LTSMIN: Distributed and Symbolic Reachability

Stefan Blom*, Jaco van de Pol, and Michael Weber

Formal Methods and Tools, University of Twente, The Netherlands
{sccblom, vdpol, michaelw}@cs.utwente.nl

In model checking, analysis algorithms are applied to large graphs (state spaces), which
model the behavior of (computer) systems. These models are typically generated from
specifications in high-level languages. The LTSMIN toolset! provides means to gen-
erate state spaces from high-level specifications, to check safety properties on-the-fly,
to store the resulting labelled transition systems (LTSs) in compressed format, and to
minimize them with respect to (branching) bisimulation.

1 Motivation: A Modular, High-Performance Model Checker

The LTSMIN toolset provides a new level of modular design to high-performance model
checkers. Its distinguishing feature is the wide spectrum of supported specification lan-
guages and model checking paradigms. On the language side (Sec. 3.1), it supports
process algebras (MCRL), state based languages (PROMELA, DVE) and even discrete
abstractions of ODE models (MAPLE, GNA). On the algorithmic side (Sec. 3.2), it
supports two main streams in high-performance model checking: reachability analysis
based on BDDs (symbolic) and on a cluster of workstations (distributed, enumerative).
LTSMIN also incorporates a distributed implementation of state space minimization,
preserving strong or branching bisimulation.

For end users, this implies that they can exploit other, scalable, verification algo-
rithms than supported by their native tools, without changing specification language.
Our experiments (Sec. 4) show that the LTSMIN toolset can match, and often outper-
form, existing tools tailored to their own specification language.

From an algorithm engineering point of view, LTSMIN fosters the availability of
benchmark suites across multiple specification languages and verification communities.
This makes benchmarking studies more robust, by separating out language-specific is-
sues, which is of separate scientific interest. The LTSMIN toolset integrates very well
with existing third-party tools (Sec. 3.3), for the benefit of their users, and also for the
independent certification of model checking results.

The technical enabler of the LTSMIN toolset is its PINS interface (Sec. 2). This
general abstraction of specification languages places very few constraints on their fea-
tures, evident by the variety of supported languages (Sec. 3.1) and algorithms. PINS
still enables the algorithms to exploit the parallel structure inherent in many specifi-
cations. Several optimizations are implemented as generic PINS2PINS wrappers, ab-
stracting from both, input language and the actual model checking paradigm. Thus, this
opens new opportunities for research of reusable and composable implementations of
model checking algorithms and optimizations.

* This research has been partially funded by the EC project EC-MOAN (FP6-NEST 043235)
1 http://fmt.cs.utwente.nl/tools/Itsmin/, current version: 1.5, available as open-source software.

Language Process algebra: State based: DVE, ETF
Modules mCRL2 Promela (NIPS-VM)
A} ~ o P T - A
\ ~ o - I -
\ ~L 7 | Phd
___________ = m m m e = mm m m mde = = == PINS
\ e RN | P
\ - ~o -
PINS2PINS)
Wrappers Local Transition Caching Regrouping
// N Phe - / N
/ DR / \
__________ _——/_,—q__r___‘______ple
// - > - A < , \ .
Reachability Sequential Distributed Symbolic
Tools DFS/BFS exploration BFS exploration Reachability

Fig. 1. Architectural Overview of PINS-Based Tools

2 Architecture: A Partitioned Next State Interface (PINS)

In order to separate specification languages from model checking algorithms, many
enumerative, on-the-fly model checkers are based on some next-state interface. It pro-
vides transitions between otherwise opaque and monolithic states. For example, the
OPEN/CZASAR interface [1] has been underlying the success of the CADP toolkit [2].

The unifying concept in LTSMIN is an improvement of this interface, which we call
PINS, an Interface based on a Partitioned Next-State function. PINS connects language
modules to analysis algorithms. The language modules compute for each specification a
static dependency matrix, and implement a next-state function reflecting the operational
semantics. The analysis algorithms access this abstraction of the specification, which
still captures sufficient combinatorial structure to enable huge state space reductions.
The key feature to this is the possibility to obtain transitions between subvectors. Due
to lack of space, full details are provided elsewhere [3, 4].

In a nutshell, a state for PINS is a vector of N slots, where a single slot can represent
anything. The transition relation is split disjunctively into K groups. The K x N Boolean
dependency matrix then denotes on which slots each group might depend. Dynamically,
a dependency matrix is exploited as follows. Assume that transition group k depends
on a short vector of state slots (xj,...,x¢) only. PINS next state function operates on
this short vector, yielding a short next state, say (y1,...,y¢). Note that this result can be
reused for many concrete states. By this single call we found a set of transitions on long
state vectors: (X1, ...,X¢,@ps1y---,aN) — (V13 V0,415, AN)-

Finally, some optimizations can be expressed purely as transformations of the PINS
matrix, also rewiring next-state calls. Such building blocks are implemented once, but
all combinations of specification languages and analysis tools can benefit (Fig. 1).

The LTSMIN toolset consists of 28,000 lines of C Code.2 The interfacing code for
the supported frontends (DVE, Nips, uCRL, mCRL2, our own ETF, Sec. 3.3) consists
of only 200-500 lines each. The majority of code is in the three reachability tools, their
support data structures, PINS2PINS wrappers, and the TORX [5] and CADP [1] con-
nectors. Taken together, this yields 25 tool combinations, in addition to the minimiza-
tion tool and various other support tools. The toolset is tested on Linux and MacOS X.

2 measured with David A. Wheeler’s ‘SLOCCount’.

3 Functionality
3.1 Multiple Specification Languages

State-Based Languages. We implemented a language module for the DVE implemen-
tation of Barnat el al., giving access to the BEEM benchmark database [6]. Another lan-
guage module connects the NIPSVM state generator [7], an interpreter for PROMELA,
giving access to (pure) SPIN models [8]. The latter module could be refined by mak-
ing the dependency matrix sparser for global variables and channels, which in general
would improve the performance of the reachability tools.
Process Algebras. 'We have connected the native state generators of the uCRL [9] and
mCRL2 [10] toolsets to LTSMIN. Both toolsets specify models in ACP-style process
algebra with data, and are heavily used in industrial case studies [9]. They provide
expressive ways to model systems, e.g., abstract data types (unbounded numbers, lists,
trees), constrained data enumeration, and multi-way handshake communication.
Through the link with LTSMIN, users of all these tools gain for free 100% compat-
ible enumerative, symbolic and distributed model checking tools, as well as compact
state space storage formats and minimization tools.

3.2 Reachability and Minimization Tools

We implemented several tools for high-performance state space generation, in particu-
lar based on symbolic and distributed model checking. All exploration tools can check
safety properties on-the-fly, and produce counter examples upon property violation. Al-
ternatively, full state spaces can be generated and stored for minimization and analysis
by external third-party model checkers.

Sequential: Implementations of standard enumerative reachability algorithms, using
BFS or DFS search order. These PINS-based tools allow a base-line comparison
with the native space generation facilities.

Symbolic: Implementations of symbolic reachability tools. Sets of states are stored as
(binary) decision diagrams. The state space is computed symbolically by appli-
cations of the relational product. More precisely, for any specification language
with an enumerative state generator implementing PINS, we automatically obtain
a symbolic generator [3,4].

Distributed: Implementations of distributed state space generators, now based on the
PINS interface, generalizing our earlier work [11]. This effectively combines the
memory of many workstations, also achieving considerable speedups.

PINS2PINS wrappers: All generators profit from optimizations in the PINS2PINS layer
(Fig. 1). Local transition caching is useful for both enumerative generators; tree
compression [11] is a technique for reducing memory footprint of enumerative
generators; and variable reordering and transition regrouping [3] are useful for
the symbolic generator, and in combination with transition caching.

Finally, in case of full state space generation, the LTSMIN toolset includes the dis-
tributed minimization tool 1t smin-mpi for (strong and branching) bisimulation reduc-
tion of labelled transition systems [12]. Also, Orzan’s distributed t-cycle elimination
ce-mpi [13] tool is included. T-Cycle freeness in turn admits the use of a simplified
distributed minimization algorithm [14] for branching bisimulation. State based equiv-
alences could be easily obtained by modifying the initial partition.

3.3 Tool Interoperability

Besides connecting to native state space generators of various languages (Sec. 3.1),
LTSMIN provides converters or interfaces to third party back-end model checkers.
ETF. We defined our own Extended Table Format,> which enumerates all short tran-
sitions for all groups. It serves as input language of PINS, and as concise output format.
E.g., we saw a 0.57 billion state LTS fit in a 1.6 Kb ETF file.

CADP and ¢CRL. LTSMIN has connections to the well-known CADP toolbox. State
spaces can be exported in binary coded graph (BCG) format. LTSMIN also implements
the CESAR/OPEN interface [1] to CADP’s on-the-fly model checking and bisimulation
algorithms. State spaces can be converted in yCRL’s DIR format, allowing to use and
compare against their implementation of distributed minimization tools.

DIVINE framework. The LTSMIN toolset includes a converter (et f2dve) from our
ETF format to the input language of the DIVINE toolset [15], DVE. Thus, we obtain
access to DIVINE’s battery of distributed model checking algorithms. An interesting
application is the certification of model checking results, to improve user confidence.
TORX testing tool. LTSMIN implements the TORX RPC interface ({spec)2torx),
which allows test case derivation with TORX [5] for all PINS language modules. Ad-
ditionally, JTORX allows checking two specifications for ioco-conformance [16].
GNA tool. In EC-MOAN,* the Genetic Network Analyzer [17] exports discrete ab-
stractions of biological ODE models to ETF, and LTSMIN generates their state space

for further analysis.
4 distributed fasts §
lifts.8 ~
s.5

pgm_protocl.8 2 M9
- ischer.5 A, bakery.7
i lifts 7ﬂ~s s ’—Jprofymw

5000
1

£ bakery.8

4 Experiments

lann.6

500
1

We performed extensive benchmarking.
Precise experimental results go beyond
the scope of this tool paper. As illustra-

- roduction_cell.6 2
P - telephony.7 v lann.7

ats o Vlamport.7

50 100

tion, the log-log scatter plot in Fig. 2
shows how distributed and symbolic
model checking tools complement each

v telephony.4

= lamport_nonatomic.5 v
cyclic_scheduler.15.1 v

5 10

leader_election.5 v

other on selected DVE models from the
BEnchmarks for Explicit Model Check- :

ers (BEEM) database [6], ranging from ™ L e _ e L :
3 x 10° to 0.57 x 10° states. Each point 1 5 10 s 100 500 5000
represents two runs for one specification. Fig. 2. Wall-clock time in seconds for dis-
The vertical axis indicates the wall-clock ~tributed (x) and symbolic (y) reachability
time (in seconds) for symbolic reachability (using variable reordering and the chain-
ing heuristic); the horizontal axis denotes the time taken by distributed reachability (on
8 x 6 cores; with transition caching). The two models near the bottom-right corner are
cases where symbolic methods are more than two orders of magnitude faster, whereas
for 1ift.[78] and pgm_protocol.8 the distributed tool is faster by more than fac-
tor 10. These are the first reported BDD-based experiments on benchmarks from the
BEEM database, whose models are naturally biased towards enumerative methods.

3 http://fmt.cs.utwente.nl/tools/ltsmin/etf. html
4 European FP6 project on biological cell modeling and analysis, see http://www.ec-moan.org/

In INESS,> LTSmin is used for the safety analysis of novel railway interlocking specifi-
cations. XUML statecharts are translated to MCRL2, and analyzed for safety properties
by LTSMIN [18]. Depending on the track layout, we generated state spaces of up to
1.5 x 10! states directly from MCRL2 models, by means of our symbolic tools.

References

1.

2.

e

10.

11.

12.
13.

14.

15.

16.

17.

Garavel, H.: OPEN/CZESAR: An open software architecture for verification, simulation, and
testing. In Steffen, B., ed.: TACAS. Volume 1384 of LNCS., Springer (1998) 68—84
Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In Damm, W., Hermanns, H., eds.: CAV. Volume 4590
of LNCS., Springer (2007) 158-163

. Blom, S.C.C., van de Pol, J., Weber, M.: Bridging the gap between enumerative and symbolic

model checkers. Technical Report TR-CTIT-09-30, University of Twente, Enschede (2009)

. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive data

types. In Fitzgerald, J.S., Haxthausen, A.E., Yenigiin, H., eds.: ICTAC. Volume 5160 of
LNCS., Springer (2008) 81-95

. Tretmans, G.J., Brinksma, H.: TorX: Automated model-based testing. In Hartman, A.,

Dussa-Ziegler, K., eds.: First European Conference on Model-Driven Software Engineering,
Nuremberg, Germany. (2003) 31-43

. Pelanek, R.: BEEM: Benchmarks for explicit model checkers. In Bosnacki, D., Edelkamp,

S., eds.: SPIN. Volume 4595 of LNCS., Springer (2007) 263-267

. Weber, M.: An embeddable virtual machine for state space generation. In Bosnacki, D.,

Edelkamp, S., eds.: SPIN. Volume 4595 of LNCS., Berlin, Springer Verlag (2007) 168-186

. Holzmann, G.J.: The model checker Spin. IEEE Trans. Software Eng. 23(5) (1997) 279-295
. Blom, S.C.C., Calamé, J.R., Lisser, B., Orzan, S., Pang, J., van de Pol, J., Dashti, M.T., Wijs,

A.J.: Distributed analysis with yCRL: a compendium of case studies. In Grumberg, O.,
Huth, M., eds.: TACAS. Volume 4424 of LNCS., Berlin, Springer Verlag (2007) 683-689
Groote, J., Keiren, J., Mathijssen, A., Ploeger, B., Stappers, F., Tankink, C., Usenko, Y.,
Weerdenburg, M.v., Wesselink, W., Willemse, T., Wulp, J.v.d.: The mCRL2 toolset. In:
Proc. of the IW on Advanced Software Development Tools and Techniques. (2008)

Blom, S., Lisser, B., van de Pol, J., Weber, M.: A Database Approach to Distributed State-
Space Generation. J Logic Computation (2009) (to appear in print)

Blom, S., Orzan, S.: Distributed state space minimization. STTT 7(3) (2005) 280-291
Orzan, S.: On distributed verification and verified distribution. PhD thesis, VU Amsterdam,
The Netherlands (2004)

Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by inductive sig-
natures. In Brim, L., van de Pol, J., eds.: Proc. of 8th Parallel and Distributed Methods in
verifiCation. Volume 14 of ENTCS. (2009) 32-46

Barnat, J., Brim, L., Cernd, L., Moravec, P., Rockai, P., Simecek, P: DiVinE — A Tool for
Distributed Verification. In: CAV. Volume 4144 of LNCS., Springer (2006) 278-281
Belinfante, A.: JTorX: A tool for on-line model-driven test derivation and execution. In
Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of LNCS., Springer (2010) 266-270
de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative
simulation of genetic regulatory networks. Bioinformatics 19(3) (2003) 336-344

. Hansen, H.H., Ketema, J., Luttik, S.P., Mousavi, M.R., van de Pol, J.C.: Towards model

checking executable UML specifications in mCRL2. Innovations in Systems and Software
Engineering 6(1-2) (2010) 83-90

5 European FP7 project on INtegrated European Signalling Systems, http://www.iness.eu/

