

A Dependability Solution for Homogeneous MPSoCs
Xiao Zhang, Hans G. Kerkhoff

Testable Design and Test of Integrated Systems Group,
Centre of Telecommunication and Information Technology (CTIT), University of Twente,

Enschede, the Netherlands
x.zhang@utwente.nl and h.g.kerkhoff@utwente.nl

Abstract—Nowadays highly dependable electronic devices are
demanded by many safety-critical applications. Dependability
attributes such as reliability and availability/maintainability of a
many-processor system-on-chip (MPSoC) should already be
examined at the design phase. Design for dependability
approaches such as using available fault-free processor-cores and
introducing a dependability manager infrastructural IP for self-
test and evaluation can greatly enhance the dependability of an
MPSoC. This is further supported by subsequent software-based
repair. Design choices such as test fault coverage, test and repair
time are examined to optimize the dependability attributes.
Utilizing existing infrastructures like a network-on-chip (NoC)
and tile-wrappers are needed to ensure a test can be performed at
application run-time. An example design following the proposed
design for dependability approach is shown. The MPSoC has
been processed and measurement results have validated the
proposed dependability approach.

Keywords- MPSoC; dependability; fault-tolerance; self-repair;
reliability; availability; embedded instruments; NoC (TAM); self-
test

I. INTRODUCTION
The increasing complexity and power issues of digital

systems have led to the need of integrating many identical
(homogeneous) processor cores onto a single system-on-chip
(Multi-Processor SoC, MPSoC). Recent research has
forecasted that MPSoCs with more than a thousand processor
cores will be commercially available in the near future [1]. As a
result of the rapidly growing transistor density on the chip,
ensuring high system dependability has become a real
challenge [2].

A system is considered as a “dependable system” when it
can correctly deliver the expected services under given
conditions [3]. Manufacturing test is the conventional method
to check the correctness of chips. Faulty cores in the system
can be detected by a thorough manufacturing test and be
isolated from the system to provide a “functionally correct”
chip. The capability to tolerate a few faulty cores in an MPSoC
has been adopted in industry [4]. Recent research shows that a
significant effective yield increase and overall cost reduction
can be achieved by adding a few dynamically reconfigurable
spare cores into an MPSoC [5], [6]. The term ‘spare’ should be
interpreted here as cores which may also carry out few or non-
crucial tasks. Using these resources for repair, could have slight
consequences for the system Quality of Service (QoS).

During the life time of an IC, permanent faults such as time
dependent dielectric breakdown (TDDB) and electro-migration

can occur as a result of chip degradation and material wear-out
[7]. Permanent faults in processor cores can cause a system
failure in the field. While using spare cores can help to tolerate
manufacturing defects, the dependability of an MPSoC
becomes a real challenge without a proper mechanism to detect
a faulty processor core in its life cycle.

As it is usually infeasible, if not impossible, to perform a
manufacturing test with automatic test equipment (ATE) in the
field, chips are often equipped with some self-test features. For
example, software based self-test method (SBST), which uses
the on-chip processor to execute test programs for core “mutual
diagnosis” [8], [9]. The SBST method reuses the on-chip
resources and carries out the test via software and hence it
saves silicon area. A disadvantage of this method is that
functional tests instead of structural tests are performed, which
implies a lower fault coverage. This is not desirable as it has
been concluded that high fault coverage of in-field testing and
advanced fault-recovery mechanisms are essential for a
dependable MPSoC [5]. In our paper, we propose to use
structural test as our dependability test approach.

Memory built-in self-test (BIST) has been commonly
adopted to check the correctness of on-chip memories. As for
the logic part of an SoC, methods such as Logic BIST (LBIST)
or Deterministic Logic BIST (DBIST) can generate pseudo-
random or deterministic test vectors on the chip to test the
target circuits then compact the test responses using Multiple-
Input Signature Registers (MISR) and compare them with
reference signatures [10], [11]. The disadvantage of using a
MISR is that test response information is lost in the process of
compaction thus the effective fault coverage is decreased. In
this paper we exploit the fact that in a homogeneous MPSoC
identical processor cores will generate identical test responses
if supplied with the same test stimuli. By comparing the test
results from several processor cores we can identify the faulty
core by majority-voting. This method also eliminate the silicon
real estate cost for MISR circuits and signature storage.

In previous research, the real-time characteristic of an on-
chip self-test has often been neglected. Usually safety-critical
applications allow only a very short system down time; this
gives a real-time requirement for fault detection and system
recovery. In this paper, we propose a generalized and scalable
dependability solution for MPSoC with identical processor
cores (homogeneous MPSoC). First, spare cores in the MPSoC
should be available as potential resource to meet the reliability
requirements. Second, an optimized infrastructural IP is
included into the MPSoC to function as a dependability
manager (DM) for core-level self-test. The DM performs

This research is conducted within the FP7 Cutting edge Reconfigurable
ICs for Stream Processing (CRISP) project (ICT-215881) supported by the
European Commission.

2011 17th IEEE Pacific Rim International Symposium on Dependable Computing

978-0-7695-4590-5/11 $26.00 © 2011 IEEE

DOI 10.1109/PRDC.2011.16

53

periodic structural tests on available cores. These cores can be
made available, by shifting their tasks to other cores under the
control of software. If the cores being tested are fault-free,
processing load can be shifted to them to free other cores for
test. If one core is tested to be faulty, system resource
management software can exclude it from usable resource list
of the system and application will be reconfigured to avoid the
faulty core. This effectively makes the system fault-tolerant.

An example MPSoC platform using the Xentium tile
processors from Recore Systems [12] has been developed with
the dependability approach proposed in this paper included. We
have attempted to balance parameters such as fault coverage,
dependability self-test time and the cost of extra silicon area to
achieve a highly dependable MPSoC. The remainder of this
paper is organized as follows. In Section II, dependability
concepts of an MPSoC are introduced. The impact of the
dependability self-test on dependability attributes is analysed in
Section III. Section IV presents an example MPSoC design,
which has been developed for streaming data applications, such
as beamforming, following the proposed dependability
approach. The example MPSoC has been processed in 90nm
UMC CMOS technology. Measurement results and discussions
of several dependability test scenarios are given in Section V.
Section VI concludes the paper.

II. DEPENDABLE MPSOC CONCEPT
The definitions of dependability are many and subject to the

field of research. For modern computing systems,
dependability can be generally accepted as the ability of a
system to deliver expected services under given conditions
[13]. Some important dependability attributes such as
reliability, availability and maintainability will be discussed. In
this section, the assumption is made that processor cores are the
only parts that will fail in an MPSoC to simplify the discussion.
Other parts that could fail such as on-chip memory or NoC are
covered in Section IV.

A. MPSoC Reliability
An important attribute in dependability is reliability. A

common technique to make a reliable system is to add
redundant resources in order to tolerate certain amount of
faulty components. Typical architectures of MPSoCs with
some redundancy (spare cores) are a massive redundant
system, a gracefully degrading system or a standby redundant
system [14].

A massive redundant system uses technique such as triple-
modular redundancy (TMR) to improve system reliability. The
same computing task is separately executed on several identical
processor cores and the output of each core is compared to vote
for the faulty core. Major disadvantage of this method is the
amount of required redundant resources.

A gracefully degrading system uses all the fault-free cores
in the chip to execute tasks. If a faulty core is detected, the
system software tries to reconfigure the task to run it only on
the fault-free cores ensuring system reliability at the cost of
degraded performance. The system is considered as dependable
until its performance drops to an unacceptable level.

In a standby redundant system, the fault-free cores are
either in operational or in standby modes. The application task
is executed on all the operational cores. If an operational core is
detected as faulty, it is replaced by a fault-free standby core to
maintain the same computing performance. The system
performance will not degrade until all the standby cores have
been used.

With regard to the reliability attribute, an MPSoC
organized as gracefully degrading system or standby redundant
system can be generally modelled as a load sharing K-out-of-
N: G system [15]. A K-out-of-N: G system has in total N
processor cores and the system can correctly perform its
required function (a Good system) if at least K cores are
working properly (NK �). The processing load of the system
is distributed among the working cores. The system will not be
considered as failing until N-K+1 cores have become faulty.

The reliability of a system is often described as a
probability R(t) that the system can provide correct service over
a certain period of time. For example, R(t) = 0.9 over ten year
means that the probability that the system will function
correctly after ten years is 90%.

Before the MPSoC reliability can be calculated, the
reliability of an individual core has to be studied first. For a
single core in the MPSoC, if for simplicity a constant failure
rate � is assumed, its reliability can be computed with
exponential distribution as � � t

t etR ��� .

In the case of a load sharing K-out-of-N: G system, we
assume all the cores in the MPSoC are identical and have the
same independent reliability distribution � �tRt , which means

� �tRt is i.i.d. (independent and identically distributed). The
system reliability � �tRsystem is equal to the probability that the
number of working cores is greater than or equal to K [16]:

� � � � �	
�
�

����

�
��
�

�
�

N

Ki

iN
t

i
tsystem tRtR

i
N

tR 1)(�� ����

A special case is when K=N, this means the system requires all
the cores in the chip to perform a certain task. This results in no
spare processor resources in the MPSoC and hence the system
fails when any of the working processors fail. In this case, the
system reliability � �tRsystem degrades to:

� � � � ��
�

� ��
N

i

N
tiNKsystem tRtRtR

1
,)(�� ����

For example, suppose six Xentium processor cores (K=6)
are strictly required to perform a computing task for a
beamforming application. Assuming � � 9.0�tRt over 10 years
for each core, the system hardware reliability of a 6-core
MPSoC after 10 years is � � 53.09.0 6 ��tRsystem , assuming
other parts are fault-free. If the MPSoC is built with 3 cores as
spare (9 cores in total, N=9), the system reliability can be
calculated using equation (1) as

54

� � 99.09.010.9
9

)(
9

6

9i ������

�
��
�

�
� �

�

�

i

i
system i

tR

It is obvious that adding a few more spare cores almost
doubled the system reliability over a 10 years period.

It should be noted that, the simplified reliability model (1)
and (2) all assume an identical constant failure rate for all cores
in the MPSoC. In reality, this will not be the case. In addition,
due to the aging of the chip, the failure rate is expected to
increase instead of being constant. Different cores may also
have different failure rates as a result of varying temperature
and voltage over the chip (environmental as well as operational
conditions). A more precise model for computing MPSoC
reliability has been studied in another paper [17].

The above global reliability calculations all assume that,
once a faulty core appears in the system, it will be detected. In
practice, the real system reliability is also affected by the fault
coverage of the selected in-field test method. This will be
discussed in Section III.

B. MPSoC Availability & Maintainability
Another two attributes in dependability are availability and

maintainability. Availability refers to the readiness of a system
to correctly perform required functions. If a fault appears in the
system, it is first required to be detected and subsequently the
system has to be alerted. In the conventional case, the system
will be taken offline, repaired and brought online again after
fault elimination. The time spent for fault detection and repair
is defined as system down time because the system is not
performing the required function during this period of time.
The system Mean Down Time (MDT) is an important measure
of the availability attribute. Modern systems usually have an
availability requirement of more than 99.9% and the MDT
always needs to be minimized. Figure 1. summarizes the
important terms regarding the system availability time.

Figure 1. System availability chart. MTBF represents the Mean Time Between
Failures; MDT is the Mean system Downtime; MUT is the Mean system

Uptime; MTTD is the Mean Time To Detect a fault and MTTR is the Mean
Time To Repair the system.

For an MPSoC, it is usually very difficult to physically
repair a faulty core in the chip package in field. In that sense,
there is no maintainability at core level. At system level, an
MPSoC can be considered as a repairable system if the faulty
cores can be detected and isolated and the computing tasks can
be remapped to fault-free processor cores.

Upon the failure of a core, the system enters a malfunction
mode. The mean time spent on faulty core detection (MTTD),
isolation and application remapping (MTTR) should not exceed

the mean system downtime allowed by the user. Therefore, it is
required that:

� allowedMDTMTTRMTTD �� � ����

The time required to isolate the faulty core and remap the
application to fault-free cores depends on aspects such as core
architecture [12] and the used remapping software algorithm
[18]. This is not discussed in detail within the scope of this
paper. The MTTD is explained in Section III and related to the
Dependability Manager design choices.

III. DESIGN CONSIDERATIONS OF A DEPENDABLE MPSOC
 As analysed in Section II, one needs to include some spare

cores in an MPSoC to increase system reliability, to adopt a
core-level self-test and evaluation mechanism to achieve
maintainability and to minimize the time spent on
dependability test and system reconfiguration for repair to
maximize system availability. Hence, the dependability
benefits come with a cost. For example, really redundant (fully
non-operational) cores and the dependability self-test and
evaluation features in the chip require additional silicon area; a
shorter dependability test time to improve availability leads to a
lower test fault-coverage. In this section, some of the important
design parameters are examined to help optimizing the design
for dependability choices.

A. Dependability Self-Test and Evaluation and System
Reliability

1) Effective Spare Cores
The common reliability characteristic of a standby

redundant system and a gracefully degrading system is that the
system is considered as functionally correct until the number of
working cores drops below a threshold value K as described in
a K-out-of-N: G system. While K is a fixed number determined
by both application requirements and individual core
performance (e.g. measured by Million Instructions Per
Second, MIPS), one can approximately calculate the number of
spare cores needed for a target system reliability value
according to Equation (1).

In practice, it is usually difficult to verify the correctness of
a core while it is working. Therefore two self-test methods can
be chosen: 1) bring the system offline, test all the cores, then
bring the system online again; 2) pick a few target working
cores, shift their work load to (earlier tested fault-free) spare
cores, test them, isolate the possible faulty core then shift back
the work load.

The first method should be avoided if possible as it
interrupts the normal function of the system and seriously
degrades the system availability. The advantage of the second
method is that the system is tested at application run-time,
which makes the system still available during the dependability
self-test. To summarize, using the first method makes the
system unavailable whenever a dependability self-test is carried
out. But when using the second method, the system only
becomes unavailable when a faulty core has been detected and
an application remapping is required.

55

A side effect of the second method is that the number of
remaining spare cores in the system needs to be greater than or
equal to the number of the cores being tested so that the
computational load of the cores being tested can be temporarily
held. If the number of cores being tested each time is M, then
the number of effective spare cores in the MPSoC is actually
reduced to N-(K+M) if one wants to perform the dependability
self-test at application run-time. If the number of fault-free
spare cores is lower than M, the dependability test is still
possible using the first method until all spare cores have been
used to replace the faulty ones. Figure 2 shows an example of
the dependability test and the application remapping scenarios
for both a standby redundant system and a gracefully degrading
system.

2) Influence of Dependability Test Fault Coverage on
Reliability

The reliability calculation performed in Section II.A
assumes that once a faulty cores appears in the system, it can
be detected. If the system is operating in the field, this implies a
100% dependability self-test fault coverage. In practice, 100%
fault coverage is difficult to achieve for complex processors
considering the limited capability of an on-chip built-in self-
tester due to either silicon area or test time.

Figure 2a. A standby redundant system in mode: a.1 normally working, a.2

dependability test, a.3 application remapped. Grayed area denotes the
application load. W represents working core, S represents standby cores and T
represents cores being tested. The core with a cross is the one tested as faulty.

Figure 2b. A gracefully degrading system in mode: b.1 normally working, b.2

dependability test, b.3 application remapped.

If one assumes that every fault has the same probability to
occur in the chip, it can be concluded that the dependability
self-test fault coverage is proportional to the reliability increase
of the system when spare cores are added. Given a K-core
system with no spares (a K-out-of-K: G system), its reliability
is calculated to be)(tRK

t assuming every core has a reliability

distribution of)(tRt according to Equation (2). By adding N-
K spare cores in the system, the system reliability can be
calculated by Equation (1). Let the improved reliability
be)(tRI . Now consider a dependability self-test with a fault

coverage of F %, then the actual system reliability can be
expressed as:

� � � 100/)100()(100/)(FtRFtRtR K
tIsystem ����� �����

An interesting example is, if the fault coverage of the
dependability self-test is zero (F=0); then the system reliability
is still)(tRK

t , meaning the reliability increase is also zero
despite the fact that spare cores have been added to the system.
This indicates that in addition to introducing redundant
resources, an effective dependability self-test method is also
crucial to improve system reliability.

Software based self-test (SBST) usually cannot provide a
very high fault coverage thus it will negatively affect the
system reliability. Hence it is preferable that the on-chip
dependability test can achieve a fault coverage close to that of
the manufacturing test. Therefore, it is proposed in this paper to
include an infrastructural IP into the MPSoC to serve as a
dependability manager (DM). The DM should be able to
perform a high quality (structural) dependability test when
needed, to analyse the core test results and to alert the system if
a faulty core has been detected.

B. Dependability Self-Test and System Availability
A DM is designed to test the type of faults of the users’

interest in the MPSoC. As the mean time to detect a fault
(MTTD) is strictly constrained by the acceptable system down
time (MDT), one needs to carefully plan the self-test for
minimum MTTD.

The mean time to detect a fault can be approximately
calculated as:

�
TAM

responsevector

pertest

totalMAX

B
VV

N
NTMTTD

)(
2
1

2
�

�
�
�
�

�

�
�

!
��� ��"��

MAXT is the maximum time to perform a full dependability
test on all the cores in the MPSoC. MAXT is determined by the
number of times the dependability test is performed and the
amount of time spent per test. The number of tests is
determined by the total number of processor cores in the
MPSoC (totalN) and the number of cores being tested each

time (pertestN). The time spent per test can be calculated by the

sum volume of the test vectors (vectorV) and test response data

(responseV) divided by the bandwidth (TAMB , MByte/s) of the
test access mechanism (TAM). For example, dependability
testes need to be performed on nine processor cores in an
MPSoC. Each time three cores are tested. The volume of test
vector and test response data is 10MB. The bandwidth of the
TAM is 200MB/s. In this case,

ms
sMB

MBMTTD 75
/200

10
3
9

2
1

���� .

56

It should be noted that, in some cases, the test vector
generation and test response collection process can take place
in parallel, e.g. in a conventional scan-based test. This should
be taken into account while calculating the time spent per test.
In addition, the time spent to shift the load from working cores
to spare cores and remapping the application tasks is not
considered within the scope of this paper.

The fault coverage of the dependability self-test is often
closely related to the data volume of test vectors. A high fault
coverage self-test usually requires a large amount of test
vectors, which slows down the dependability test and will also
cost more silicon area to store or generate these test vectors.

C. MPSoC Architecture and System Maintainability
In the case of MPSoC, the traditional system

maintainability is interpreted as the presence of a built-in self-
repair mechanism. Core-level redundancy of an MPSoC
enables the possibility to tolerate potential faulty cores and
allows “repair” at system level. For a conventional bus-based
many-core system, replacing a working core with a spare core
at another location will likely change the system topology and
this can cause (e.g. speed) problems for application developers.
This problem can be solved by adopting a Network-on-Chip
(NoC) infrastructure as an on-chip communication fabric (e.g.
configured as guaranteed throughput connection). The NoC has
become popular in MPSoCs as a result of its high bandwidth,
scalability and flexibility compared to traditional bus
interconnections. A recent survey on the research works of
NoC can be found in [19].

Via a standardized network interface (NI), core-to-core
communication can be routed through dynamically configured
routes in the NoC. The intrinsic reconfigurability of the NoC
enables a higher level abstraction of the system for application
developers. A NoC-based MPSoC can be viewed as a library
with a certain amount of processing power (namely, the cores).
Core status can be categorized as operational, in test, standby
or faulty. System-level resource management software can map
new tasks to standby cores, put cores into dependability test
mode or isolate a faulty core. This way, a system level
maintenance can be achieved by arranging dependability self-
test and resource reconfiguration.

Core-level dependability self-test can use the IEEE 1500
standard for embedded core testing. Previous studies have
suggested that the NoC can be reused as a Test Access
Mechanism (TAM) to avoid dedicated test buses [20]. Recent
research has shown simulation results of performing a scan-
based structural test using the NoC as a TAM at application
run-time in an MPSoC [21].

D. Design for Dependability Considerations
The design for dependability parameters as previously

discussed have been summarized in Figure 3. Increasing
dependability parameters such as the number of spare cores or
the volume of test vectors will benefit system dependability.
But it also increases silicon area overhead and test time. A

balance between dependability requirements and resource
overhead should be evaluated at the system design phase.

Figure 3. Design for dependability parameters and their relations with

resources.

IV. CASE STUDY: DESIGN AND IMPLEMENTATION OF A
DEPENDABLE MPSOC

A. The CRISP Platform
The CRISP (Cutting edge Reconfigurable ICs for Stream

Processing) project researches optimal utilization, efficient
programming and dependability of reconfigurable many-core
processors for streaming applications [22].

1) General Stream Processor (GSP)
The envisioned platform for CRISP is a General Stream

Processor (GSP) dedicated for virtually any streaming
application. The current implementation of the GSP includes a
General Purpose Device (GPD) and five Reconfigurable Fabric
Devices (RFD) individually assembled in 400BGA package
and interconnected on a PCB as shown in Figure 4. The GPD
consists of an ARM-9 based processor and runs an embedded
Linux OS to support the run-time mapping software and the
dependability application programming interface (API). The
reconfigurable many-core architecture in the GSP has been
separated into several smaller packages (RFD) for the sake of
reduced risk and cost. A Xilinx Virtex-4 FPGA device is
incorporated on the PCB for user-defined applications.

High speed chip-to-chip connections (C2C) and Multi-
Channel Ports (MCP) form the interconnection ports between
GPD and RFDs. A user is able to debug the system via a serial
debug interface on the board. Part of the data flowing in the
NoC of one RFD can be rerouted to the FPGA device and
measured using a Logic Analyzer through a MICTOR
connector (Figure 4).

57

Figure 4. GSP Platform: simplified diagram of major functional blocks (left) and photo of the platform on a PCB (right).

Figure 5. Reconfigurable Fabric Device (RFD) : floorplan (left), X denotes a Xentium tile processor, MEM represents the embedded SRAM and DM stands for

the Dependability Manager. Photo of the RFD silicon is shown at right side.

2) Reconfigurable Fabric Device (RFD)
The major part of the GSP consists of five RFDs. Each

RFD holds nine identical high-performance Xentium tile
processors [12], two SRAM tiles and a Dependability Manager
(DM) infrastructural IP as shown in Figure 5. The RFD chip
has been produced in 90nm UMC CMOS technology and
measures about 43.8mm2. In the RFD, the area of a single
Xentium tile is roughly 1.88mm2 while the DM occupies
around 0.4mm2. The specified clock speed is 200MHz.

The functional blocks in the RFD are interconnected with
GUARVC, a virtual-channel NoC architecture for streaming
applications with a router capable of concurrently providing
both guaranteed and best-effort services over a shared network
infrastructure [23]. The NoC has a data width of 32-bit
operating at 200MHz.

B. Design for a Dependable RFD
One of the themes of the CRISP project is dependability,

which enables the GSP platform to be used for safety-critical
applications. An RFD is a good example of a homogeneous
MPSoC with nine identical processor cores (Xentium tile
processor). As an example, a beamforming application has
been mapped to each RFD, which requires six working cores in
one RFD. This leaves three Xentium cores as spare parts for
non-crucial tasks or self-repair.

The dependability parameters listed in Figure 3 have been
examined to determine the dependability design choices. User
specified reliability requirements demand that the dependability
self-test fault coverage must be higher than 90%. In the scope
of this paper, the stuck-at fault model was targeted as the main
fault model. The RFD availability requirement is at least 99.0%
with a 500 milliseconds allowed MDT in the case of a faulty
tile processor.

Each Xentium tile processor has 32 parallel scan-chains for
conventional manufacturing tests and dependability structural
tests. An IEEE 1500 compliant dependability wrapper has been
developed to switch the Xentium tiles to normal,
manufacturing test and dependability test modes [21]. Other
important dependability infrastructures include BIST for the
SRAM block and a software-based self-test for the
interconnection nodes such as the NoC and MCPs. Run-time
mapping software, resource management software and the DM
API have been developed and run in the ARM-based GPD
[18].

C. Dependability Tests and Automatic DM Design
The goal of the dependability test is to reproduce the

deterministic test vectors (for stuck-at faults) on-chip to
achieve the required fault coverage and ensure a small silicon
area overhead. Since the Xentium tile processors in the RFD
are identical, and if we assume that only one faulty tile can
appear after the previous test, one can test more than one

58

Xentium tile at a time and compare the test results to determine
a possible faulty tile by majority voting. In this case, more than
one Xentium tile is required per test. A major advantage of this
method is the removal of the reference structural test results
storage on the chip.

The DM consists of three major parts being a Test Pattern
Generator (TPG), a Test Response Evaluator (TRE) and a
Finite State Machine (FSM). Deterministic test vectors are
generated by the TPG using techniques such as Deterministic
Logic BIST [25]. In the TPG, a linear feedback shift register
(LFSR) is combined with a reseeding [26] or bit-flipping [27]
functional block to reproduce the deterministic test vectors
using limited seed or bit-flipping information to achieve vector
compression. The generated test vectors are organized in a
phase-shifter into 32-bit data flits and multicasted to the
Xentium tiles under test via the NoC. Test responses from
multiple tiles are sent back to the TRE and compared to
determine the potential faulty tile. The FSM communicates
with the dependability test API to control the test process and
will inform the on-chip resource management software upon
the detection of a faulty core.

DM Standby

DM
initialization

Xentium tiles
ready for test

Xentium
embedded

memory BIST

Scan-based
test for

Xentium tiles

Perodic dependability
test request from
dependability API

Run-time
mapping
software

Resource
management

software

Flag the faulty
Xentium tile

Faulty

Faulty

Xentium wrapper
configuration

Fault free

All Xentiums
tested?

Yes No

The tested
Xentium tiles
are fault free

Fault free

Figure 6. Dependability test flow

An example design of the DM sub blocks can be found in
[24]. A recent progress is the development of a software tool
which automates the design process of the DM. The input
options to the tool include fault coverage requirement of the
dependability test, LFSR length, compression method
(reseeding or bit-flipping) and a test pattern file of the core
under test generated by a commercial ATPG tool. Given the
required input, the tool can generate synthesizable VHDL

codes for the DM. The test vectors generated by DM can be
stored into formatted test pattern file by the tool, which can
then be imported into the ATPG software together with the
design under test to check the DM-TPG fault coverage. As a
result, the DM is able to reproduce a major part of the original
ATPG structural test vectors and reach 99% of its fault
coverage.

A DM design has been generated by the tool for the
Xentium tile processor test. The total number of test vectors is
413; each test vector contains 398 32-bit data blocks for the 32
scan chains in the Xentium. Given the full bandwidth of the 32-
bit 200MHz NoC, the subsequent test time can be calculated as

8.0)10200(398413 6 ��#� milliseconds. If nine Xentium
tiles can be tested in three groups, the MTTD is 2.4
milliseconds (the specified MDT is 50 milliseconds). The
dependability test can still be performed with a longer test time
if the DM can only claim part of the NoC bandwidth. The
method to tolerate varying NoC traffic with the presence of
application data in the NoC has been discussed earlier in [21].

The DM can be designed to cooperate with other BIST
methods. For example, it has been designed to start the BIST
engine of the embedded memories in the Xentium tile and to
check the memory BIST results. More fault types such as delay
faults can be covered by the DM in the future [28]. The
complete dependability test flow on the RFD is shown in
Figure 6.

V. DEPENDABILITY EXPERIMENTAL RESULTS
The RFDs have been processed by UMC and passed a

structural manufacturing test by Atmel Automotive GmbH. A
detailed microphotograph of our DM block in the RFD is
shown in Figure 7. Note that the DM has not been implemented
as a hard macro, but as glue logic. On the left upper corner, the
clock PLL is shown. The area of the DM is less than the area of
a Xentium tile processor and the DM overhead in terms of
silicon area in the RFD is acceptable (about 1%).

Figure 7. Silicon photo: DM in RFD

The GSP platform (Figure 4) has been assembled and went
through basic factory tests and some functional tests. Using the
debug interface, a user is able to interact with the dependability
API running in the GPD and command the DM to perform
various dependability test actions. A special on-chip hardware
circuit to emulate Xentium faults has been added at the design
phase, just for dependability experiment purpose. The
following experiments have been carried out to validate the

59

function of the DM and the dependability approach proposed in
this paper.

A. DM Function Validation
In order to validate the DM can deliver its designed

functions, special test procedures have been prepared. Part of
the NoC traffic in RFD2 has been redirected to the Multi-
Channel Port (MCP) of the FPGA device on the PCB and then
looped back. The NoC data in RFD2 was thus made observable
via the 34-pin MICTOR connector connected to the FPGA (see
Figure 4). An Agilent 16823A logic analyzer was used to
capture the data stream. Examples of measurement results
using the logic analyzer are shown in Figures 8, 9 and 10. It
should be noted that the clock frequency of the MCP in the
FPGA was set to be 100MHz due to the limitation of the FPGA
device.

The user can run their own dependability software (in C
codes) at the PC terminal to issue commands such as “start
embedded memory BIST for No.1 Xentium tile” or “perform a
scan-based test on No. 2, 3 and 4 Xentium tiles” to the DM API
in the GPD. The DM API then sets up a communication
channel (a virtual channel) between the GPD and the DM over
the NoC and command the DM to perform the requested
action(s) accordingly by send 32-bit command word to the DM
control register. In the measurement result shown in Figure 8,
the command word “9600 0000” was sent to the DM over the
NoC. This command is interpreted by the DM as “to start up
the embedded memory BIST on 3 selected Xentium tiles”.

Figure 8. GPD to DM (in RFD2) command: start Xentium embedded memory

BIST

Similar procedures have been taken to capture the structural
test vectors generated by the DM. The test vectors have been
generated in the form of 32-bit data flits and multicasted to
several Xentium tiles under test over the NoC. An example test
vector data flits passing a NoC router is shown after
“noc_flit_data” in Figure 9. All the measured test vectors
values have been compared with the reference test vectors in
the ATPG test pattern file and it can be concluded that the
correct test vectors have been generated by the DM in the RFD
chip.

Figure 9. DM Test vectors travel via the NoC

In Figure 10, the data block between M1 and M2 is one
complete test vector measuring about 32.7us. A complete
structural dependability test consists of 413 such test vectors.
Hence, the actual time to generate all the test vectors is

mss 5.13 7.32413 �� $ with a 100MHz clock.

Figure 10. DM Test vectors travel via the NoC zoomed out view

Comprehensive tests have validated that the DM can
successfully perform its designed dependability test functions
using the NoC as a TAM.

B. Software NoC Test
The NoC in each RFD is tested using a software walk-

through test method at the start-up of the GSP platform. In
addition, chosen parts of the NoC (routers and
interconnections) can also be tested at application run-time if
the NoC resource were not occupied by any application. The
NoC test results are also reported to the resource management
software and faulty segments will be isolated.

More details on the NoC test algorithm and results will be
treated in another paper. In this paper, we perform the DM
dependability test only after a complete NoC test has been
carried out and a fault-free NoC test report is received.

C. Full Dependability Test at Application Run-Time
In this part, the proposed dependability approach is

performed at the run-time of a simple application to validate
the complete dependable heterogeneous MPSoC concept.

1) The Mailbox Application
A simple mailbox application has been developed and its

basic principle is shown in Figure 11. When the application
starts up, the GPD sends a mail to one RFD and this mail will
loop through three Xentium tiles via the NoC. A LED on the
PCB will be turned on when the mail reaches its associated
Xentium tile processor. If a Xentium tile becomes faulty or
have a hardware fault emulated, the whole application will be
terminated.

Figure 11. The mailbox application using three Xentium tiles

2) Dependability Test Scenario
The resource management software mapped the mailbox

application to Xentium 1, 6 and 7 on RFD5. At a certain
moment, a hardware fault was manually emulated on Xentium
7 via a designed fault injection feature in the Xentium wrapper.
As the DM has been programmed to perform a periodic
dependability test, it immediately identified the faulty Xentium
tile. A dependability test report is printed to the PC terminal as
shown in Figure 12. The report can be interpreted as: no
communication error has occurred during the dependability

60

test; a faulty Xentium core has been detected and the faulty unit
id is Xentium 7.

Figure 12. Dependability test report

The resource management software was also notified by
DM to isolate Xentium 7 from the system and remap the
mailbox application to fault-free Xentium tiles. The whole
process has been successfully accomplished with no user action
required except for the fault emulation. The user could observe
a very short pause of the blinking LEDs when the fault on
Xentium 7 was emulated, then the application will recover by
itself and the LEDs will be blinking again. This experiment
proves the proposed dependability approach can be truly
performed at application run-time.

A timer in the GPD measures the time spent for each
activity. The dependability test cost around 4.9ms and the
remapping of the mailbox application to fault-free resources
cost around 90ms. Hence, the system MDT for the mailbox
application was around 95ms, shorter than the 500ms MDT
requirement.

3) Dependability Attributes Improvement
The mailbox application uses 3 Xentium tiles out of the

total 9 Xentiums in one RFD. Therefore it can be considered as
a 3-out-of-9: G system. If we make the simplified assumption
that each Xentium tile has i.i.d. � � 8.0�tRt over 15 years and
other parts of the MPSoC remain fault-free, the system
reliability can be calculated using equation (1) and (2). The
system dependability attributes have been are summarized in
Table 1. An obvious system dependability improvement is
achieved with our dependability approach.
Table1. Mailbox application dependability attributes:

Mailbox Application
Dep. Attributes

No
Dependability
Approach

With
Dependability
Approach

Reliability (15 years) 51% 99%

Availability (MDT) N.A. 95ms

Maintainability N.A. Yes

VI. CONCLUSIONS
In this paper, we have examined the important attributes of

a dependable MPSoC. How design for dependability choices
can affect these attributes have been analysed in detail.
Equations for the calculation of dependability attributes in
simplified situations have been discussed.

A dependable MPSoC (RFD) has been designed following
the proposed dependability approach. The device has been
processed using 90nm UMC CMOS technology. Experimental

results have validated our dependability approach as well as the
DM design and associated software. More fault models will be
supported by the DM in the future.

ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of

Recore Systems on the Xentium tile processor, back-end
simulations and RFD SoC integration, NXP for the Xentium
wrapper design, and Atmel Automotive for floor-planning and
RFD structural manufacturing tests. Tampere University
contributed to NoC software testing. Timon ter Braak and
Hermen Toersche from the University of Twente have been
involved in the run-time mapping software design and helped
with system test and measurements.

REFERENCES
[1] S. Borkar, “Thousand Core Chips - A Technology Perspective”, in Proc.

ACM/IEEE Design Automation Conference (DAC), pp. 746–749, 2007.
[2] Y. Cao, P. Bose, and J. Tschanz, “Reliability challenges in Nano-CMOS

Design”, IEEE Design & Test of Computers, pp. 6-7, 2009.
[3] IEC standard 60300-3-4, “Application guide to the specification of

dependability requirements”, Sep. 1, 2007.
[4] M. Riley, L. Bushard, N. Chelstrom, N. Kiryu and S. Fergusson,

“Testability Features of the First-Generation Cell Processor”, in Proc.
IEEE International Test Conference 2005 (ITC 2005), pp 119, Nov.
2005.

[5] S. Shamshiri, P. Lisherness, S Pan and K. Cheng, “A Cost Analysis
Framework for Multi-core Systems with Spares”, in Proc. International
Test Conference 2008 (ITC 2008), pp. 1-8, Oct. 2008.

[6] L. Huang and Q. Xu, “Test economics for homogeneous manycore
systems,” in Proc. International Test Conference 2009 (ITC 2009), pp.1-
10, Nov. 2009.

[7] S. Borkar, “Challenges in Reliable System Design in the Presence of
Transistor Variability and Degradation”, IEEE Micro, vol. 25, no 6, pp.
10–16, 2005.

[8] P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS - A
Microprocessor Functional BIST Method,” in Proc. International Test
Conference 2002 (ITC2002), pp. 590-598, 2002.

[9] J. Collet, et al., "Chip Self-Organization and Fault-Tolerance in
Massively Defective Multicore Arrays," in IEEE Transactions on
Dependable and Secure Computing, No. 99, pp. 1-11, 2010.

[10] G. Hetherington, T. Fryars; N. Tamarapalli, M. Kassab, A. Hassan, J.
Rajski, “Logic BIST for large industrial designs: real issues and case
studies,” in Proc. International Test Conference 1999, pp.358-367, 1999.

[11] G. Kiefer, H. Vranken, E.J. Marinissen, H.-J. Wunderlich, “Application
of deterministic logic BIST on industrial circuits,” in Proc. International
Test Conference 2000, pp.105-114, 2000.

[12] Recore Systems Xentium architecture, http://www.recoresystems.com/
technology/xentium-technology/xentium-architecture/

[13] A. Avizienis, J-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing”, in IEEE
Transactions on Dependable and Secure Computing, vol. 1, no.1, pp. 11-
32, 2004.

[14] M.D. Beaudry, “Performance-Related Reliability Measures for
Computing Systems”, in IEEE Transactions on Computers, vol. C-27,
no.6, pp. 540-547, June 1978.

[15] J. Shao and L. R. Lamberson, “Modeling a shared-load k-out-of-n: G
system”, in IEEE Transactions on Reliability, 40(2):205–209, June 1991.

[16] Z. Lu, W. Liu, “Reliability Evaluation of STATCOM Based on the k-
out-of-n: G Model,” International Conference on Power System
Technology, 2006. PowerCon 2006, pp.1-6, Oct. 2006.

[17] L. Huang and Q. Xu, “On Modeling the Lifetime Reliability of
Homogeneous Manycore Systems”, in Proc. 14th IEEE Pacific Rim

61

International Symposium on Dependable Computing, 2008 (PRDC 08),
pp. 87-94, Dec. 2008.

[18] T.D. ter Braak, et al., “On-Line Dependability Enhancement of
Multiprocessor SoCs by Resource Management”, in Proc. of the 2010
International Symposium on System-on-Chip, Tampere, Finland.
pp. 103-110, Sep. 2010.

[19] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip”, ACM Comput. Surv., vol. 31, no. 1, 2006.

[20] E. Cota, M. Kreutz, C. A. Zeferino, L. Carro, M. Lubaszewski, and A.
Susin, “The impact of NoC reuse on the testing of core-based systems,”
in Proc. 21st VLSI Test Symposium, pp. 128-133, Apr. 2003.

[21] X. Zhang, H.G. Kerkhoff and B. Vermeulen, “On-Chip Scan-Based Test
Strategy for a Dependable Many-Core Processor Using a NoC as a Test
Access Mechanism”, in Proc. Digital System Design: Architecture,
Method and Tools (DSD2010), pp. 531-537, Sep. 2010.

[22] CRISP project: http://www.crisp-project.eu/

[23] P. T. Wolkotte, “Exploration within the Network-on-Chip Paradigm,”
PhD. thesis, University of Twente, 2009, ISBN 978-90-365-2757-6.

[24] H.G. Kerkhoff and X. Zhang, “Design of an Infrastructural IP
Dependability Manager for a Dependable Reconfigurable Many-Core
Processor”, in Proc. DELTA 2010, HCM City Vietnam, pp. 270-275
Jan. 2010.

[25] P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin, “Efficient
compression and application of deterministic patterns in a logic BIST
architecture,” in Proc. Design Automation Conference, pp. 566-569, Jun.
2003.

[26] A. A. Al-Yamani and E. J. Mccluskey, “Built-in reseeding for serial
bist,” In Proc. IEEE VLSI Test Symposium (VTS), pp. 63-68, 2003.

[27] H. Wunderlich and G. Kiefer, “Bit-flipping bist,” In Proc. IEEE/ACM
international conference on Computer-aided design, pp. 337-343, 1996.

[28] A.D. Singh, “Scan Based Testing of Dual/Multi Core Processors for
Small Delay Defects,” International Test Conference 2008 (ITC 2008),
pp.1-8, Oct. 2008.

62

