NFR goal
Type: ResponseTime
Topic: Account
Condition: <= 3 seconds
Satisfaction: Hard
Weight: 0.8
Label: √
Functional Size: 4
Our approach accounts for the subjective nature of

the goals in a relatively straightforward manner by
annotating the goal with an identifier indicating its
author and the creation time at which it was suggested.

As stated above, goals have an NFR type, which
indicates the particular NFR, such as security,
reliability, etc., and a subject matter or topic. There are
three major, and distinct, kinds of goals: NFR goals,
operationalizing goals and claim goals. Further
definition of the kinds of goals are presented in [3].
NFR goals can be soft or hard. This fact is extracted
from the collected requirement statement and specified
as the goal satisfaction. Operationalizations correspond
to functional decisions (e.g. authenticate method) or
architectural decisions (e.g. use indexing, use
uncompressed forms). Specifying the kind of
operationalizations in the kind of goal slot is essential
for facilitating the functional size calculation, which
we will present shortly.

This characterization of NFRs builds the basis for
adapting scope management methods to the NFR in a
project and adopting them. Scope management, along
with the “weight” and “functional size” characteristics,
is discussed in section 4, and a set of guidelines for

filling in the NFR long notation form is described in
section 5.

4. NFR scope management

We discuss NFR scope management in the context
of using the NFR framework, and with a strong focus
on prioritization, risk and effort estimates.

4.1 NFR prioritization

For design staff to be able to focus their effort on
the most important NFRs, stakeholders should provide
– at the beginning of the RE process – their input on
those NFRs that are critical, and, hence, need to be
implemented first. The prioritization decisions can also
be biased for social, political or technical reasons. The
NFR framework [3] suggests that architects: (i)
identify those NFRs that are vital to the system’s
success as critical; and (ii) identify NFRs that deal
with a significant portion of the organization’s
workload as dominant. In the framework, NFRs with
high priority are identified by an exclamation point (!).
The NFR framework deals with prioritization on a
qualitative basis.

In our approach, we use the Multi-Attribute Utility
Assessment (MAUA) method [4] to manage the
prioritization of NFRs in the context of the NFR
framework. We selected it because it is intuitive and
quantitative, and it has been used in earlier NFR
studies. MAUA provides scoring and weighting
procedures to evaluate the overall utility of a system.
Employing the SIG presented in Figure 1, it is possible
to assign weights to each requirement on a scale from
0.01 [wish list] to 1.0 [mandatory] in a top-down
process. We start by assigning weights to the top-level
NFRs based on the feedback from the stakeholders
and/or domain experts. The entire system is deemed to
be functioning at 100% when all the requirements at
the top level have been satisfied. The offspring for
each NFR decomposition are also deemed to be at
100% when they are satisfied. An updated version of
Figure 1 with the assigned weights shown for each
NFR is presented in Figure 4. The decomposition is
depicted by an enclosing box in the figure. A
quantitative assignment of the weight can be mapped to
a qualitative priority later. We would consider that, if
the NFR's weight is within the [0.75,1] range, then its
priority is High; if it is within the [0.5, 0.75 range,]
then the assigned priority is Medium, [0.25, 0.5] Low
or [0, 0.25] Negligible.

More discussion on prioritizing NFRs and NFR
conflicts is presented in [7, 9].

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Figure 4: Employing the MAUA in an NFR framework

Figure 5: Calculating the functional size of NFRs

4.2 Risk management

The software industry has recognized risk
management as a best practice for reducing the
surprise factors in software projects [8]. This has to

do with how to act early before a concern evolves
into a major crisis.

In this paper, we propose a quantitative risk
assessment based on the mutual dependency of

Performance[Account] Security[Account]

ResponseTime
[Account] {<= 3 seconds} Integrity Confidentiality Availability

Complete
accounts

Accurate accounts
Authorize access to
account information

Validate
[AccountAccess]

Identify[users]

Authenticate
[userAccess]

Use P.I.N. Compare
[signature]

UseUncompressed
Format

UseIndexing

+

-

Audit
[Account]

√

√ √

√ √

x

√ Satisficed goal or Op.
x Non-Satisficed goal or Op.

+

++

+

Require
additional ID

32

243

9

9

11

2

2

2

√

√

 √

x

Space[Account]

√

2
+

Require
additional ID

Performance[Account] Security[Account]

ResponseTime
[Account] Integrity Confidentiality Availability

Complete
accounts Accurate

accounts Authorize access to
account information

Validate
[AccountAccess]

Identify[users]

Authenticate
[userAccess]

Use P.I.N. Compare
[signature]

UseUncompressed
Format

UseIndexing

+
+

Space[Account]

+
++

-

Audit
[Account]

0.4 0.6

0.2 0.8 0.5
0.3 0.2

0.7 0.3

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

NFRs in terms of identifying potential risk in
dealing with conflicting NFRs. During software
execution (that is, when the executable version of
the software is running), hardly any requirements
manifest in isolation. Normally, the provision of
one NFR may well affect the level of provision of
another (e.g. increasing security may increase
response time). We refer to this mutual dependency
as non-orthogonality.

We propose a function M to map each pair of the
identified NFRs to values “+”, “-” or “ ” to indicate
the constructive interaction, damage, or no
interaction between two NFRs at a certain
functionality respectively. M: {(NFRi, NFRj)}
{“+”, “-“, “”}. We state that the negative interaction
at runtime poses a risk which has to be considered.
This is the case when two or more NFRs affect the
same functionality and interact in a negative way
among themselves during execution time. This
happens mainly because the effort required for the
integration process would highly depend on the
level of interdependency between the NFRs, and,
more specifically, on the defined conflicts between
them. To objectively assess NFR conflicts, we
propose to use the local conflict measure [23],
which reports on the level of conflict (LLC: Local
Level of Conflict) for each piece of functionality,
based on the list of NFRs that interact at this
functionality:
LLC(f) = {(NFRk,NFRl)•NFRk,NFRl ∈ NFRsat f ∧
 M(NFRk,NFRl) = ”−”}/n

In this formula, n is the cardinality of the set of
all pairs of NFRs at functionality f (the order is
ignored to avoid duplication). We can relate the
complexity of an arbitrary functionality to other
functionality complexities in the system using the
following formula:
Complexity (f) = {(NFRk,NFRl) • NFRk,NFRl ∈ NFRs
at f
 ∧ M (NFRk,NFRl) = ” − ”}/ ∑n

j=1 {(NFRk,NFRl)
•
 NFRq,NFRr ∈ {NFRj} ∧ M(NFRq,NFRr) =” − ”}


The proposed measurements help in obtaining
quantitative data that are supposed to direct the
effort towards better design strategies and decisions.
For example, high complexity values identify those
pieces of functionality that pose more risk to the
project; these pieces can be closely reexamined by
architects to see which combinations of possible
architectural options provide the best match;
consequently, project managers may decide that
more human resources, time or money needs to be
dedicated to developing those pieces of
functionality.

The collected quantitative data on NFRs lets the
stakeholders plan for actions on how to minimize
the likelihood or impact of these potential problems.
Like the risk management due to FRs, NFR risk
assessment makes it possible to focus on controlling
the most serious risks first, thereby achieving better
scope management of the requirements.

4.3 Effort estimation

The effort needed to develop a hardgoal NFR
clearly depends on the size of its operationalization.
To the best of our knowledge, we are the first to
attempt to measure the size of NFR
operationalizations. In our approach, we apply the
COSMIC FFP method for functional size
measurement [10], which does the following: (i) it
takes as input those FRs that result from NFR
decomposition; and (ii) yields as output the
contribution of the NFR to project size, and,
ultimately, to the estimated effort to build the
system. COSMIC FFP sees each software
functional process as a sequence of events, starting
from the trigger and consisting of four data
movement types: Entry, Exit, Read or Write. An
Entry moves a data group, which is a set of data
attributes, from a user across the boundary into the
functional process, while an Exit moves a data
group from a functional process across the
boundary to the user requiring it. A Write moves a
data group lying inside the functional process to
persistent storage, and a Read moves a data group
from persistent storage to the functional process.
The unit of measurement is the data movement
denoted by the symbol Cfsu (Cosmic Functional
Size Unit). To illustrate the use of COSMIC FFP
within the NFR framework, we refer to the credit
card system presented in section 2 and we measure
the functional size for those operationalizations that
correspond to functional processes/functions. In this
example, suppose that the “Compare Signature”
operationalization will be automated and will thus
correspond to a functional operation. This operation
requires three data movements: (i) Entry, for the
signature to be compared; (ii) Read, for the
signature to be compared with the one on the disk;
and (iii) Exit. So, the functional size for “Compare
Signature” is 3 Cfsu. Similarly, we carry out the
measurement for all non-decomposable
operationalizations that correspond to functional
operations/functions.

Calculating the functional size of NFRs is a
bottom-up measuring process in which the selected
operationalizations are aggregated to calculate the
sub-NFRs and their respective NFRs until we obtain
the final value. The aggregation of the size values is

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

theoretically valid because the COSMIC-FFP unit
of measurement, the Cfsu, is on the ratio scale [17].
Figure 5 illustrates this process.

To make sure we properly integrate the
functional size measurement process into the NFR
framework, we suggest that size and effort
estimation be performed right after task 3 and
before task 4 in the NFR framework process
presented in section 2. The measurement data will
provide the rationale required for selecting the
appropriate operationalizations. For example,
suppose that the two operationalizations “Compare
Signature” and “Use P.I.N” are 3 Cfsu and 2 Cfsu
in size respectively. We have to choose one
operationalization to satisfy “Authenticate”. We
then may well consider choosing “Use P.I.N”, as it
has a smaller functional size. Bearing in mind that
effort is a function of size [8], choosing the smaller
operationalization in terms of functional size
implies that less effort needs to be invested in the
implementation of the particular NFR. More on
using the COSMIC-FFP for measuring the
functional size of NFRs is presented in [18].

Furthermore, we use the functional size numbers
to obtain a rough estimate of the effort needed to
implement the NFRs. Effort is usually measured in
person-months; earlier experiments suggest that one
COSMIC-FFP size unit (Cfsu) requires
approximately 2-3 person-months; this number
varies from organization to organization and from
project to project. Rough effort estimation, then, is
obtained from size measurement by using a simple
mathematical operation. For example, to implement
“Use P.I.N” (an NFR with size 3) would take
between 6 and 9 person-months. However, we make
a note that this is an early estimation only, and, as
such, it should be treated with great care [Jon98].
To obtain a more precise effort estimate would
require collecting industrial statistical data on the
NFR size and the effort required to incorporate the
NFRs into the solutions. This is our most important
topic for our future research.

Effort estimation data can be seen as quantitative
feedback which design staff need in order to plan
for and control the achievement of the NFRs. We
therefore take it as an additional criterion to
consider in NFR scope management.

5 Discussion

To properly manage the scope of NFRs in the
RE process within a project, a revised set of
guidelines needs to be provided. Their purpose is to
build the basis for a systematic process of
transforming the vague stakeholders’ NFRs

statements into more precise and objective-enabled
requirements definitions. This motivated us to
revise the list of the seven tasks discussed in section
2, as explained below.

5.1 Revising the set of guidelines

Our revision includes the addition of one new
task and the enhancement and augmentation of a
few existing tasks. Our revised task list includes the
following:
(i) Perform NFR tasks 1 to 3, as discussed in

section 3. While doing so, use the NFR long
notation form to describe the attributes from
Goal description to Weight.

(ii) Apply the functional size measurement
method on the operationalizations, and
calculate the functional size of the NFRs, as
discussed in section 4. The functional size is to
be reported in the NFR long notation form.

(iii) Perform NFR framework tasks 4 to 7, as
discussed in section 2. Use the long notation
form to fill in the label characteristic
indicating the decision on the level of
satisfaction.

5.2 Viewpoints to adopt when managing
NFR

State-of-the-art functional size measurement
(FSM) practices [14,15,17] suggest that a choice be
made between two perspectives which estimators
may adopt when approaching the NFRs in a project.
The first (and still predominant) viewpoint on how
to quantify the NFRs implies: (i) that an NFR be
first decomposed into FR; and then (ii) an FSM
method be used to size both FR and NFRs. We
demonstrated how this works in section 4.3, with
the use of COSMIC FFP to size the
operationalization of one NFR.

The alternative viewpoint, which has most
recently attracted attention in the FSM literature [8],
assumes that in each project there are always some
NFRs which should not be decomposed into FRs
when sizing. According to this viewpoint, these
NFRs are considered to be criteria for making
architectural design decisions. Thus, instead of
decomposing them into FR, it makes more sense to
treat them as contextual factors expected to
introduce uncertainty into the estimation process
[8]. To judge how significant these uncertainties
(due to NFRs) are, we need to identify and report
these NFRs in the final project estimate. So, the
final estimate would include two components: (i)
the Cosmic FFP due to FR; and (ii) the sizing
numbers of the NFRs.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Our paper agrees with this second viewpoint on
quantifying NFRs. It is also consistent with the
position taken by RE researchers regarding NFRs
[1,11,12,16], according to which not all of them
should be decomposed into FRs. If NFRs serve as
norms [11] and as criteria for making architectural
design choices, then they should not be decomposed
into FRs. Examples are global NFRs like
survivability, multi-currency reporting and
customizability. Of course, it is possible to
decompose an NFR which says that “the system
shall support multiple currencies” into an FR like
“each user is offered the functionality to select a
currency, to select all documents that should use
this currency, to generate reports in this currency,”
and so on. However, it makes more sense to
consider this NFR as a criterion for exploring and
making choices over alternative architectural
options. Our motivation to do so rests on the
following observations: (1) the above
decomposition into FR (which is needed for effort
estimators and is used for size counting) refers to
functionality that the users did not ask for at the
time of RE; (2) the NFR is a norm to which the
system must conform [12]; (3) the currency in an
application tells us about the project context, hence
it may point to a contextual factor that may well be
a source of risk [8] to obtaining realistic size and
effort estimates. Moreover, global business
information systems which typically produce
currency-specific reports for specific user groups
should be able to prepare reports according to the
accounting standards adopted by the user group.
The design architects must then choose a way to set
up this multi-currency NFR.

6 Conclusion

Existing NFR approaches fall short when
characterizing and quantifying hardgoal NFRs.
These approaches primarily only adequately address
the softgoal NFR. They also lack quantitative
support for objective analysis and decision-making.
We propose a solution to these issues and elaborate
an extension to the NFR framework to allow
modeling and analysis of hardgoal NFRs. We have
used the extension to devise a new approach to the
scope management of NFRs which takes into
account three criteria, namely, customer-defined
priority, size and risk. Drawing on the revisited
conceptual foundations, we have also proposed
guidelines as to the techniques to be present in those
requirements modeling approaches which are likely
to employ the extension of the NFR framework.
Our research activities planned for the immediate

future include: (i) carrying out case studies at
company sites to extend our understanding of the
problems and solutions in managing the scope of
NFRs; (ii) exploring how NFRs impact the total
cost of projects; and (iii) defining a process for NFR
conflict resolution based on objectively assessed
priorities. Each new case study is expected to shed
light on the problem of estimating hard goal NFRs
and help form “the bigger picture” of industrial
NFR practices, the characteristics of NFR conflict
resolution processes and the problems of the size
and effort estimation areas.

References
[1] Lindstorm, D. R., Five “Ways to Destroy a
Development Project”, IEEE Software, September 1993,
pp. 55-58.

[2] Breitman, K. K, Leite J. C. S. P. and Finkelstein A.
“The World's Stage: A Survey on Requirements
Engineering Using a Real-Life Case Study”. Journal of
the Brazilian Computer Society No 1 Vol. 6, Jul. 1999,
pp.13-37.

[3] Chung, L., B. A. Nixon, E. Yu and J. Mylopoulos,
Nonfunctional Requirements in Software Engineering.
Kluwer Academic Publishing, 2000.

[4] Ryan, A. J., “An Approach to Quantitative Non-
Functional Requirements in Software Development”,
Proceedings of the 34th Annual Government Electronics
and Information Association Conference, 2000, pp.13-20.

[5] Mylopoulos, J., Chung, L. and Nixon, B.,
“Representing and Using Nonfunctional Requirements: A
process Oriented Approach”. IEEE Trans. S.E. 18, 6,
1992, pp. 483-497.

[6] Rosa, N. S., Cunha, P. R. F. and Justo, G. R. R.,
“Process NFL: A language for Describing Non-
Functional Properties”. Proc. 35th HICSS, IEEE Press,
2002, pp.3676-3685.

[7] Moreira, J. Araujo and I. Brito, “Crosscutting Quality
Attributes for Requirements Engineering”, In 14th Int.
Conf. on Soft. Eng. and Knowledge Eng.. 2002. pp. 167-
174.

[8] Pfleeger, S. L., F. Wu and R. Lewis, Software Cost
Estimation and Sizing Methods: Issues and Guidelines,
RAND Corporation, 2005.

[9] Daneva, M. M. Kassab, M. L. Ponisio, R. J. Wieringa
and O. Ormandjieva, “Exploiting a Goal-Decomposition
Technique to Prioritize Non-functional Requirements”.
Proc. of the 10th Workshop on Req. Engineering,
Toronto, Canada, May’ 07.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

[10] Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre,
D. and Symons, C., COSMIC FFP – Measurement
Manual (COSMIC implementation guide to ISO/IEC
19761:2003), École de technologie supérieure –
Université du Québec, Montréal, Canada, 2003,
URL: http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp
.

[11] Mylopoulos, J., “Goal-oriented Requirements
Engineering”, Keynote at the 14th IEEE Int. Conf. on
Req. Eng., IEEE Comp. Society Press, 2006.

[12] Wieringa, R., The Declarative Problem Frame:
“Designing Systems that Create and Use Norms”, Proc.
of the 10th IEEE Int. Workshop on Software Specification
and Design, IEEE Computer Society Press, 200, pp. 75-
85.

[13] Jones, C., Software Assessment, Benchmarks, and
Best Practice, Addison-Wesley, 2000.14. ISBSG,
Practical Software Estimation, 2nd Ed., Int. Software
Benchmarking Standard Group, 2006.

[14] ISBSG, Practical Software Estimation, 2nd Ed., Int.
Software. Benchmarking Standard Group, 2006.

[15] FISMA, Experience Situation Analysis, Finnish
Software Metrics Association, Helsinki, 2001.

[16] Glinz, M., “Rethinking the Notion of Non-
Functional Requirements”, Proc. of the 3rd World
Congress for Software Quality, Munich, Germany, 2005,
Vol. II, pp. 55-64.

[17] Fenton N.. and, S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach, PWS Publishing, 2nd
edition, revised printing, 1998.

[18] Kassab M., Ormandjieva, O., Daneva M. and Abran,
A., “Size Measurement of Non-functional Requirements
and Their Testing with COSMIC-FFP”. Submitted to the
International Conference on Software Process and
Product Measurement, Mallorca, Spain, November 2007.

[19] Azar, J., R. K. Smith and D. Cordes, “Value
Oriented Prioritization”, IEEE Software, Jan, 2006.

[20] Lehtola, L., M. Kauppinen and S. Kujala,
“Requirements Prioritization Challenges in Practice”,
Proc. of the 5th Int´l Conf. on Product Focused Software
Process Improvement (PROFES), April 2004, pp. 497-
508.

[21] Berander, P. and A. Andrews, “Requirements
Prioritization”, in Engineering and Managing Software
Requirements, ed. Aurum, A., and Wohlin, C., Springer
Verlag, Berlin, Germany, pp. 69-94.

[22] Davis A., “The Art of Requirements Triage”, IEEE
Computer, 36 (3), March, 2003, pp. 42 – 49.

[23] Kassab, M., O. Ormandjieva and C. Constantinides,
“Providing Quality Measurement for Aspect-Oriented
Software Development”. Proceedings of the 12th Asia-
Pacific Software Engineering Conference, December
15-17, 2005, pp. 769-775.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

