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Abstract—Nowadays highly dependable electronic devices are 
demanded by many safety-critical applications. Dependability 
attributes such as reliability and availability/maintainability of a 
many-processor system-on-chip (MPSoC) should already be 
examined at the design phase. Design for dependability 
approaches such as using available fault-free processor-cores and 
introducing a dependability manager infrastructural IP for self-
test and evaluation can greatly enhance the dependability of an 
MPSoC. This is further supported by subsequent software-based 
repair. Design choices such as test fault coverage, test and repair 
time are examined to optimize the dependability attributes. 
Utilizing existing infrastructures like a network-on-chip (NoC) 
and tile-wrappers are needed to ensure a test can be performed at 
application run-time. An example design following the proposed 
design for dependability approach is shown. The MPSoC has 
been processed and measurement results have validated the 
proposed dependability approach. 

Keywords- MPSoC; dependability; fault-tolerance; self-repair; 
reliability; availability; embedded instruments; NoC (TAM); self-
test  

I.  INTRODUCTION  
The increasing complexity and power issues of digital 

systems have led to the need of integrating many identical 
(homogeneous) processor cores onto a single system-on-chip 
(Multi-Processor SoC, MPSoC). Recent research has 
forecasted that MPSoCs with more than a thousand processor 
cores will be commercially available in the near future [1]. As a 
result of the rapidly growing transistor density on the chip, 
ensuring high system dependability has become a real 
challenge [2].  

A system is considered as a “dependable system” when it 
can correctly deliver the expected services under given 
conditions [3]. Manufacturing test is the conventional method 
to check the correctness of chips. Faulty cores in the system 
can be detected by a thorough manufacturing test and be 
isolated from the system to provide a “functionally correct” 
chip. The capability to tolerate a few faulty cores in an MPSoC 
has been adopted in industry [4]. Recent research shows that a 
significant effective yield increase and overall cost reduction 
can be achieved by adding a few dynamically reconfigurable 
spare cores into an MPSoC [5], [6]. The term ‘spare’ should be 
interpreted here as cores which may also carry out few or non-
crucial tasks. Using these resources for repair, could have slight 
consequences for the system Quality of Service (QoS). 

During the life time of an IC, permanent faults such as time 
dependent dielectric breakdown (TDDB) and electro-migration 

can occur as a result of chip degradation and material wear-out 
[7]. Permanent faults in processor cores can cause a system 
failure in the field. While using spare cores can help to tolerate 
manufacturing defects, the dependability of an MPSoC 
becomes a real challenge without a proper mechanism to detect 
a faulty processor core in its life cycle.   

As it is usually infeasible, if not impossible, to perform a 
manufacturing test with automatic test equipment (ATE) in the 
field, chips are often equipped with some self-test features. For 
example, software based self-test method (SBST), which uses 
the on-chip processor to execute test programs for core “mutual 
diagnosis” [8], [9].  The SBST method reuses the on-chip 
resources and carries out the test via software and hence it 
saves silicon area. A disadvantage of this method is that 
functional tests instead of structural tests are performed, which 
implies a lower fault coverage. This is not desirable as it has 
been concluded that high fault coverage of in-field testing and 
advanced fault-recovery mechanisms are essential for a 
dependable MPSoC [5]. In our paper, we propose to use 
structural test as our dependability test approach. 

Memory built-in self-test (BIST) has been commonly 
adopted to check the correctness of on-chip memories. As for 
the logic part of an SoC, methods such as Logic BIST (LBIST) 
or  Deterministic Logic BIST (DBIST) can generate pseudo-
random or deterministic test vectors on the chip to test the 
target circuits then compact the test responses using Multiple-
Input Signature Registers (MISR) and compare them with 
reference signatures [10], [11]. The disadvantage of using a 
MISR is that test response information is lost in the process of 
compaction thus the effective fault coverage is decreased. In 
this paper we exploit the fact that in a homogeneous MPSoC 
identical processor cores will generate identical test responses 
if supplied with the same test stimuli. By comparing the test 
results from several processor cores we can identify the faulty 
core by majority-voting. This method also eliminate the silicon 
real estate cost for MISR circuits and signature storage. 

In previous research, the real-time characteristic of an on-
chip self-test has often been neglected. Usually safety-critical 
applications allow only a very short system down time; this 
gives a real-time requirement for fault detection and system 
recovery. In this paper, we propose a generalized and scalable 
dependability solution for MPSoC with identical processor 
cores (homogeneous MPSoC). First, spare cores in the MPSoC 
should be available as potential resource to meet the reliability 
requirements. Second, an optimized infrastructural IP is 
included into the MPSoC to function as a dependability 
manager (DM) for core-level self-test. The DM performs 
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periodic structural tests on available cores. These cores can be 
made available, by shifting their tasks to other cores under the 
control of software. If the cores being tested are fault-free, 
processing load can be shifted to them to free other cores for 
test. If one core is tested to be faulty, system resource 
management software can exclude it from usable resource list 
of the system and application will be reconfigured to avoid the 
faulty core. This effectively makes the system fault-tolerant.  

An example MPSoC platform using the Xentium tile 
processors from Recore Systems [12] has been developed with 
the dependability approach proposed in this paper included. We 
have attempted to balance parameters such as fault coverage, 
dependability self-test time and the cost of extra silicon area to 
achieve a highly dependable MPSoC. The remainder of this 
paper is organized as follows. In Section II, dependability 
concepts of an MPSoC are introduced. The impact of the 
dependability self-test on dependability attributes is analysed in 
Section III. Section IV presents an example MPSoC design, 
which has been developed for streaming data applications, such 
as beamforming, following the proposed dependability 
approach. The example MPSoC has been processed in 90nm 
UMC CMOS technology. Measurement results and discussions 
of several dependability test scenarios are given in Section V. 
Section VI concludes the paper. 

II.  DEPENDABLE MPSOC CONCEPT 
The definitions of dependability are many and subject to the 

field of research. For modern computing systems, 
dependability can be generally accepted as the ability of a 
system to deliver expected services under given conditions 
[13]. Some important dependability attributes such as 
reliability, availability and maintainability will be discussed. In 
this section, the assumption is made that processor cores are the 
only parts that will fail in an MPSoC to simplify the discussion. 
Other parts that could fail such as on-chip memory or NoC are 
covered in Section IV. 

A. MPSoC Reliability 
An important attribute in dependability is reliability. A 

common technique to make a reliable system is to add 
redundant resources in order to tolerate certain amount of 
faulty components. Typical architectures of MPSoCs with 
some redundancy (spare cores) are a massive redundant 
system, a gracefully degrading system or a standby redundant 
system [14]. 

A massive redundant system uses technique such as triple-
modular redundancy (TMR) to improve system reliability. The 
same computing task is separately executed on several identical 
processor cores and the output of each core is compared to vote 
for the faulty core. Major disadvantage of this method is the 
amount of required redundant resources.  

A gracefully degrading system uses all the fault-free cores 
in the chip to execute tasks. If a faulty core is detected, the 
system software tries to reconfigure the task to run it only on 
the fault-free cores ensuring system reliability at the cost of 
degraded performance. The system is considered as dependable 
until its performance drops to an unacceptable level.  

In a standby redundant system, the fault-free cores are 
either in operational or in standby modes. The application task 
is executed on all the operational cores. If an operational core is 
detected as faulty, it is replaced by a fault-free standby core to 
maintain the same computing performance. The system 
performance will not degrade until all the standby cores have 
been used.    

With regard to the  reliability attribute, an MPSoC 
organized as gracefully degrading system or standby redundant 
system can be generally modelled as a load sharing K-out-of-
N: G system [15]. A K-out-of-N: G system has in total N 
processor cores and the system can correctly perform its 
required function  (a Good system) if at least K cores are 
working properly ( NK � ). The processing load of the system 
is distributed among the working cores. The system will not be 
considered as failing until N-K+1 cores have become faulty.  

The reliability of a system is often described as a 
probability R(t) that the system can provide correct service over 
a certain period of time. For example, R(t) = 0.9 over ten year 
means that the probability that the system will function 
correctly after ten years is 90%.  

Before the MPSoC reliability can be calculated, the 
reliability of an individual core has to be studied first. For a 
single core in the MPSoC, if for simplicity a constant failure 
rate �  is assumed, its reliability can be computed with 
exponential distribution as � � t

t etR ��� . 

In the case of a load sharing K-out-of-N: G system, we 
assume all the cores in the MPSoC are identical and have the 
same independent reliability distribution � �tRt , which means 

� �tRt is i.i.d. (independent and identically distributed). The 
system reliability � �tRsystem  is equal to the probability that the 
number of working cores is greater than or equal to K [16]: 
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A special case is when K=N, this means the system requires all 
the cores in the chip to perform a certain task. This results in no 
spare processor resources in the MPSoC and hence the system 
fails when any of the working processors fail. In this case, the 
system reliability � �tRsystem  degrades to: 
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For example, suppose six Xentium processor cores (K=6) 
are strictly required to perform a computing task for a 
beamforming application. Assuming � � 9.0�tRt  over 10 years 
for each core, the system hardware reliability of a 6-core 
MPSoC after 10 years is � � 53.09.0 6 ��tRsystem , assuming 
other parts are fault-free. If the MPSoC is built with 3 cores as 
spare (9 cores in total, N=9), the system reliability can be 
calculated using equation (1) as 
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It is obvious that adding a few more spare cores almost 
doubled the system reliability over a 10 years period.   

It should be noted that, the simplified reliability model (1) 
and (2) all assume an identical constant failure rate for all cores 
in the MPSoC. In reality, this will not be the case. In addition, 
due to the aging of the chip, the failure rate is expected to 
increase instead of being constant. Different cores may also 
have different failure rates as a result of varying temperature 
and voltage over the chip (environmental as well as operational 
conditions). A more precise model for computing MPSoC 
reliability has been studied in another paper [17].  

The above global reliability calculations all assume that, 
once a faulty core appears in the system, it will be detected. In 
practice, the real system reliability is also affected by the fault 
coverage of the selected in-field test method. This will be 
discussed in Section III.  

B. MPSoC Availability & Maintainability  
Another two attributes in dependability are availability and 

maintainability. Availability refers to the readiness of a system 
to correctly perform required functions. If a fault appears in the 
system, it is first required to be detected and subsequently the 
system has to be alerted. In the conventional case, the system 
will be taken offline, repaired and brought online again after 
fault elimination. The time spent for fault detection and repair 
is defined as system down time because the system is not 
performing the required function during this period of time. 
The system Mean Down Time (MDT) is an important measure 
of the availability attribute. Modern systems usually have an 
availability requirement of more than 99.9% and the MDT 
always needs to be minimized. Figure 1. summarizes the 
important terms regarding the system availability time.  

 

Figure 1. System availability chart. MTBF represents the Mean Time Between 
Failures; MDT is the Mean system Downtime; MUT is the Mean system 

Uptime; MTTD is the Mean Time To Detect a fault and MTTR is the Mean 
Time To Repair the system.  

For an MPSoC, it is usually very difficult to physically 
repair a faulty core in the chip package in field. In that sense, 
there is no maintainability at core level. At system level, an 
MPSoC can be considered as a repairable system if the faulty 
cores can be detected and isolated and the computing tasks can 
be remapped to fault-free processor cores.  

Upon the failure of a core, the system enters a malfunction 
mode. The mean time spent on faulty core detection (MTTD), 
isolation and application remapping (MTTR) should not exceed 

the mean system downtime allowed by the user. Therefore, it is 
required that: 

� allowedMDTMTTRMTTD ��  � ����

The time required to isolate the faulty core and remap the 
application to fault-free cores depends on aspects such as core 
architecture [12] and the used remapping software algorithm 
[18]. This is not discussed in detail within the scope of this 
paper. The MTTD is explained in Section III and related to the 
Dependability Manager design choices. 

III. DESIGN CONSIDERATIONS OF A DEPENDABLE MPSOC 
 As analysed in Section II, one needs to include some spare 

cores in an MPSoC to increase system reliability, to adopt a 
core-level self-test and evaluation mechanism to achieve 
maintainability and to minimize the time spent on 
dependability test and system reconfiguration for repair to 
maximize system availability. Hence, the dependability 
benefits come with a cost. For example, really redundant (fully 
non-operational) cores and the dependability self-test and 
evaluation features in the chip require additional silicon area; a 
shorter dependability test time to improve availability leads to a 
lower test fault-coverage. In this section, some of the important 
design parameters are examined to help optimizing the design 
for dependability choices.  

A. Dependability Self-Test and Evaluation and System 
Reliability 

1)  Effective Spare Cores 
The common reliability characteristic of a standby 

redundant system and a gracefully degrading system is that the 
system is considered as functionally correct until the number of 
working cores drops below a threshold value K as described in 
a K-out-of-N: G system. While K is a fixed number determined 
by both application requirements and individual core 
performance (e.g. measured by Million Instructions Per 
Second, MIPS), one can approximately calculate the number of 
spare cores needed for a target system reliability value 
according to Equation (1).  

In practice, it is usually difficult to verify the correctness of 
a core while it is working. Therefore two self-test methods can 
be chosen: 1) bring the system offline, test all the cores, then 
bring the system online again; 2) pick a few target working 
cores, shift their work load to (earlier tested fault-free) spare 
cores, test them, isolate the possible faulty core then shift back 
the work load. 

The first method should be avoided if possible as it 
interrupts the normal function of the system and seriously 
degrades the system availability. The advantage of the second 
method is that the system is tested at application run-time, 
which makes the system still available during the dependability 
self-test. To summarize, using the first method makes the 
system unavailable whenever a dependability self-test is carried 
out. But when using the second method, the system only 
becomes unavailable when a faulty core has been detected and 
an application remapping is required.   
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A side effect of the second method is that the number of 
remaining spare cores in the system needs to be greater than or 
equal to the number of the cores being tested so that the 
computational load of the cores being tested can be temporarily 
held. If the number of cores being tested each time is M, then 
the number of effective spare cores in the MPSoC is actually 
reduced to N-(K+M) if one wants to perform the dependability 
self-test at application run-time. If the number of fault-free 
spare cores is lower than M, the dependability test is still 
possible using the first method until all spare cores have been 
used to replace the faulty ones. Figure 2 shows an example of 
the dependability test and the application remapping scenarios 
for both a standby redundant system and a gracefully degrading 
system.  

2) Influence of Dependability Test Fault Coverage on 
Reliability 

The reliability calculation performed in Section II.A 
assumes that once a faulty cores appears in the system, it can 
be detected. If the system is operating in the field, this implies a 
100% dependability self-test fault coverage. In practice, 100% 
fault coverage is difficult to achieve for complex processors 
considering the limited capability of an on-chip built-in self-
tester due to either silicon area or test time.   

 
Figure 2a. A standby redundant system in mode: a.1 normally working, a.2 

dependability test, a.3 application remapped. Grayed area denotes the 
application load. W represents working core, S represents standby cores and T 
represents cores being tested. The core with a cross is the one tested as faulty.  

 

 
Figure 2b. A gracefully degrading system in mode: b.1 normally working, b.2 

dependability test, b.3 application remapped.  

If one assumes that every fault has the same probability to 
occur in the chip, it can be concluded that the dependability 
self-test fault coverage is proportional to the reliability increase 
of the system when spare cores are added. Given a K-core 
system with no spares (a K-out-of-K: G system), its reliability 
is calculated to be )(tRK

t assuming every core has a reliability 

distribution of )(tRt  according to Equation (2). By adding N-
K spare cores in the system, the system reliability can be 
calculated by Equation (1). Let the improved reliability 
be )(tRI . Now consider a dependability self-test with a fault 

coverage of F %, then the actual system reliability can be 
expressed as: 

� � � 100/)100()(100/)( FtRFtRtR K
tIsystem ����� �����

An interesting example is, if the fault coverage of the 
dependability self-test is zero (F=0); then the system reliability 
is still )(tRK

t , meaning the reliability increase is also zero 
despite the fact that spare cores have been added to the system. 
This indicates that in addition to introducing redundant 
resources, an effective dependability self-test method is also 
crucial to improve system reliability.  

Software based self-test (SBST) usually cannot provide a 
very high fault coverage thus it will negatively affect the 
system reliability. Hence it is preferable that the on-chip 
dependability test can achieve a fault coverage close to that of 
the manufacturing test. Therefore, it is proposed in this paper to 
include an infrastructural IP into the MPSoC to serve as a 
dependability manager (DM). The DM should be able to 
perform a high quality (structural) dependability test when 
needed, to analyse the core test results and to alert the system if 
a faulty core has been detected.  

B. Dependability Self-Test and System Availability 
A DM is designed to test the type of faults of the users’ 

interest in the MPSoC. As the mean time to detect a fault 
(MTTD) is strictly constrained by the acceptable system down 
time (MDT), one needs to carefully plan the self-test for 
minimum MTTD.   

The mean time to detect a fault can be approximately 
calculated as: 

�
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MAXT  is the maximum time to perform a full dependability 
test on all the cores in the MPSoC. MAXT  is determined by the 
number of times the dependability test is performed and the 
amount of time spent per test. The number of tests is 
determined by the total number of processor cores in the 
MPSoC ( totalN ) and the number of cores being tested each 

time ( pertestN ). The time spent per test can be calculated by the 

sum volume of the test vectors ( vectorV ) and test response data 

( responseV ) divided by the bandwidth ( TAMB , MByte/s) of the 
test access mechanism (TAM). For example, dependability 
testes need to be performed on nine processor cores in an 
MPSoC. Each time three cores are tested. The volume of test 
vector and test response data is 10MB. The bandwidth of the 
TAM is 200MB/s. In this case,   
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It should be noted that, in some cases, the test vector 
generation and test response collection process can take place 
in parallel, e.g. in a conventional scan-based test. This should 
be taken into account while calculating the time spent per test. 
In addition, the time spent to shift the load from working cores 
to spare cores and remapping the application tasks is not 
considered within the scope of this paper.   

The fault coverage of the dependability self-test is often 
closely related to the data volume of test vectors. A high fault 
coverage self-test usually requires a large amount of test 
vectors, which slows down the dependability test and will also 
cost more silicon area to store or generate these test vectors. 

C. MPSoC Architecture and System Maintainability 
In the case of MPSoC, the traditional system 

maintainability is interpreted as the presence of a built-in self-
repair mechanism. Core-level redundancy of an MPSoC 
enables the possibility to tolerate potential faulty cores and 
allows “repair” at system level.  For a conventional bus-based 
many-core system, replacing a working core with a spare core 
at another location will likely change the system topology and 
this can cause (e.g. speed) problems for application developers. 
This problem can be solved by adopting a Network-on-Chip 
(NoC) infrastructure as an on-chip communication fabric (e.g. 
configured as guaranteed throughput connection). The NoC has 
become popular in MPSoCs as a result of its high bandwidth, 
scalability and flexibility compared to traditional bus 
interconnections. A recent survey on the research works of 
NoC can be found in [19].  

Via a standardized network interface (NI), core-to-core 
communication can be routed through dynamically configured 
routes in the NoC. The intrinsic reconfigurability of the NoC 
enables a higher level abstraction of the system for application 
developers. A NoC-based MPSoC can be viewed as a library 
with a certain amount of processing power (namely, the cores). 
Core status can be categorized as operational, in test, standby 
or faulty. System-level resource management software can map 
new tasks to standby cores, put cores into dependability test 
mode or isolate a faulty core. This way, a system level 
maintenance can be achieved by arranging dependability self-
test and resource reconfiguration. 

Core-level dependability self-test can use the IEEE 1500 
standard for embedded core testing. Previous studies have 
suggested that the NoC can be reused as a Test Access 
Mechanism (TAM) to avoid dedicated test buses [20]. Recent 
research has shown simulation results of performing a scan-
based structural test using the NoC as a TAM at application 
run-time in an MPSoC [21].  

D. Design for Dependability Considerations 
The design for dependability parameters as previously 

discussed have been summarized in Figure 3. Increasing 
dependability parameters such as the number of spare cores or 
the volume of test vectors will benefit system dependability. 
But it also increases silicon area overhead and test time. A 

balance between dependability requirements and resource 
overhead should be evaluated at the system design phase. 

 
Figure 3. Design for dependability parameters and their  relations with 

resources.  

IV. CASE STUDY: DESIGN AND IMPLEMENTATION OF A 
DEPENDABLE MPSOC 

A. The CRISP Platform 
The CRISP (Cutting edge Reconfigurable ICs for Stream 

Processing) project researches optimal utilization, efficient 
programming and dependability of reconfigurable many-core 
processors for streaming applications [22].  

1) General Stream Processor (GSP) 
The envisioned platform for CRISP is a General Stream 

Processor (GSP) dedicated for virtually any streaming 
application. The current implementation of the GSP includes a 
General Purpose Device (GPD) and five Reconfigurable Fabric 
Devices (RFD) individually assembled in 400BGA package 
and interconnected on a PCB as shown in Figure 4. The GPD 
consists of an ARM-9 based processor and runs an embedded 
Linux OS to support the run-time mapping software and the 
dependability application programming interface (API). The 
reconfigurable many-core architecture in the GSP has been 
separated into several smaller packages (RFD) for the sake of 
reduced risk and cost. A Xilinx Virtex-4 FPGA device is 
incorporated on the PCB for user-defined applications. 

High speed chip-to-chip connections (C2C) and Multi-
Channel Ports (MCP) form the interconnection ports between 
GPD and RFDs. A user is able to debug the system via a serial 
debug interface on the board. Part of the data flowing in the 
NoC of one RFD can be rerouted to the FPGA device and 
measured using a Logic Analyzer through a MICTOR 
connector (Figure 4). 
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Figure 4. GSP Platform: simplified diagram of major functional blocks (left) and photo of the platform on a PCB (right).  

 

      
Figure 5. Reconfigurable Fabric Device (RFD) : floorplan (left), X denotes a Xentium tile processor, MEM represents the embedded SRAM and DM stands for 

the Dependability Manager. Photo of the RFD silicon is shown at right side. 
 

2) Reconfigurable Fabric Device (RFD) 
The major part of the GSP consists of five RFDs. Each 

RFD holds nine identical high-performance Xentium tile 
processors [12], two SRAM tiles and a Dependability Manager 
(DM) infrastructural IP as shown in Figure 5. The RFD chip 
has been produced in 90nm UMC CMOS technology and 
measures about 43.8mm2. In the RFD, the area of a single 
Xentium tile is roughly 1.88mm2 while the DM occupies 
around 0.4mm2. The specified clock speed is 200MHz. 

The functional blocks in the RFD are interconnected with 
GUARVC, a virtual-channel NoC architecture for streaming 
applications with a router capable of concurrently providing 
both guaranteed and best-effort services over a shared network 
infrastructure [23]. The NoC has a data width of 32-bit 
operating at 200MHz.  

B. Design for a Dependable RFD 
One of the themes of the CRISP project is dependability, 

which enables the GSP platform to be used for safety-critical 
applications. An RFD is a good example of a homogeneous 
MPSoC with nine identical processor cores (Xentium tile 
processor). As an example, a beamforming application has 
been mapped to each RFD, which requires six working cores in 
one RFD. This leaves three Xentium cores as spare parts for 
non-crucial tasks or self-repair.  

The dependability parameters listed in Figure 3 have been 
examined to determine the dependability design choices. User 
specified reliability requirements demand that the dependability 
self-test fault coverage must be higher than 90%. In the scope 
of this paper, the stuck-at fault model was targeted as the main 
fault model. The RFD availability requirement is at least 99.0% 
with a 500 milliseconds allowed MDT in the case of a faulty 
tile processor.  

Each Xentium tile processor has 32 parallel scan-chains for 
conventional manufacturing tests and dependability structural 
tests. An IEEE 1500 compliant dependability wrapper has been 
developed to switch the Xentium tiles to normal, 
manufacturing test and dependability test modes [21]. Other 
important dependability infrastructures include BIST for the 
SRAM block and a software-based self-test for the 
interconnection nodes such as the NoC and MCPs. Run-time 
mapping software, resource management software and the DM 
API have been developed and run in the ARM-based GPD 
[18]. 

C. Dependability Tests and Automatic DM Design 
The goal of the dependability test is to reproduce the 

deterministic test vectors (for stuck-at faults) on-chip to 
achieve the required fault coverage and ensure a small silicon 
area overhead. Since the Xentium tile processors in the RFD 
are identical, and if we assume that only one faulty tile can 
appear after the previous test, one can test more than one 
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Xentium tile at a time and compare the test results to determine 
a possible faulty tile by majority voting. In this case, more than 
one Xentium tile is required per test. A major advantage of this 
method is the removal of the reference structural test results 
storage on the chip. 

The DM consists of three major parts being a Test Pattern 
Generator (TPG), a Test Response Evaluator (TRE) and a 
Finite State Machine (FSM). Deterministic test vectors are 
generated by the TPG using techniques such as Deterministic 
Logic BIST [25]. In the TPG, a linear feedback shift register 
(LFSR) is combined with a reseeding [26] or bit-flipping [27] 
functional block to reproduce the deterministic test vectors 
using limited seed or bit-flipping information to achieve vector 
compression. The generated test vectors are organized in a 
phase-shifter into 32-bit data flits and multicasted to the 
Xentium tiles under test via the NoC. Test responses from 
multiple tiles are sent back to the TRE and compared to 
determine the potential faulty tile. The FSM communicates 
with the dependability test API to control the test process and 
will inform the on-chip resource management software upon 
the detection of a faulty core.  
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embedded 
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Figure 6. Dependability test flow 

An example design of the DM sub blocks can be found in 
[24]. A recent progress is the development of a software tool 
which automates the design process of the DM. The input 
options to the tool include fault coverage requirement of the 
dependability test, LFSR length, compression method 
(reseeding or bit-flipping) and a test pattern file of the core 
under test generated by a commercial ATPG tool. Given the 
required input, the tool can generate synthesizable VHDL 

codes for the DM. The test vectors generated by DM can be 
stored into formatted test pattern file by the tool, which can 
then be imported into the ATPG software together with the 
design under test to check the DM-TPG fault coverage. As a 
result, the DM is able to reproduce a major part of the original 
ATPG structural test vectors and reach 99% of its fault 
coverage. 

A DM design has been generated by the tool for the 
Xentium tile processor test. The total number of test vectors is 
413; each test vector contains 398 32-bit data blocks for the 32 
scan chains in the Xentium. Given the full bandwidth of the 32-
bit 200MHz NoC, the subsequent test time can be calculated as 

8.0)10200(398413 6 ��#�  milliseconds. If nine Xentium 
tiles can be tested in three groups, the MTTD is 2.4 
milliseconds (the specified MDT is 50 milliseconds). The 
dependability test can still be performed with a longer test time 
if the DM can only claim part of the NoC bandwidth. The 
method to tolerate varying NoC traffic with the presence of 
application data in the NoC has been discussed earlier in [21].  

The DM can be designed to cooperate with other BIST 
methods. For example, it has been designed to start the BIST 
engine of the embedded memories in the Xentium tile and to 
check the memory BIST results. More fault types such as delay 
faults can be covered by the DM in the future [28]. The 
complete dependability test flow on the RFD is shown in 
Figure 6. 

V. DEPENDABILITY EXPERIMENTAL RESULTS 
The RFDs have been processed by UMC and passed a 

structural manufacturing test by Atmel Automotive GmbH. A 
detailed microphotograph of our DM block in the RFD is 
shown in Figure 7. Note that the DM has not been implemented 
as a hard macro, but as glue logic. On the left upper corner, the 
clock PLL is shown. The area of the DM is less than the area of 
a Xentium tile processor and the DM overhead in terms of 
silicon area in the RFD is acceptable (about 1%).  

 
Figure 7. Silicon photo: DM in RFD  

The GSP platform (Figure 4) has been assembled and went 
through basic factory tests and some functional tests. Using the 
debug interface, a user is able to interact with the dependability 
API running in the GPD and command the DM to perform 
various dependability test actions. A special on-chip hardware 
circuit to emulate Xentium faults has been added at the design 
phase, just for dependability experiment purpose. The 
following experiments have been carried out to validate the 
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function of the DM and the dependability approach proposed in 
this paper.  

A. DM Function Validation 
In order to validate the DM can deliver its designed 

functions, special test procedures have been prepared. Part of 
the NoC traffic in RFD2 has been redirected to the Multi-
Channel Port (MCP) of the FPGA device on the PCB and then 
looped back. The NoC data in RFD2 was thus made observable 
via the 34-pin MICTOR connector connected to the FPGA (see 
Figure 4). An Agilent 16823A logic analyzer was used to 
capture the data stream. Examples of measurement results 
using the logic analyzer are shown in Figures 8, 9 and 10. It 
should be noted that the clock frequency of the MCP in the 
FPGA was set to be 100MHz due to the limitation of the FPGA 
device.  

The user can run their own dependability software (in C 
codes) at the PC terminal to issue commands such as “start 
embedded memory BIST for No.1 Xentium tile” or “perform a 
scan-based test on No. 2, 3 and 4 Xentium tiles” to the DM API 
in the GPD. The DM API then sets up a communication 
channel (a virtual channel) between the GPD and the DM over 
the NoC and command the DM to perform the requested 
action(s) accordingly by send 32-bit command word to the DM 
control register. In the measurement result shown in Figure 8, 
the command word “9600 0000” was sent to the DM over the 
NoC. This command is interpreted by the DM as “to start up 
the embedded memory BIST on 3 selected Xentium tiles”. 

 
Figure 8. GPD to DM (in RFD2) command: start Xentium embedded memory 

BIST 

Similar procedures have been taken to capture the structural 
test vectors generated by the DM. The test vectors have been 
generated in the form of 32-bit data flits and multicasted to 
several Xentium tiles under test over the NoC.  An example test 
vector data flits passing a NoC router is shown after 
“noc_flit_data” in Figure 9. All the measured test vectors 
values have been compared with the reference test vectors in 
the ATPG test pattern file and it can be concluded that the 
correct test vectors have been generated by the DM in the RFD 
chip. 

 
Figure 9. DM Test vectors travel via the NoC  

In Figure 10, the data block between M1 and M2 is one 
complete test vector measuring about 32.7us. A complete 
structural dependability test consists of 413 such test vectors. 
Hence, the actual time to generate all the test vectors is 

mss 5.13 7.32413 �� $  with a 100MHz clock.  

 
Figure 10. DM Test vectors travel via the NoC zoomed out view 

Comprehensive tests have validated that the DM can 
successfully perform its designed dependability test functions 
using the NoC as a TAM.   

B. Software NoC Test 
The NoC in each RFD is tested using a software walk-

through test method at the start-up of the GSP platform. In 
addition, chosen parts of the NoC (routers and 
interconnections) can also be tested at application run-time if 
the NoC resource were not occupied by any application. The 
NoC test results are also reported to the resource management 
software and faulty segments will be isolated. 

More details on the NoC test algorithm and results will be 
treated in another paper. In this paper, we perform the DM 
dependability test only after a complete NoC test has been 
carried out and a fault-free NoC test report is received. 

C. Full Dependability Test at Application Run-Time 
In this part,  the proposed dependability approach is 

performed at the run-time of a simple application to validate 
the complete dependable heterogeneous MPSoC concept.  

1) The Mailbox Application 
A simple mailbox application has been developed and its 

basic principle is shown in Figure 11. When the application 
starts up, the GPD sends a mail to one RFD and this mail will 
loop through three Xentium tiles via the NoC. A LED on the 
PCB will be turned on when the mail reaches its associated 
Xentium tile processor. If a Xentium tile becomes faulty or 
have a hardware fault emulated, the whole application will be 
terminated.   

 
Figure 11. The mailbox application using three Xentium tiles 

2) Dependability Test Scenario 
The resource management software mapped the mailbox 

application to Xentium 1, 6 and 7 on RFD5. At a certain 
moment, a hardware fault was manually emulated on Xentium 
7 via a designed fault injection feature in the Xentium wrapper. 
As the DM has been programmed to perform a periodic 
dependability test, it immediately identified the faulty Xentium 
tile. A dependability test report is printed to the PC terminal as 
shown in Figure 12. The report can be interpreted as: no 
communication error has occurred during the dependability 
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test; a faulty Xentium core has been detected and the faulty unit 
id is Xentium 7. 

 
Figure 12. Dependability test report 

The resource management software was also notified by 
DM to isolate Xentium 7 from the system and remap the 
mailbox application to fault-free Xentium tiles.  The whole 
process has been successfully accomplished with no user action 
required except for the fault emulation. The user could observe 
a very short pause of the blinking LEDs when the fault on 
Xentium 7 was emulated, then the application will recover by 
itself and the LEDs will be blinking again. This experiment 
proves the proposed dependability approach can be truly 
performed at application run-time. 

A timer in the GPD measures the time spent for each 
activity.  The dependability test cost around 4.9ms and the 
remapping of the mailbox application to fault-free resources 
cost around 90ms. Hence, the system MDT for the mailbox 
application was around 95ms, shorter than the 500ms MDT 
requirement.  

3) Dependability Attributes Improvement 
The mailbox application uses 3 Xentium tiles out of the 

total 9 Xentiums in one RFD. Therefore it can be considered as 
a 3-out-of-9: G system. If we make the simplified assumption 
that each Xentium tile has i.i.d. � � 8.0�tRt over 15 years and 
other parts of the MPSoC remain fault-free, the system 
reliability can be calculated using equation (1) and (2).  The 
system dependability attributes have been are summarized in 
Table 1. An obvious system dependability improvement is 
achieved with  our dependability approach. 
Table1. Mailbox application dependability attributes: 

Mailbox Application 
Dep. Attributes 

No 
Dependability 
Approach 

With 
Dependability 
Approach 

Reliability (15 years) 51% 99%

Availability (MDT) N.A. 95ms

Maintainability N.A. Yes

VI. CONCLUSIONS 
In this paper, we have examined the important attributes of 

a dependable MPSoC. How design for dependability choices 
can affect these attributes have been analysed in detail. 
Equations for the calculation of dependability attributes in 
simplified situations have been discussed.  

A dependable MPSoC (RFD) has been designed following 
the proposed dependability approach. The device has been 
processed using 90nm UMC CMOS technology. Experimental 

results have validated our dependability approach as well as the 
DM design and associated software. More fault models will be 
supported by the DM in the future. 
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