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Abstract

The verification of quantitative aspects like performance and dependability by means of model checking has
become an important and vivid area of research over the past decade.
An important result of that research is the logic CSL (continuous stochastic logic) and its corresponding
model checking algorithms. The evaluation of properties expressed in CSL makes it necessary to solve large
systems of linear (differential) equations, usually by means of numerical analysis. Both the inherent time
and space complexity of the numerical algorithms make it practically infeasible to model check systems with
more than 100 million states, whereas realistic system models may have billions of states.
To overcome this severe restriction, it is important to be able to replace the original state space with a
probabilistically equivalent, but smaller one. The most prominent equivalence relation is bisimulation, for
which also a stochastic variant exists (Markovian bisimulation). In many cases, this bisimulation allows for
a substantial reduction of the state space size. But, these savings in space come at the cost of an increased
time complexity. Therefore in this paper a new distributed signature-based algorithm for the computation
of the bisimulation quotient of a given state space is introduced.
To demonstrate the feasibility of our approach in both a sequential, and more important, in a distributed
setting, we have performed a number of case studies.
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1 Introduction

It is extremely important to develop techniques that allow the construction and

analysis of distributed computer and communication systems. These systems must

work correctly and meet high performance and dependability requirements. Using

stochastic model checking, it is possible to perform a combined analysis of both

qualitative (correctness) and quantitative (performance and dependability) aspects
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of a system model. Models that incorporate both qualitative and quantitative as-

pects of system behaviour can be described using various high-level formalisms,

such as stochastic process algebras [17,14], stochastic Petri nets [1] and stochastic

activity networks [25] (SANs).

In order to model check stochastic systems, over the last years a number of

stochastic extensions of the logic CTL [7] have been devised. The most prominent

extension is the logic CSL [3] (continuous stochastic logic). The applicability of

stochastic model checking is limited by the complexity, i.e., the size of system models

that are to be verified. At the heart of stochastic model checking lies the solution of

huge sparse systems of linear (differential) equations. This limits the size of systems

that can be practically analysed to some 108 states. To overcome these limitations

we can think of several approaches. An important approach in this context is to

reduce the state space size by the use of a notion of Markovian bisimulation.

We are aware of several approaches to reduce a given transition system with re-

spect to a Markovian bisimulation. In the stochastic process algebra tool TIPP [15]

an algorithm for Markovian bisimulation reduction based on the classical partition

refinement algorithms [24,20,10] has been used. The bcg_min tool in the CADP

toolset also supports the minimisation of transition systems with respect to Marko-

vian bisimulation [12]. In [16] symbolic implementations, i.e., implementations that

rely on multi-terminal binary decision diagrams [11] (MTBBDs) are used. More

recently, in [8], a symbolic approach for signature-based [5] computation of the

Markovian bisimulation quotient is presented. Only in [8] it is possible to use state

labels which is necessary for model checking CSL formulae. However, no Markovian

bisimulation for CSL model checking was applied in [8]. For CSL model checking

a variant of Markovian bisimulation, Markov-AP bisimulation [3], has been intro-

duced. For Markov-AP bisimulation, the atomic propositions (APs) that hold in a

state are additionally taken into account. The only approach that actually applies

a notion of bisimulation suited for CSL model checking is reported in [21]. The

authors use the bisimulation algorithm of [9]. The drawback of all these approaches

is their high time and memory complexity.

Therefore, in this work we propose a distributed signature-based Markov-AP

bisimulation algorithm. In contrast to [21] we apply a signature-based algorithm [5]

which is more memory-efficient than the algorithm from [9] used in [21]. In some

cases, our algorithm is also faster than the algorithm applied in [21]. Furthermore,

we are not aware of any approach that computes the quotient of any notion of a

stochastic bisimulation relation in a distributed way.

The paper is further organised as follows. In Section 2 we introduce the syn-

tax and semantics of CSL, the notion of Markov-AP bisimulation, as well as a

signature-based definition of Markov-AP bisimulation. In Section 3 a distributed

implementation for the signature-based computation of the Markov-AP bisimula-

tion quotient is presented. In Section 4 we present a few widely used case studies in

the realm of stochastic verification. These case studies are used in Sec. 5 and Sec. 6

to evaluate the efficiency of the sequential and the distributed signature-based tools,

respectively. The paper ends with a summary and outlook.
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2 CSL and Markovian Bisimulation

In this section we introduce the syntax and semantics of CSL, as well as a bisimu-

lation relation that preserves the validity of CSL formulae.

2.1 Syntax and Semantics of CSL

The logic CSL [2,3] provides means to express and verify performance and depend-

ability properties.

2.1.1 Syntax of CSL

The logic CSL extends CTL by replacing the untimed next (X) and until (U) opera-

tor with timed variants; it replaces the path quantifiers E and A with a probabilistic

variant P⊲⊳p, to reason about the probabilities with which a path formula is satisfied

in the given model. Finally, CSL provides a steady-state operator S⊲⊳p to reason

about the the stationary system behaviour.

Formally, the syntax of CSL can be defined as follows:

Definition 2.1 [Syntax of CSL] Let p ∈ [0, 1], q ∈ AP , and ⊲⊳∈ {≤, <,≥, >}. State

formulae of CSL are defined by the following grammar:

Φ := q
∣

∣ ¬Φ
∣

∣ Φ ∨ Φ
∣

∣ S⊲⊳p(Φ)
∣

∣ P⊲⊳p(φ)

where φ is a path formula that is defined as follows:

XIΦ
∣

∣ Φ UI Φ

I = [t, t′] is a closed time interval with t ≥ 0 and t′ 6= 0.

2.1.2 Semantics of CSL

At first, we have to introduce the semantic model of CSL, which is a state-labelled

continuous-time Markov chain (SMC).

Definition 2.2 [State-Labelled Continuous-Time Markov Chains] A state labelled

continuous-time Markov chain (SMC) M is a triple:

M = (S,R,L)

where:

• S is a finite set of states.

• R ⊆ S × IR × S is the transition relation.

If (s, λ, s′) ∈ R, we write s
λ
−→ s′ and λ ∈ IR is the rate with which a state

transition occurs, i.e. λ is the transition rate from state s to s′.

• L : S 7→ 2AP a state labelling function that associates with each state a set of

atomic propositions that are true in this state.

Definition 2.3 [Paths in SMCs] Let M be an SMC. An infinite path σ is a sequence

s0
t0−→ s1

t1−→ ...si
ti−→, where for all i ∈ IN , si ∈ S, ti ∈ IR, is the actual sojourn time

in state si, A finite path is a sequence s0
t0−→ s1

t1−→ ...sn−1
tn−1

−−−→ sn such that sn is

absorbing.
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PATHM is the set of all finite and infinite paths in M, PATHM(s) is the set of

all paths with initial state s.

Due to lack of space, we will provide only an informal semantics of CSL. For a

more detailed account of the semantics of CSL, we refer to [3]. Intuitively, the CSL

formulae have the following meaning:

• S⊲⊳p(Φ): The stationary state probability to be in a state that satisfies Φ is within

⊲⊳ p.

• P⊲⊳p(φ): The probability measure of all paths, satisfying φ conforms to the bounds

imposed by ⊲⊳ p.

• XIφ is the time bounded variant of the next-operator known from CTL. The path

formula XIφ expresses that a state that satisfies φ must be reached after a passage

of at least t and at most t′ time units, if I = [t, t′].

• Φ UI Ψ is the time bounded variant of the CTL until-operator. Φ UI Ψ expresses

that a state satisfying Ψ must be reached at a time point that lies within I = [t, t′].

All states visited before such a Ψ state must satisfy Φ.

2.2 Bisimulation for CSL

To combat the notorious state space explosion problem, equivalence relations like

bisimulation in the functional world or Markovian bisimulation in the Markovian

world have turned out to be quite useful. In the context of SMC a variant of

Markovian bisimulation, Markov-AP bisimulation, can be defined, to reduce the

state space of SMCs thereby preserving the validity of CSL formulae that are valid

on the unreduced SMC.

Definition 2.4 [Markov-AP bisimulation] Given an SMC M ≡ (S,R,L), an equiv-

alence relation B ⊆ S×S is a Markov-AP bisimulation over M if (s, s′) ∈ B implies

(i) L(s) = L(s′), and

(ii) R(s,C) = R(s′, C) for all C ∈ S/ B

with R(s,C) =
∑

s′∈C R(s, s′), S/B = {C1, C2, ..., Cn} is the partitioning of S into

its equivalence classes Ci with respect to B , R(s, s′) denotes the transition rate

from state s to state s′. Two states s and s′ are Markov-AP bisimilar, if there is a

Markov-AP bisimulation B such that (s, s′) ∈ B .

Definition 2.5 Let [s] B be the equivalence class of s with respect to Markov-AP

bisimulation relation B , then the SMC M/ B is defined as follows:

M/ B = (S/ B , R B , L B )

where

• S/ B = {C1, C2, ..., Cn}

• R B ([s] B , C) = R(s,C)

• L B ([s] B ) = L(s)

Without proof, we cite the following theorem [3], which states that M/B satisfies

the same CSL properties as M:

4



Blom, et al.

Theorem 2.6 Markov-AP bisimulation preserves the validity of CSL formulae; i.e.

let B be a Markov-AP bisimulation relation, then it holds for every CSL formula:

M, s |= Φ ⇔ M/ B , [s] B |= Φ

For the computation of the bisimulation quotient it is crucial to choose an initial

partition. For Markov-AP bisimulation we choose to initially group those states

together that bear the same state labelling. Starting from this initial partition, the

partitioning is refined during the computation, until no further refinement can be

found, i.e. a fixed-point is reached.

2.3 Signature-based Markov-AP Bisimulation

The signature of a state with respect to an equivalence relation is supposed to reflect

the transitions the state has into the various equivalence classes. For Markov(-AP)

bisimulation these transitions are the rates of the states into the classes:

Definition 2.7 Given an SMC M and an equivalence relation B on S, the Markov

signature of a state s ∈ S with respect to B is given by

sig(s, B ) = {(R(s, [s′] B ), [s′] B ) | s → s′}

Definition 2.8 Given an equivalence relation B on S, we define the refinement of

B as the equivalence relation sig[ B ], such that

(s, s′) ∈ sig[ B ] ⇔ (s, s′) ∈ B ∧ sig(s, B ) = sig(s′, B )

We say that B is stable if sig[ B ] = B . The coarsest stable equivalence refining I

is computed by the following basic algorithm for signature refinement:

sig∗[I] :=

B := I

loop

B ′ := sig[ B ]

if B ′ == B return B

B := B ′

The Markov signature yields Markov-AP bisimulation reduction if the initial

partition is chosen to be label-equivalence:

Theorem 2.9 For finite SMC’s the coarsest possible Markov-AP bisimulation is

equal to sig∗[ B ], where (s, s′) ∈ B ⇔ L(s) = L(s′).

Proof. The proof proceeds along the same lines as in [4]. 2

3 Distributed Implementation of Signature-based Markov-

AP Bisimulation

In this section, we describe how to compute sig∗[ B ] in a distributed setting. The

algorithm used is a variant of the algorithm described in [4]. First, we assume
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Markov Chain:

label[Ni] array storing the atomic propositions holding in a state.

Sets of atomic propositions are represented as 32 bit bit-

sets.

inedge[W−1
j=0 ][Nj i] array of arrays where inedge[j][e] stores the destination

state of edge number e from j to i.

rate[ΣW−1
j=0 Ni j ] array storing the rates of outgoing edges.

destworker[ΣW−1
j=0 Ni j] array storing the destination worker of outgoing edges.

destedge[ΣW−1
j=0 Ni j ] array storing the destination edge number of outgoing

edges.

begin[Ni + 1] array where begin[s] is the index in rate, destworker and

destedge of the first edge of state s.

Equivalence Classes:

stateclass[Ni] array storing the equivalence class of local states

edgeclass[W−1
j=0 ][Ni j] array of arrays where edgeclass[j][e] stores the class of the

destination state of edge e form i to j.

Locked Data Structures:

queue[W] internal queue to match submitted hash table request with replies

hashtable hash table that maps pairs of class numbers and signatures to equiv-

alence class numbers

Table 1
Distributed data structures

that we can compute a globally unique byte string representation of signatures and

explain distributed refinement. Second, we explain how to compute such a globally

unique byte string.

We start by explaining how the SMC is distributed. There are W workers which

are numbered 0, . . . ,W − 1. The states are distributed evenly over the workers,

where Ni is the number of states of worker i. These states are numbered from 0 to

Ni − 1. The distribution of states over sets (Si)
W−1
i=0 leads to a distribution of edges

over the sets (Ei j)
W−1
i=0

W−1
j=0 . The edges between each pair of workers i and j are

numbered from 0 to |Ei j|−1. At each worker, we store the atomic propositions of its

states, the rates of the outgoing transitions, the edge numbers of the outgoing edges

and the destination states of the incoming edges. Thus two workers can exchange

information along an edge by referring to the number of the edge. See the first

part of Table 1. This table contains a listing of variables. In case of array variables

the dimensions are included. Note that, we have two arrays of arrays in which the

lengths of the inner arrays depend on the index of the first dimension. For example,

a 4 × 4 triangle x would be written down as x[4i=1][i].

We continue by explaining the reduction algorithm in Table 2. Equivalence

relations on states are stored by numbering equivalence classes and storing that

number in an array, cf. the middle of Table 1. To compute the refinement sig[ B ]

of B , we must compute the signatures and find new equivalence class numbers.
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var me // identity of worker

reduce()

for (i = 0; i < Nme; i ++) stateclass[i]=label[i];

repeat

// First exchange class numbers:

send-block() ‖

(

W−1

‖
w=0

receive-block(w)

)

// Then compute new class numbers:

reset hashtable

compute-signatures() ‖

(

W−1

‖
w=0

hash-server(w)

)

‖

(

W−1

‖
w=0

receive-index(w)

)

until stable

send-block()

for(i = 0; i < max(N∗me); i ++)

for(w = 0;w < W ;w ++) if(i < Nw me)

send stateclass[inedge[w][i]] to w

receive-block(w)

for(i = 0;Nme w; i ++) receive edgeclass[w][i] from w

compute-signatures()

for(i = 0; i < Nme; i ++)

sig=pair(stateclass[i],signature(i));

send sig to who(sig)

put i in queue[who(sig)]

for(w = 0;w < W ;w ++)

send empty to w

put -1 in queue[w]

hash-server(w)

loop

receive sig from w

if (sig == empty) return

let pos = position of sig in hashtable

send pos to w

receive-index(w)

loop

get i from queue[w]

if (i < 0) return

receive stateclass[i] from w

Table 2
Distributed signature refinement algorithm

To compute the signature of a state, a worker needs to know the equivalence class

numbers of all successor states. Because these successor states might be on a differ-

ent worker, we first need to communicate this information. That is, the equivalence

class number of every state must be sent to (the worker owning) any predecessor

of that state. Computing new equivalence class numbers is achieved by inserting
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pairs of old equivalence class numbers and signatures (strings of bytes) into a global

distributed hash table. The test B == B ′ is implemented by counting the number

of classes in B′ and B . Because we know that B ′ is a refinement of B , we know

that B == B ′ is true if | B ′| = | B |.

To avoid latency problems, the distributed hash table works asynchronously.

Given a string of bytes and an address for the result, it is decided which worker is

responsible for that string. Then the string is sent to that worker, the address is

written into a FIFO queue and we return immediately. For each of the FIFO queues

there is a thread that reads addresses, waits for the response from the remote worker

and writes the responses to the correct addresses.

As described above the algorithm uses many small messages. In practice these

messages are treated as a continuous stream of data which is sent in blocks of

multiple kilobytes.

Representing a signature for Markov(-AP) bisimulation as a globally unique byte

string is not a trivial exercise: to compute signatures we need to add a small number

of rates. If we represent the rates as floating point numbers then we have to deal

with errors in the sums, which means that we cannot use the sums directly in the

byte string representation because signature equality is decided by comparing the

byte strings.

We have implemented two solutions to this problem. The first solution uses floats

for the rates and rounds the resulting sums to get a unique representation. The

second solution translates the given rates to rational numbers and thus eliminates

the errors from the sums. Neither solution is perfect: using rounding it is possible to

create an example where the true value of a sum is a boundary value for rounding

and where some sums add to just below the boundary and others to just above,

resulting in two distinct signatures for states which should have the same signature.

Translating floats to rational numbers is tricky because we need to translate them

in such a way that if we have two sequences, which as floats add up to the same

value up to ǫ then they should add up to the same number as rational numbers.

We used the latter solution in our implementation, but a detailed description goes

beyond the scope of this paper.

4 Case Study Descriptions

We will now describe four case studies from the literature, with certain CSL prop-

erties that we want to be preserved by Markov-AP bisimulation.

4.1 Simple Peer-to-Peer Protocol

This case study is based on [23]. Here, a simple peer-to-peer protocol based on

BitTorrent is described. N + 1 clients try to download a file, that is divided into K

blocks. In the initial state, there is one client that is in possession of the entire file,

i.e., all K blocks, and N clients have no block at all. Each client can download a

block from each other client. Here, we investigate a system with K = 5 blocks and

N = 2, 3, 4 additional clients. A typical CSL property for the Peer-to-Peer Protocol

is:
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• Is the probability that all clients have received all blocks by time bound less than

T larger than 99 percent?

4.2 Workstation Cluster

This case study is based on [13]. The system consists of two sub-clusters, where

each sub-cluster possesses N workstations. The workstations in the respective sub-

clusters are connected according to a star-topology with a central switch. The

sub-cluster central switches communicate via a central backbone. All components

are subject to failures and can be repaired. For all components a single repair unit is

available. The employed repair strategy is random, i.e., if more than one component

awaits repair, the repair unit chooses the component which is to be repaired next

according to a typically uniform probability distribution.

For the Workstation Cluster, the CSL property of interest is:

• The system will always be able to offer premium QoS at some point in the fu-

ture, where premium service means, that 3N
4 workstations are operational and

connected via switches and backbone.

4.3 Polling System

Here, a cyclic server-polling system with N stations is analysed. The model was

introduced in [19]. The server polls the N stations in a cyclic way. After polling

station i, station i is served. If station i is idle, it is skipped.

For the Polling System, we define a number of CSL requirements, the system

has to satisfy:

(i) What is the probability that in the long run station 1 is awaiting service?

(ii) What is the probability that in the long run station 1 is idle?

(iii) Is the probability, once a station becomes full, it will eventually be polled above

90 percent?

(iv) Is the probability that from the inital state, station 1 is served before station

2 below 25 percent?

This leads to the formulae

(i) S⊲⊳p(s1 = 1&!(s = 1&a = 1))

(ii) S⊲⊳p(s1 = 0)

(iii) P≥0.9(true U (s = 1&a = 0))

(iv) P<0.25(!(s = 2&a = 1) U (s = 1&a = 1))

where s1 = 1, (s = 1&a = 1), etc. can be regarded as state labels from the high-level

specification.

4.4 Kanban System

This case study was originally described in [6]. We model a Kanban system with

four cells, a single type of Kanban cards, and the possibility that some workpiece
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N unreduced SMC reduced SMC reduction time

states transitions states transitions mrmc ltsmin

P
2
P

2 1,024 5,121 56 141 < 0.1msec. < 0.1msec.

3 32,768 245,761 792 3,961 0.12 sec. 0.19 sec.

4 1,048,576 10,485,761 15,504 124,033 10.28 sec. 11.17 sec.

clu
ster

8 2,772 12,832 1,413 6,443 0.01 sec. 0.03

16 10,132 48,160 5,117 24,131 0.04 sec. 0.42 sec.

32 38,676 186,400 19,437 93,299 0.19 sec. 3.22 sec.

64 151,060 733,216 75,725 366,803 0.96 sec. 24.78 sec.

128 597,012 2,908,192 298,893 1,454,483 4.38 sec. 89.24 sec.

256 2,373,652 11,583,520 1,187,597 5,792,531 20.79 sec. 793.78 sec.

p
o
llin

g

10 15,360 89,600 1,536 8,960 0.051 sec. 0.17 sec.

12 73,728 503,808 6,144 41,984 0.624 sec. 1. 19 sec.

14 344,064 2,695,168 24,576 192,512 5.51 sec. 7.53 sec.

16 1,572,864 13,893,632 98,304 868,352 32.12 sec. 38.61 sec.

18 7,077,888 69,599,232 393,216 3,866,624 218.66 sec. 277.39 sec.

19 14,942,208 154,402,816 786,432 8,126,464 - 667.59 sec.

ka
n
b
a
n

3 58,400 446,400 58,400 446,400 0.989 sec. 0.52 sec.

4 454,475 3,979,850 454,475 3,979,850 11.9 sec. 5.75 sec.

5 2,546,432 24,460,016 2,546,432 24,460,016 100.3 sec. 42.04 sec.

Table 3
Comparison of mrmc and ltsmin.

may need to be reworked. We use N to denote the number of cards in the system.

For the Kanban system we have not specified CSL formulae.

5 Empirical Evaluation: Sequential Case

In this section we show the feasibility of our signature-based reduction algorithm

by means of the case studies from Sec. 4. That is, we compare both the time and

memory efficiency of a serial version of our algorithm, as implemented in ltsmin

with that of mrmc [22,21]. The next section is devoted to the evaluation of the

distributed version of our algorithm.

5.1 General Remarks

As a high-level tool for the specification of the models of Sec. 4 we used the tool

PRISM[18]. Using the PRISM specification, we generated the SMC, and stored it

in the so called tra-format [15]. This format is the input format for mrmc, so we

decided to use it also for ltsmin, although the tra-format is text-based and hence IO-

inefficient. PRISM was also used for the specification of CSL properties we defined

over the models under analysis. The state labels, i.e. the atomic propositions,

that guide the initial state space partitioning for Markov-AP bisimulation are also

exported from PRISM and stored in a separate file, that is required by mrmc, thus

again we decided to use the same for ltsmin.

In the sequel, we do not take into consideration the time for state space gener-

ation, or reading the SMC from disk. All run times mentioned are for the compu-

tation of the bisimulation quotient of the given SMC only.

All serial experiments were conducted on a dual Intel E5320 (quad core 1.86GHz)

and 4 GB RAM, running SuSe Linux 10.2.
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5.2 Simple Peer-to-Peer Protocol

As we can see from the first block of table 3, we obtain substantial savings in the

state space if we compute the Markov-AP bisimulation quotient. If we compute the

Markovian bisimulation quotient, these savings still increase, e.g. for N = 4, we

can reduce the original over 1 million states large state space to only 126 states.

We can observe that in this case mrmc is slightly faster than ltsmin, but for

N = 4 mrmc used a maximum of 289MB, whereas ltsmin required about 125 MB of

main memory for the same system.

5.3 Workstation Cluster

From the second block of table 3 we can see, that we can save about one half of the

state space, when applying Markov-AP bisimulation.

For this problem, we can see a clear run time advantage of mrmc over ltsmin.

On the other hand, ltsmin requires much less memory than mrmc, e.g. for N = 256,

mrmc has a peak memory requirement of 682 MB, whereas ltsmin only requires 132

MB.

The reason for the big difference in time is that for n states and m transitions

the complexity of mrmc is O(m log n), whereas the complexity of ltsmin is O(mI),

where I is the number of iterations needed. Worst case I can be n, but in practice

we have never encountered an example where I was worse than O(N). Because the

cluster example does not grow as fast with N as the other examples this means that

ltsmin is not as effective. For strong bisimulation it is known that in similar cases it

is very effective to use incremental signature computation. It is future work to see

if that carries over to Markov(-AP) bisimulation.

5.4 Polling System

If only a Markovian bisimulation quotient is computed, we obtain the state space

reduction shown in the third block of table 3.

In the Polling System case, we can observe that mrmc has (slight) run-time

advantages over ltsmin, but for peak memory usage, ltsmin is again less demanding

then mrmc. For N = 18 mrmc used a maximum of 2GB, whereas ltsmin required

about 779 MB of main memory for the same system. For N = 19 mrmc ran out of

memory, and ltsmin required about 2 GB of main memory.

We have also computed the Markov-AP bisimulation quotient for all formulae

from Section 4.3 in isolation. We observed that neither of the sets of state labels,

that is induced by these formulae led to any reduction of the state space size.

In the case where we compute the Markov-AP bisimulation quotient, we observed

that for N = 18 mrmc runs out of memory, whereas for ltsmin the peak memory

consumption was about 960 MB, and for N = 19 about 2 GB (no table is included).

5.5 Kanban System

For the Kanban system we first computed the bisimulation quotient without state

labellings, i.e. for a pure Markovian bisimulation. This led to no reduction of the

state space size, therefore, it is obvious, that also no reduction can be expected,
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sequential 1 worker 2 workers 4 workers 8 workers

time mem time mem time mem time mem time mem

polling 16 70 201 356 765 155 382 87 196 39 94

cluster 256 721 163 1646 613 1191 312 805 149 1126 72

peer-to-peer 4 10.7 132 13.4 330 7.8 164 4.0 89 2.6 44

Kanban 5 32 357 691 1491 198 714 70 349 27 167

Table 4
Wall clock time in seconds, maximum memory per worker in MB.

when reducing the state space with respect to some CSL formulae. In the last block

of table 3 the run times for both mrmc and ltsmin can be found.

Not very surprising, when not taking different rates into account, i.e. if we

compute a simple strong bisimulation quotient, the state space of the Kanban system

is reducible. For example for N = 3 the state space can be reduced from 58,400 to

33,200 states.

In the Kanban case, it can be observed that ltsmin is superior to mrmc both

in reduction times and memory usage. We observed that ltsmin uses less than one

sixth of the maximum memory requirements of mrmc, e.g. ltsmin took 294 MB of

main memory for N = 5, whereas mrmc had a peak memory requirement of 1.9 GB.

6 Empirical Evaluation: Distributed Case

To test our distributed implementation, we used 4 dual Xeon E5320 servers with

8GB each. As test cases we used the polling 16, cluster 256, peer-to-peer 4 and

Kanban 5 problems. In each case the full set of atomic propositions was used during

reduction. (So the results for cluster 256 cannot be compared to those in the last

section.) Each of those problems was executed using 1, 2, 4 and 8 workers, where

in the last case two workers had to run on one server. The results of those tests are

enumerated and compared to ltsmin in Table 4. The run time info is visualised and

compared to ltsmin and mrmc in Fig. 1.

It can be observed that for both time and memory, the distributed tool running

with one worker is quite a bit more expensive than the sequential tool. A large part

of these differences can be explained by the difference in data structures. First, the

sequential tool stores the graph in such a way that it has access to all successor

states, but not to predecessors. For n states and m edges it needs n + 2m words

of memory. Storing the old and new equivalence class numbers is done per state

and requires 2n additional words. In a distributed setting, access to remote states

requires remote memory access which we chose to avoid. That required storing

m words of predecessor information in addition to the n + 2m words for successor

information. The requirements for equivalence classes increase from 2n to n+m due

to the fact that we need to store the equivalence class number for each transition

rather than each state. (The sequential implementation can look in the array for

the destination state, the distributed implementation cannot.) Thus we get a total

of 3n + 2m for the sequential tool and 2n + 4m for the distributed one. Because

m is often an order of magnitude larger, this explains a doubling of the size. The

next big chunk of memory is because of storage of signatures. The sequential tool

can represent a signature by a representing state and when needed can recompute

12
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Fig. 1. Distributed run times (wall clock)

a signature from that state. The distributed tool cannot do that for its hash tables,

because the owner of the hash table is typically not the owner of the representing

state. If we have m′ edges in the reduced system then this counts for 2m′ additional

words of memory. Finally, the distributed tool uses a cache to do remote lookups

only once. This cache also requires memory.

Together, these differences explain why the single worker distributed tool uses

3 to 4 times as much memory as the sequential tool. Maintaining the extra data

structures requires time, which explains part of the increase in time. Another part of

the increase in time is due to the fact that it is much more expensive to send/receive

data rather than write it directly. Note that the current structures were chosen to

keep network usage low. At the price of increased network usage, the memory

footprint can be reduced.

When comparing the run times for 1, 2, 4 and 8 workers it can be observed that

memory usage decreases linearly and that wall time decreases super linearly with

the exception of the cluster example.

In theory, the distributed tool scales up linearly in memory and time: the data

structures do not require any duplication and although we have O(W 2) threads for

W workers, all work must be initiated by a single main thread per worker. Moreover,

nodes can only run a finite number of threads at the same time.

In practice, multiple threads can be both an advantage and a disadvantage. The
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advantage is that on modern multi-core machines one can exploit paralellism. The

disadvantage is that each extra thread requires an overhead for synchronization and

threads can contend for resources, such as caches. In addition, scheduling can have

an effect if a thread gets blocked and we need to wait until it becomes active again.

It is this scheduling effect that seems responsible for the increase in run time for the

cluster experiment because we can see that there is a rather low CPU utilisation

while the experiment runs. However, we need to perform more experiments before

we can draw a firm conclusion.

7 Conclusion and Outlook

In this paper we have presented a signature-based variant of Markov-AP bisimula-

tion and both a sequential and a distributed implementation.

In the sequential case, we have compared ltsmin with the tool mrmc because they

compute exactly the same Markov-AP bisimulation quotient. In the near future,

we will compare ltsmin with bcg min as well. This is a somewhat difficult task due

to the fact that bcg min uses action labels rather than state labels. Thus, we need

to be certain that any difference measured is due to a difference in implementation

rather than a difference in encoding. In all studied cases, we could observe that

mrmc has a two to five times higher peak memory requirement than ltsmin. In two

cases (polling and peer-to-peer) the computation times of mrmc and ltsmin differed

only slightly; in the case of the cluster system, mrmc was considerably faster than

ltsmin and in the Kanban case study ltsmin was about two times faster than mrmc.

The distributed version of ltsmin showed that the signature-based algorithm

scales nicely and in some cases even yielded superlinear speed-ups. Unfortunately,

only for the peer-to-peer case study the times to compute the Markov-AP bisimula-

tion quotient dropped below that of the sequential version when using two proces-

sors. In the remaining cases, eight processors were required to achieve a drop below

the time of the sequential version. In one case we could even observe an increase in

the computation time when switching from four to eight processors; this might be

related to the long sequence of refinement steps.

In the near future we plan to optimise both the memory requirements and the

computation times of our signature-based bisimulation reduction algorithm. For

optimising memory requirements, we can think of several solutions. For example,

we could perform the copying of the old class numbers on-the-fly rather than before

the signature phase. This would reduce the storage requirements from one word

per transition to one word per state. To improve the run times, we can gain by

being more careful about how we use threads. Also, the current tool recomputes all

signatures in every iteration. This is not needed: it suffices to compute the signa-

tures that refer to states where the signatures changed in the previous iteration. We

expect that this incremental computation technique will provide a huge increase in

performance for the cluster example where we have a very high amount of iterations

with few changes in nearly all of the steps.
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