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Abstract. This work addresses the characterization of homomorphic
encryption schemes both in terms of security and design. In particular,
we are interested in currently existing fully homomorphic encryption
(FHE) schemes and their common structures and security. Our main
contributions can be summarized as follows:

– We define a certain type of homomorphic encryption that we call
shift-type and identify it as the basic underlying structure of all
existing homomorphic encryption schemes. It generalizes the already
known notion of shift-type group homomorphic encryption.

– We give an IND-CPA characterization of all shift-type homomorphic
encryption schemes in terms of an abstract subset membership prob-
lem.

– We show that this characterization carries over to all leveled FHE
schemes that arise by applying Gentry’s bootstrapping technique to
shift-type homomorphic encryption schemes. Since this is the com-
mon structure of all existing schemes, our result actually character-
izes the IND-CPA security of all existing bootstrapping-based leveled
FHE.

– We prove that the IND-CPA security of FHE schemes that offer a cer-
tain type of circuit privacy (for FHE schemes with a binary plaintext
space we require circuit privacy for a single AND-gate and, in fact,
all existing binary-plaintext FHE schemes offer this) and are based
on Gentry’s bootstrapping technique is equivalent to the circular
security of the underlying bootstrappable scheme.

Keywords: Public-Key Cryptography, Homomorphic Encryption, Se-
mantic Security, Circular Security.

1 Introduction

Homomorphic encryption is one of the central topics in public-key cryptography
as it allows for the evaluation of certain circuits over encrypted data without the
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ability to decrypt. Many important applications, such as Outsourcing of Com-
putation [18], Electronic Voting [5, 10, 12, 13], Private Information Retrieval
[26], Oblivious Polynomial Evaluation [28], and Multiparty Computation [11]
are based on this primitive. In the past decades, a substantial number of homo-
morphic encryption schemes have been proposed (see survey [17]). The major-
ity of these schemes are group homomorphic, i.e., the plaintext and ciphertext
spaces are groups and the decryption function is a group homomorphism. In
other words, group homomorphic schemes allow the evaluation of circuits, con-
sisting solely of group operations in the plaintext group, over the ciphertexts.
Recently, Armknecht et al. [3] gave a comprehensive and complete framework of
all currently existing group homomorphic encryption schemes and, in particular,
gave characterization both in terms of security and design.

Concerning the construction and characterization of more general homomor-
phic encryption schemes on the other hand, there is still a lot of work to be
done. Much effort has been devoted to the construction of so-called fully homo-
morphic encryption (FHE) schemes [7–9, 15, 19, 21–24, 27, 29, 30], which allow
the evaluation of any circuit (not just consisting of group operation gates as it is
the case for group homomorphic encryption) over the ciphertexts. The first such
scheme has been proposed by Gentry [20] which uses a certain technique that
subsequently has been the basis of all currently existing FHE schemes. Gentry’s
technique is called bootstrapping and can be summarized in the following 2 steps:

1. Construct a bootstrappable homomorphic encryption scheme, i.e., a scheme
allowing the evaluation of low-degree polynomials over the ciphertexts and,
in particular, the evaluation of its own decryption circuit together with one
additional set of gates like AND and NOT.

2. Use the bootstrapping technique on this scheme to make it fully homomor-
phic. This technique refreshes a given ciphertext so that it can further be
used for evaluation. Usually, ciphertexts are created by adding noise to a
given plaintext and once the noise gets too big, the ciphertexts have to be
refreshed to reduce the noise again – this is what bootstrapping achieves.

Essentially, the same bootstrapping technique (with minor differences) can be
used to construct so-called leveled FHE schemes – a relaxed notion of FHE. Such
schemes can evaluate all circuits up to a certain depth.1

Concerning security, the resulting FHE schemes can be proven secure in terms
of IND-CPA (also known as semantic security) under certain assumptions. For a
leveled FHE scheme, IND-CPA security follows from the IND-CPA security of the
underlying bootstrappable scheme. For a “pure” FHE scheme, we require the

1 The recent leveled FHE scheme by Brakerski et al. [7] is built without the boot-
strapping technique. It is the only scheme known so far that deviates from Gentry’s
blueprint. We stress that we focus on schemes that follow the bootstrapping ap-
proach.

We also want to point out that we are not concerned with the “squashing of
the decryption circuit” step that Gentry originally proposed in his blueprint. The
schemes [7–9, 21] circumvent this “squashing” step but still rely on bootstrapping
which is the technique we focus on in this paper.
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underlying bootstrappable scheme to be circular secure which roughly means
that the scheme remains secure even if the adversary gets to see the bits of the
secret key encrypted under the corresponding public key.

1.1 Contribution and Related Work

In this paper, we address the above mentioned topic of characterizing the secu-
rity and the design of homomorphic encryption schemes in the context of FHE,
thereby extending the work of Armknecht et al. [3] on group homomorphic en-
cryption to these more general homomorphic schemes:

1. We identify and formalize the underlying structure of all existing homomor-
phic schemes and call such schemes shift-type homomorphic. It is a natural
generalization of the shift-type group homomorphic schemes introduced in
[3].

2. We give an IND-CPA security characterization of all shift-type encryption
schemes in terms of an abstract subset membership problem. In comparison
to the proof of the IND-CPA security characterization of group homomor-
phic schemes in [3] that heavily relies on the group homomorphic property,
it is interesting to see that our result shows that it is actually the shift-type
structure of the encryption algorithm that gives the IND-CPA characteriza-
tion (and not the homomorphic property of the decryption).

3. We show that this characterization carries over to all leveled FHE schemes
that are based on Gentry’s bootstrapping technique applied to shift-type ho-
momorphic schemes. Since all existing schemes are shift-type homomorphic,
this gives a characterization of all existing bootstrapping-based schemes. Ad-
ditionally, our result has the nice application that once an FHE scheme is
constructed using Gentry’s technique, the underlying hardness assumption
yielding IND-CPA security immediately comes out of this characterization.

4. We prove that the IND-CPA security of “pure” FHE schemes that are based
on Gentry’s bootstrapping technique and that are circuit-private for a cer-
tain small set of circuits (meaning that a ciphertext that is the evaluation
of ciphertexts under one of these circuits does not reveal any information
about the used circuit, even when the secret key is known) is equivalent to
the circular security of the underlying bootstrappable scheme. We note that
Gentry [19, Theorem 4.3.2] has already proved one of the directions, namely
that if the underlying bootstrappable scheme is circular secure, then the
resulting FHE scheme is IND-CPA secure. Interestingly enough, all existing
FHE schemes where the plaintext space is {0, 1} are circuit-private for this
special set of circuits.

Our characterization result gives another important relation between the
notion of circular security and IND-CPA security. Moreover, it shows that
when the resulting FHE scheme (using the bootstrapping technique) gives a
certain “minimal” circuit privacy, the circular security is not only sufficient
but also necessary. Therefore it underlines the importance of Brakerski et
al.’s work [9]. Therein, they construct a “somewhat” homomorphic scheme
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(i.e., a homomorphic encryption scheme for low-degree polynomials only)
that is provably circular secure. However, this scheme is not bootstrappable.
By using standard techniques, they turn it into a bootstrappable scheme.
Unfortunately, the proof of circular security gets lost in this transformation.
We note that, even with Brakerski et al.’s result, we still do not know how to
prove circular security for given IND-CPA secure bootstrappable encryption
schemes. So currently existing FHE schemes still rely on the assumption that
the circular security and the IND-CPA security of their underlying bootstrap-
pable schemes are equivalent.

In regard to circular security, there are two other papers important to mention.
First, there is the work by Barak et al. [4]. Therein, they show that any FHE
scheme that is circular secure is actually fully KDM secure (i.e., the adversary
gets evaluations of arbitrary functions on the private key). Second, the work by
Applebaum [2] shows that any simulatable fully KDM secure scheme (a notion
which is even stronger than fully KDM security) is also fully homomorphic.
Furthermore, it shows that the same bootstrapping technique that Gentry uses
to build FHE schemes can be used to construct fully KDM secure encryption
schemes.

We stress that in contrast to the just mentioned works, we prove that the
IND-CPA security of FHE schemes (that arise by using the bootstrapping tech-
nique) which give a certain “minimal” circuit privacy, is equivalent to the circular
security of the underlying bootstrappable scheme.

To complete the list of related works on FHE, we want to mention an approach
by Aguilar Melchor et al. [1], which uses so-called “chained encryption schemes”
and differs from the bootstrapping technique. Although it is likely that our
results extend to their method, we do not cover this here, since the computational
cost of their solution is exponential in the number of multiplications that the
scheme should be able to evaluate over the ciphertexts (formally, they do not
achieve leveled FHE but only constant-bounded FHE).

1.2 Outline

Throughout the paper, we use standard notation and definitions that are sum-
marized in Section 2. Therein, we also formally define public-key homomorphic
encryption, recall its standard security notion, and define a class of subset mem-
bership problems. In Section 3, we define shift-type homomorphic encryption
schemes and characterize their security in terms of these subset membership
problems. Finally, Section 4 is entirely devoted to FHE. First, we recall Gen-
try’s bootstrapping technique for leveled FHE schemes and show that our secu-
rity characterization for shift-type homomorphic encryption carries over to such
schemes. Second, we prove the equivalence of a “pure” bootstrapping-based FHE
scheme being IND-CPA secure and the underlying bootstrappable scheme being
circular secure. Third, we give a brief overview on existing FHE schemes and
their underlying shift-type structures, while focusing on the scheme by van Dijk
et al. [15] for a better conceptual understanding. We conclude in Section 5.
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2 Preliminaries

2.1 Notation

We write x←− X if X is a random variable or distribution and x is to be chosen
randomly from X according to its distribution. In the case where X is solely a

set, x
U←− X denotes that x is chosen uniformly at random from X . For an

algorithm A we write x ←− A(y) if A outputs x on fixed input y according to
A’s distribution. If A has access to an oracle O, we write AO. Sometimes, we
need to specify the randomness of a probabilistic algorithm A explicitly. To this
end, we interpret A as a deterministic algorithm A(y, r), which has access to
random values r from some randomness space Rnd.

By a description of a finite set X we mean an efficient sampling algorithm
(according to some distribution) for the set X . If X is a group, a description of
X additionally includes the neutral element and a set of efficient algorithms that
allow us to perform the usual group operation on X and the inversion of group
elements. We abuse notation and write X both for the description and for the
set itself. If a description of X is given, we denote sampling from X according to
the distribution given by the sampling algorithm of the description by x←− X .

For given probabilistic algorithms A and Gen that run in time polynomial in a
given parameter λ, we describe computational problems P through experiments
ExpP

A,Gen(λ). The output of ExpP
A,Gen(λ) is always defined to be a single bit.

We then say that problem P is hard (relative to Gen) if for all probabilistic
polynomial time (PPT) algorithms A there exists a negligible (in λ) function
negl such that

∣
∣
∣
∣
Pr[ExpP

A,Gen(λ) = 1]− 1

2

∣
∣
∣
∣
≤ negl(λ).

We recall that a public-key encryption scheme E = (KeyGen,Enc,Dec) consists
of a PPT key generation algorithm KeyGen which generates a pair (pk, sk) of
corresponding public and private keys, a PPT encryption algorithm Enc and a
deterministic PT decryption algorithm Dec with the usual correctness condition.
We denote the set of plaintexts by P and the set of ciphertexts by Ĉ.

2.2 Public-Key Homomorphic Encryption Schemes

We briefly recall the notion of public-key homomorphic encryption (see [25,
Definition 5] or [20, Definition 1]).

Definition 1. A public-key encryption scheme E = (KeyGen,Enc,Dec) is called
homomorphic for a set of circuits C = C[λ] (that depends on the security param-
eter λ), if there exists a PPT algorithm Eval (that outputs a ciphertext and takes
as input public keys pk from the output of KeyGen, circuits C ∈ C(λ) and ci-
phertexts (c1, . . . , cr) with ci ←− Encpk(mi) for some mi ∈ P, i = 1, . . . , r) such
that for every output (pk, sk) of KeyGen(λ) it holds that ( correctness condition)

Decsk(Evalpk(C, c1, . . . , cr)) = C(m1, . . . ,mr),

except with negligible (in λ) probability over the random coins in Eval.
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The minimal security property that we require such schemes to have is semantic
security (or IND-CPA security), which is defined in exactly the same way as
for standard public-key encryption schemes and is captured by the following
experiment between a challenger and an adversary A:
Experiment Expind-cpa

A,KeyGen(λ):

1. (pk, sk)←− KeyGen(λ)
2. (m0,m1, s)←− A1(pk) where m0,m1 ∈ P and s a state of A1

3. Choose b
U←− {0, 1} and compute c←− Encpk(mb)

4. d←− A2(m0,m1, s, c) where d ∈ {0, 1}
5. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

We say that E is IND-CPA secure (relative to KeyGen) if the advantage

∣
∣
∣
∣
Pr[Expind-cpa

A,KeyGen(λ) = 1]− 1

2

∣
∣
∣
∣
is negligible for all PPT algorithms A.

2.3 The Subset Membership Problem

The Subset Membership Problem (SMP) was introduced by Cramer and Shoup in
[14]: Let Gen be a PPT algorithm that takes a security parameter λ as input and
outputs descriptions (S,N ) where N is a non-trivial, proper subset of a finite
set S. Consider the following experiment for a given algorithm Gen, algorithm
A and parameter λ:

Experiment ExpSMP
A,Gen(λ):

1. (S,N )←− Gen(λ)

2. Choose b
U←− {0, 1}. If b = 1: z ←− S. Otherwise: z ←− N .

3. d←− A(S,N , z) where d ∈ {0, 1}
4. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

This experiment defines the Subset Membership Problem SMP (relative to Gen)
which, informally, states that given (S,N , z) where z ←− S, one has to decide
whether z ∈ N or not.

3 Shift-Type Homomorphic Encryption

Informally, an encryption scheme is shift-type homomorphic if the plaintexts form
a non-trivial (say multiplicative) group, encryptions of known plaintexts can be
transformed (or “shifted”) to encryptions of 1, and if the same transformation
is applied to a random ciphertext, the resulting ciphertext is still random.

Definition 2. A public-key encryption scheme E = (KeyGen,Enc,Dec) is called
shift-type homomorphic, if for every output (pk, sk) of KeyGen(λ), the plain-

text space P and the ciphertext space Ĉ are (multiplicatively written) non-trivial
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groups2 such that the public key pk contains a description of a subset N ⊆ Ĉ and
an efficient injective homomorphism ϕ : P → Ĉ so that for all plaintexts m ∈ P,

Encpk(m) outputs ϕ(m) · n,
where n←− N .

We denote the set of all encryptions by

C := {Encpk(m) | m ∈ P} ⊆ Ĉ

and sometimes call its elements fresh ciphertexts/encryptions. Since ϕ is a ho-
momorphism, we know that N is actually a subset of C.
Remark 1. 1. The concept of shift-type homomorphic encryption is very similar

to the concept of “adding noise” to the plaintext. Here, we are a bit more
general, as we allow homomorphic manipulation of the plaintext prior to
adding (or multiplying in our case) noise. The “noise” corresponds to the
elements of the subset N .

2. The name “shift-type” is due to the fact that we can “shift” encryptions
of known plaintexts to encryptions of arbitrary plaintexts under the same
noise: Let c := ϕ(m) · n be an encryption of message m ∈ P . Then, by
computing c′ := ϕ(m′ · m−1) · c for some arbitrary message m′ ∈ P , we
receive an encryption c′ = ϕ(m′) · n of message m′ under the same noise n,
by using the homomorphic property of ϕ.

3. Definition 2 is a natural generalization of the notion of shift-type group
homomorphic encryption as introduced in [3]. For the latter, the decryption
procedure is a group homomorphism and the mapping ϕ is the encryption
algorithm under a fixed randomness.

4. We stress that the shift-type structure of the encryption algorithm is not
implied by a group homomorphic encryption scheme (recall that this means
that the decryption procedure is a group homomorphism, see [3] for details).
Although all existing IND-CPA secure homomorphic schemes do have this
structure, it is easy to construct a group homomorphic scheme (which is
insecure in terms of IND-CPA) that does not: Let E = (KeyGen,Enc,Dec) be
an arbitrary IND-CPA secure group homomorphic encryption scheme with
randomness space Rnd (e.g., ElGamal’s scheme [16]) and let r∗ be some fixed
value in Rnd. We modify its encryption algorithm as follows and denote it
by Enc∗: On input a plaintext m, Enc∗(m) chooses a random bit b ∈ {0, 1}
and some random r ∈ Rnd. If b = 1 or m = 1, Enc∗(m) outputs Enc(m, r).
Otherwise, it outputs Enc(m, r∗).

It is easy to see that the modified scheme Enc∗ = (KeyGen,Enc∗,Dec) is
group homomorphic but not IND-CPA secure. On the other hand, it is also
not shift-type homomorphic. Interestingly enough, it is an open question

2 We assume that descriptions of P and ̂C are contained in the public key pk. As de-
scribed in Section 2.1, sampling from P (resp. ̂C) using the (corresponding) sampling

algorithm of the description is denoted by m←− P (resp. c←− ̂C).
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whether the shift-type structure is implied by the IND-CPA security of a
given group homomorphic encryption scheme – meaning that if the output
distribution of the encryption algorithm is computationally distinguishable
from the shift-type structure, then the given group homomorphic scheme is
insecure in terms of IND-CPA.

Next, we will characterize the IND-CPA security of such schemes. We note that
by saying that the Subset Membership Problem (SMP) as defined in Section
2.3 is hard relative to KeyGen for a key generator KeyGen of some shift-type
homomorphic encryption scheme, we mean that SMP is hard for (C,N ). For a
given shift-type homomorphic encryption scheme, we use the notation

Cm := {c ∈ C | Decsk(c) = m}
to denote the set of ciphertexts decrypting to m ∈ P . In particular, we have
N = C1 in this notation. We are now in a position to prove a characterization of
IND-CPA security of such schemes.

Theorem 1 (IND-CPA Security of Shift-Type Schemes). For a shift-type
homomorphic encryption scheme E = (KeyGen,Enc,Dec) we have:

E is IND-CPA (rel. to KeyGen) ⇐⇒ SMP is hard (rel. to KeyGen)

Proof. “⇐”: Assume that E is not IND-CPA secure, i.e. there exists a PPT
algorithm Acpa = (Acpa

1 ,Acpa
2 ) that breaks the security with non-negligible ad-

vantage f(λ). We derive a contradiction by constructing a PPT algorithm Asmp

that successfully solves SMP with advantage 1
2f(λ).

Since SMP and IND-CPA are both considered relative to KeyGen, Asmp can
simply forward the public key pk of the output of KeyGen(λ) to Acpa

1 . Next,
Acpa

1 outputs two messages m0,m1 ∈ P to Asmp. The SMP challenger chooses a

bit b
U←− {0, 1} and sends the challenge c ∈ C to Asmp, who then chooses a bit

d
U←− {0, 1} and sends the challenge cd := ϕ(md) · c to Acpa

2 . Now, Acpa
2 outputs

a bit d′ and sends it back to Asmp which sends b′ := d⊕d′ to the SMP challenger.
We have the following relations: If b = 0, then c ∈ N = C1 and cd ∈ Cmd

(a
fresh encryption of md) by definition. Hence, Acpa

2 makes the right guess with
advantage f(λ), i.e., Pr[b′ = b|b = 0] ≥ 1

2 + f(λ). If b = 1, then c ∈ C, meaning
that it is a fresh encryption (by definition of the set C) of some random message
m. But ϕ is a homomorphism and so cd is a fresh encryption of (the random
message) md · m. Hence, Acpa

2 guesses d with no advantage, i.e. Pr[b′ = b|b =
1] = 1

2 . We have shown:

Pr[ExpSMP
Asmp,Gen(λ) = 1] =

∑

β∈{0,1}
Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
·
(
1

2
+ f(λ) +

1

2

)

=
1

2
+

1

2
f(λ).

“⇒”: For the converse, we assume that there is a PPT algorithm Asmp that
solves SMP with advantage f(λ). Similarly to what we have done above, we
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construct a PPT algorithm Acpa = (Acpa
1 ,Acpa

2 ) that successfully breaks the
IND-CPA security with advantage f(λ).

Again as above, Acpa
1 forwards the output of KeyGen(λ) to Asmp. Next, Acpa

1

outputs two random messages m0,m1 ∈ P . The IND-CPA challenger chooses a

bit b
U←− {0, 1} and sends the challenge cb ←− Encpk(mb) to Acpa

2 , who then
computes c := ϕ(m−1

0 ) · cb ∈ C and sends the challenge c to Asmp. Now, Asmp

returns a bit d′ to Acpa
2 that then outputs b′ := d′ to the IND-CPA challenger.

We have the following relations: If b = 0, then c ∈ C1 = N and Asmp guesses
b with advantage f(λ), i.e. Pr[b′ = b|b = 0] ≥ 1

2 + f(λ). If b = 1, then c
is a random element in C and Asmp guesses b again with advantage f(λ), i.e.
Pr[b′ = b|b = 1] ≥ 1

2 + f(λ). Therefore, we have shown:

Pr[Expind-cpa
Acpa,Gen(λ) = 1] =

∑

β∈{0,1}
Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
· (1 + 2f(λ)) =

1

2
+ f(λ).

�

4 Fully Homomorphic Encryption (FHE)

An encryption scheme E = (KeyGen,Enc,Dec,Eval) that is homomorphic for all
circuits (in terms of Definition 1) is called fully homomorphic (FHE = Fully
Homomorphic Encryption). To rule out trivial FHE schemes E , e.g., where Eval
simply outputs its input circuit C together with its input ciphertexts and Dec
takes circuits C as input as well and simply outputs the evaluation of C on the
decryptions of the plugged-in ciphertexts, we require the additional property of
compactness (cf. [19, Definition 2.1.2]). Informally this means that the size of
the output of Eval does not depend on the size of the circuit it evaluates.

We recall this notion in the more general context of encryption schemes that
are homomorphic for a given set of circuits.

Definition 3. Let E = (KeyGen,Enc,Dec,Eval) be an encryption scheme that is
homomorphic for a set of circuits C = C[λ]. E is called compact, if Dec can be
expressed as a circuit of size at most p(λ) for some polynomial p.

With this definition in mind, we can formalize the notion of FHE:

Definition 4. An encryption scheme E = (KeyGen,Enc,Dec,Eval) that is ho-
momorphic for all circuits and compact is called fully homomorphic.

We note that all currently existing FHE schemes in terms of Definition 4 (namely,
[7–9, 15, 19, 21–24, 27, 29, 30]) are variants of a scheme proposed by Gentry [20]
and do all have the property that decryption Dec is implemented by a circuit
that does only depend on the security parameter λ. To achieve this notion of
FHE, all these schemes are based on the so-called bootstrapping technique by
Gentry [20], which we will recall in the next section.
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We stress, however, that there is the relaxed notion of Leveled FHE that we
want to deal with first. Unlike “pure” FHE schemes (as in Definition 4), such
schemes can correctly evaluate circuits up to a certain depth only. We will recall
this notion in the next section. For such leveled FHE schemes, we remark that
except for the scheme by Brakerski, Gentry, and Vaikuntanathan [7], again all
existing schemes are based on Gentry’s bootstrapping technique.3 In this paper,
we restrict our attention to (leveled) FHE schemes that are based on Gentry’s
bootstrapping technique.

Our aim is a characterization of the IND-CPA security of all existing (leveled)
FHE schemes that are based on the technique of bootstrapping. To do so, we first
give a brief summary on Gentry’s bootstrapping approach in the next section
and prove an IND-CPA characterization of schemes that can be constructed in
this way. We will do this both for leveled FHE schemes, as well as for “pure”
FHE schemes. For the latter, we need the FHE schemes to have the additional
property of circuit privacy that we will recall in Section 4.2. Finally, in Section
4.3 we discuss existing schemes, while focusing on a particular scheme by van
Dijk et al. [15] for a better conceptual understanding.

4.1 Gentry’s Bootstrapping Technique: Leveled FHE Schemes

In this section, we briefly want to recall Gentry’s bootstrapping technique [20] on
how to construct FHE schemes. Roughly speaking, Gentry constructs a homo-
morphic encryption scheme for circuits of any depth from an underlying encryp-
tion scheme that is homomorphic for “just a little more than its own decryption
circuit”. We formalize the term in double quotes momentarily (see also [20, Def-
inition 4]), but first need to do some more definitional work. We will prove later
that characterizing the IND-CPA security of the underlying schemes is already
enough to characterize the IND-CPA security of resulting schemes that are ho-
momorphic for all circuits up to a certain depth (such schemes are also known
as Leveled FHE schemes).

Definition 5. Let E = (KeyGen,Enc,Dec,Eval) be an encryption scheme in
which Dec is implemented by a circuit that does only depend on the security
parameter λ. For every output (pk, sk) of KeyGen(λ), we let Γ be a set of gates
with inputs and output in plaintext space P including the identity gate (input and
output are the same). For gate g ∈ Γ , the g-augmented decryption circuit con-
sists of a g-gate connecting multiple copies of Dec (the number of copies equals
the number of inputs to g), where Dec takes the secret key sk and a ciphertext as
input formatted as elements of P�(λ), where �(λ) is some polynomial in λ. We
denote the set of all g-augmented decryption circuits, g ∈ Γ , by Dec(Γ ).4

3 Some of the existing schemes, however, deviate from Gentry’s original blueprint
where one starts with a “somewhat homomorphic scheme”, then “squashes” the
decryption circuit, and then does the bootstrapping. In the present work, we are not
interested in the “squashing” step and will restrict our attention to the bootstrapping
step.

4 Recall that Dec always depends on λ and we sometimes write Dec[λ] to make this
dependency obvious.
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Recall that from now on, we restrict our attention to encryption schemes in
which decryption Dec is implemented by a circuit that does only depend on the
security parameter λ. The most important property of an encryption scheme to
be of any use in Gentry’s approach is that of bootstrappability.

Definition 6. Let E = (KeyGen,Enc,Dec,Eval) be a homomorphic encryption
scheme for a set of circuits C = C[λ]. E is called bootstrappable for a set of
gates Γ , if Dec[λ](Γ ) ⊆ C[λ] for all security parameters λ.

There are two main results in [20] that are of particular interest to us:

Theorem 2 (see Theorem 3 of [20]). There is an efficient and explicit trans-
formation that for any given bootstrappable scheme E for a set of gates Γ and
parameter d = d(λ) outputs another encryption scheme E(d) that is
1. compact and whose decryption circuit is identical to that of E
2. homomorphic for all circuits with gates in Γ of depth at most d.

Theorem 3 (see Theorem 4 of [20]). Let E be a bootstrappable scheme for a
set of gates Γ . For all parameters d = d(λ), we have that the output E(d) of the
transformation from Theorem 2 applied to E and d is IND-CPA secure if E is.

We will now prove that the IND-CPA security of E(d) is actually equivalent to
that of E . For this we need to recall a few details in Gentry’s transformation of
Theorem 2. For all remaining details, we refer to [20]. The particular facts, we
will need about E(d) are the following three (cf. [20]):

1. The plaintext space P of E(d) is the same as that of E .
2. The key generation algorithm of E(d) uses the key generator KeyGen of E

(d + 1)-times to produce d + 1 public and secret key pairs (pki, ski), i =
0, . . . , d. Let ski1, . . . , ski� be the representation of ski as elements of P with
� = �(λ) as in Definition 5. The key generator of E(d) then computes skij ←−
Encpki−1

(skij) for i = 1, . . . , d and j = 1, . . . , �, and outputs the secret key

sk(d) := sk0, and public key

pk(d) :=

(

(pki)i=1,...,d, (skij)i=1,...,d
j=1,...,�

)

.

3. Encryption of a message m ∈ P in E(d) is done by computing a ciphertext
c←− Encpkd(m), i.e., an encryption of m under pkd by using the encryption
algorithm Enc of E .

We are now in a position to prove the IND-CPA characterization.

Theorem 4. Let E be a bootstrappable scheme for a set of gates Γ . For param-
eter d = d(λ), let E(d) denote the output of the transformation from Theorem 2
applied to E and d. For all parameters d, it holds:

E(d) is IND-CPA secure ⇐⇒ E is IND-CPA secure.



Shift-Type Homomorphic Encryption 245

Proof. “⇐”: This is Theorem 3.
“⇒”: If A is a PPT adversary that successfully breaks the IND-CPA security of
E , then A can also be used to break the IND-CPA security of E(d). By looking at
the facts above, we know that in the IND-CPA security game for E(d), A receives
the public key pkd, outputs two messages m0,m1 ∈ P and gets the ciphertext

c ←− Encpkd(mb) as the challenge ciphertext, where b
U←− {0, 1}. Due to the

initial assumption on A, A can guess the bit b with non-negligible advantage. �

Unfortunately, the resulting scheme from Theorem 2 after applying the transfor-
mation is not yet an FHE scheme as it is only homomorphic for all circuits with
gates in Γ of depth at most d (i.e., it is leveled fully homomorphic). However,
in [19], Gentry shows how to modify the previously described technique to get
“pure” FHE schemes. We will give an IND-CPA security characterization of such
schemes (with a certain additional property) in the next section.

4.2 Gentry’s Bootstrapping Technique: FHE Schemes

In [19, Section 4.3], Gentry shows that, by changing the transformation as de-
scribed in the following and by assuming that the underlying bootstrappable
scheme is circular secure (a notion we will recall momentarily), the resulting
scheme is indeed fully homomorphic and IND-CPA secure. We start by explain-
ing the modification of the transformation of Theorem 2, whereas we denote the
resulting scheme by E∗:

In the key generation step above (this is step 2 right after Theorem 3), E∗
uses the key generator KeyGen of E only once (instead of (d + 1)-times) to
compute a key pair (pk, sk) and outputs the secret key sk∗ := sk and public
key pk∗ := (pk, sk1, . . . , sk�) where ski ←− Encpk(ski) and sk1, . . . , sk� is the
representation of sk as elements of P . This is the only modification and the rest
works exactly as in the transformation of Theorem 2 (see [19, Section 4.3] for
details).

Next, we recall the notion of circular security for bootstrappable encryption
schemes E = (KeyGen,Enc,Dec,Eval). Consider the following experiment for a
given algorithm A and parameter λ:

Experiment Expcircular
A,KeyGen(λ):

1. Compute (pk, sk)←− KeyGen(λ)

2. Choose b
U←− {0, 1}. If b = 0, then compute skj ←− Encpk(skj) for all

j = 1, . . . , � where sk1, . . . , sk� is the representation of sk as elements of P
with � = �(λ) as in Definition 5. If b = 1, then compute skj as encryptions
of some fixed element 0 ∈ P , unrelated to pk, for all j = 1, . . . , �

3. d←− A (

pk, sk1, . . . , sk�
)

where d ∈ {0, 1}
4. The output of the experiment is defined to be 1 if d = b and 0 else.

This experiment defines circular security for bootstrappable encryption schemes
E . We note that, as we consider bootstrappable schemes, this definition is equiv-
alent to the “standard” definition of circular security [6] as originally introduced
(this is shown in [19, Chapter 4]).
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Before we can state the main result of this section, we need to recall another
notion that is related to FHE, namely that of circuit privacy. Informally, this
notion says that even if the secret key is known, the output of Eval does not
reveal any information about the circuit that it evaluates, except for the output
value of that circuit. Formally, this idea is captured in the following definition:

Definition 7. An FHE scheme E = (KeyGen,Enc,Dec,Eval) is said to be (com-
putationally) circuit-private, if for every keypair (pk, sk)←− KeyGen(λ), any cir-
cuit C, and any fixed tuple of fresh encryptions (c1, . . . , cr) with ci ←− Encpk(mi)
for plaintexts mi ∈ P and i = 1, . . . , r, the following distributions (over the ran-
dom coins in Enc and Eval) are (computationally) indistinguishable:

Encpk(C(m1, . . . ,mr)) ≈c Evalpk(C, c1, . . . , cr).

Finally, we can formulate the main result:

Theorem 5. Let E = (KeyGen,Enc,Dec,Eval) be a bootstrappable scheme for a
universal5 set of gates Γ . If the resulting scheme E∗ is circuit-private, it holds
that

E∗ is IND-CPA secure ⇐⇒ E is circular secure.

Proof (Sketch). “⇐”: This is shown in [19, Theorem 4.3.2].
“⇒”: We assume that E is not circular secure, i.e., there exists a PPT algorithm
Acircular that breaks the security of E with non-negligible advantage f(λ). We
derive a contradiction by constructing a PPT algorithm Acpa = (Acpa

1 ,Acpa
2 )

that successfully breaks the IND-CPA security of E∗ with advantage f(λ).
First, the adversaryAcpa

1 receives the public key pk∗ = (pk, sk1, . . . , sk�) where
ski ←− Encpk(ski) and sk1, . . . , sk� is the representation of the secret key sk
as elements of P . Then, Acpa

1 chooses messages 0 �= m0 ∈ P and m1 := 0
together with circuits Ci such that Ci(m0, ski) = ski and Ci(m1, ski) = m1 for
all i = 1, . . . , �. For instance, if we consider all boolean circuits and assume that
P = {0, 1}, Acpa

1 could simply choose m0 = 1,m1 = 0 and Ci as a single AND-
gate for all i = 1, . . . , �. Now, the IND-CPA challenger chooses a random bit

b
U←− {0, 1} and sends the challenge c ←− Encpk(mb) to Acpa

2 . Since E∗ is fully
homomorphic, Acpa

2 can compute σi ←− Evalpk(Ci, c, ski) for all i = 1, . . . , �. Due
to the correctness condition on E∗, this means for all i = 1, . . . , �:

σi := Decsk(σi) = Ci(mb, ski). (1)

Next, Acpa
2 sends (pk, σ1, . . . , σ�) to Acircular that returns a bit d ∈ {0, 1} which

in turn is the output b′ of Acpa
2 , i.e., b′ = d.

We have the following relations: If b = 0, then σi is computationally indistin-
guishable (since E∗ was assumed to be circuit-private) from a fresh encryption
of ski, meaning in particular that σi = ski for all i = 1, . . . , � due to equa-
tion (1). Hence, Acircular makes the right guess on b with advantage f(λ), i.e.,

5 This is a set of gates by which any circuit can be expressed, e.g., a NAND-gate when
considering boolean circuits.
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Pr[b′ = b|b = 0] ≥ 1
2+f(λ). If b = 1, then σi is computationally indistinguishable

from a fresh encryption of 0, unrelated to pk, for all i = 1, . . . , �. Hence, Acircular

again guesses b with advantage f(λ), i.e., Pr[b′ = b|b = 1] ≥ 1
2 + f(λ). We have

shown:

Pr[Expind-cpa
Acpa,Gen(λ) = 1] =

∑

β∈{0,1}
Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
· (1 + 2f(λ)) =

1

2
+ f(λ).

�

Some remarks on this result are in order:

Remark 2. 1. We would like to stress that Theorem 5 actually holds in a more
general context as well. Looking at the proof, one notices that there is no
need for E∗ to be circuit-private for all circuits. The circuit privacy is only
needed for the special circuits Ci used in the proof. In particular, in the
case when only boolean circuits are considered and the plaintext space is
P = {0, 1}, the circuits Ci are all the same, namely an AND-gate. It is
easy to see that all existing FHE schemes that work on the plaintext space
P = {0, 1} are circuit-private for a single AND-gate (see also Section 4.3).

2. In Theorem 1, we showed a characterization of the IND-CPA security of shift-
type homomorphic encryption schemes. All currently existing FHE schemes
rely on the assumption that the IND-CPA security of the underlying scheme
already implies its circular security – meaning that for these schemes the two
notions of circular security and IND-CPA security are equivalent. So under
this assumption, Theorem 5 together with Theorem 1 yield an IND-CPA
characterization of all existing circuit-private FHE schemes that are based
on Gentry’s bootstrapping technique.

3. Theorem 5 together with the first item of this remark tell us that the circu-
lar security of the underlyling bootstrappable scheme is not only sufficient
but also necessary in order to get an FHE scheme. It therefore underlines
the importance of Brakerski et al.’s work [9] which actually has the bigger
goal of achieving circular secure bootstrappable encryption, instead of only
achieving circular security for somewhat homomorphic encryption schemes
(cf. Section 1.1).

4.3 Gentry’s Bootstrapping Technique: The Existing Schemes

In total, there currently exist 13 FHE schemes that are all based on Gentry’s
bootstrapping technique (at least concerning the resulting “pure” FHE schemes),
namely [7–9, 15, 19–24, 27, 29, 30]. Their underlying schemes are all shift-type
homomorphic. This is due to the fact that the concept of shift-type homomorphic
encryption is very similar to that of “adding noise” (see Remark 1), which itself
is a concept employed in all existing schemes. For the more recently developed
schemes [7–9, 21, 23, 24] the shift-type structure of the encryption algorithm can
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be immediately seen. A good summary of Gentry’s original scheme [20] is given
in [30, Section 3.1]. Therein, Gentry’s scheme and the variants [19] and [30] are
presented in a way such that the shift-type structure is easily seen. Concerning
the variants [22, 27, 29], a summary is given in [27, Section 3], again presented
in a fashion such that the shift-type structure of the encryption is immediately
noticeable.

We will recall (only very briefly due to lack of space) the remaining variant
by van Dijk et al. [15] to show that it is shift-type homomorphic. To get rid
of a very voluminous and confusing introduction of parameters, we will fix a
particular setup of parameters in the key generation phase and note that all of
the following can be done in a more general fashion (see [15]). Also, we will focus
here on the encryption algorithm only and refer the reader to [15] for details
on the remaining algorithms for decryption and evaluation. For the security
parameter λ, we fix:

ρ := λ, ρ′ := 2λ, η ∈ ρ′ · Θ(λ log2 λ), γ ∈ ω(η2 logλ) and τ := γ + λ.

The secret key sk of the scheme is p
U←− (2Z+ 1) ∩ [2η−1, 2η) and we define the

following efficiently sampleable distribution

Dγ,ρ(p) :=
{

x = pq + r | q U←− Z ∩ [0, 2γ/p), r
U←− Z ∩ (−2ρ, 2ρ)

}

.

With this notation, we let pk = (x0, . . . , xτ ) be the public key with xi
U←−

Dγ,ρ(p) for all i = 0, . . . , τ whereas the xi’s are relabeled such that x0 is the
largest (if x0 is even or x0 mod p is odd, then restart). The plaintext space is
{0, 1}.

The encryption algorithm takes the public key pk and a plaintext m ∈ {0, 1}
as input and outputs a ciphertext c := [(m + 2r + 2

∑

i∈S xi) mod x0] whereas

S is a random subset of {1, . . . , τ} and r
U←− Z ∩ (−2ρ′

, 2ρ
′
). In the notation of

the shift-type homomorphic definition (see Definition 2), we have that Ĉ is the
ring Zx0 and

N =

{

2(r +
∑

i∈S

xi) mod x0 | r ∈ Z ∩ (−2ρ′
, 2ρ

′
), S ⊆ {1, . . . , τ}

}

.

The injective homomorphism ϕ is given by m �→ m mod x0, which is even a ring
homomorphism. Encryption is then given by ϕ(m)+n where n ∈ N . Concerning
the homomorphic property in Definition 2, we need to make more effort:

It is shown in [15, Lemma 3.3] that the scheme is homomorphic for Boolean
circuits with the property that for any α ≥ 1 and any set of integer inputs
all less than 2α(ρ

′+2) in absolute value, it must hold that the output of the
generalized circuit (same circuit where the ADD- and MULT-gates are applied
to integers instead of bits) has absolute value at most 2α(η−4). Furthermore, it is
shown in [15, Lemma 3.5] that if f(x1, . . . , xt) is the multivariate polynomial of
degree d computed by the generalized circuit of a given boolean circuit C with
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t inputs, then the scheme is homomorphic for C if |f̄ | · (2ρ′+2)d ≤ 2η−4, where
|f̄ | is the l1 norm of the coefficient vector of f . In respect of the homomorphic
property of Definition 2, it suffices to show that the scheme is homomorphic for
the boolean circuit CADD that consists of a single ADD-gate only. Clearly, the
multivariate polynomial that is computed by the generalized circuit of CADD is
f(x1, x2) = x1 + x2 and has degree d = 1 with |f̄ | = 2. Therefore, the scheme is
homomorphic for this circuit if we have

2ρ
′+3 ≤ 2η−4, which in turn is fulfilled if η ≥ ρ′ + 7.

This final condition holds as η ∈ ρ′ · Θ(λ log2 λ). In total we have shown that
the above scheme indeed is shift-type homomorphic.

5 Conclusion

With the identification of shift-type encryption as the most basic structure that
all existing homomorphic encryption schemes have in common, we were able
to deduce IND-CPA characterizations of all existing bootstrapping-based leveled
FHE schemes. This result supports an easier design of such schemes, since new
candidates can immediately be checked for IND-CPA security by looking at the
corresponding subset membership problem that comes out of our characteriza-
tion. In regard to [3], it is interesting to see that all existing group homomorphic
encryption schemes and the more general homomorphic schemes (in particular,
the existing FHE schemes) share the same shift-type structure. Further research
in this direction could implicate that a given homomorphic scheme has to have
this shift-type structure in order to be IND-CPA secure. We leave this as an open
question.

Our result that the IND-CPA security of bootstrapping-based FHE schemes
that offer a “minimal” type of circuit privacy is equivalent to the circular se-
curity of the underlying bootstrappable scheme shows: If we want to construct
such IND-CPA secure FHE schemes, we are bound to the design of circular secure
bootstrappable schemes. We hope that this fact stimulates the research com-
munity to devote even more effort to proving existing schemes circular secure
and/or finding a radically new approach to FHE that is not based on Gentry’s
bootstrapping technique.
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