
Value-Oriented Design of Service Coordination Processes:
Correctness and Trust

Roel J. Wieringa
∗

Department of Computer Science
University of Twente

P.O. Box 217 tel. +31 53 489 4189, Fax +31 53
489 2927

7500 AE Enschede, The Netherlands

roelw@cs.utwente.nl

Jaap Gordijn
Faculty of Sciences

Vrije Universiteit
De Boelelaan 1081a

1081 HV Amsterdam, The Netherlands

gordijn@cs.vu.nl

ABSTRACT
The rapid growth of service coordination languages creates
a need for methodological support for coordination design.
Coordination design differs from workflow design because a
coordination process connects different businesses that can
each make design decisions independently from the others,
and no business is interested in supporting the business pro-
cesses of others. In multi-business cooperative design, design
decisions are only supported by all businesses if they con-
tribute to the profitability of each participating business. So
in order to make coordination design decisions supported
by all participating businesses, requirements for a coordi-
nation process should be derived from the business model
that makes the coordination profitable for each participating
business. We claim that this business model is essentially a
model of intended value exchanges. We model the intended
value exchanges of a business model as e3-value value mod-
els and coordination processes as UML activity diagrams.
The contribution of the paper is then to propose and dis-
cuss a criterion according to which a service coordination
process must be correct with respect to a value exchange
model. This correctness is necessary to gain business sup-
port for the process. Finally, we discuss methodological con-
sequences of this approach for service coordination process
design.

General Terms
Business process modeling and specification, Requirements
for service-oriented processes, E-Business

Keywords
Value modeling, Service coordination, Correctness, Trust

∗This work is partially supported by the BSIK-funded
project Freeband/AMUSE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.

1. INTRODUCTION
Whenever one business requests more than one service

from another business, a process is needed to coordinate
the service provisioning across the different companies [2].
A service coordination process is a specification of a cross-
organizational coordination process. Several languages for
service coordination have been proposed, including WS-co-
ordination [8], BPSS (ebXML’s business process specifica-
tion schema) [10], WSCI (Web Service Choreography Inter-
face) [4] and BPEL4WS [3]. These languages can be used to
specify a coordination infrastructure or to specify the coor-
dination process to be used by partners. There is currently
a lack of guidelines to actually do the specifying. In this
paper, we investigate the problem of designing service coor-
dination processes.

This is different from the problem of designing an intra-
business workflow. Even though many issues in the design
of coordination specification languages are the same as is-
sues in the design of workflow specification languages [1], the
process of specifying inter-organizational coordination pro-
cesses is quite different from the process of specifying intra-
organizational workflows. Where intra-organizational work-
flow design takes place in a single decision-making hierarchy,
interorganizational coordination process design takes place
in a network with multiple decision centers. Each party in
a coordination is an independent business that may decide
to leave the network, may decide to behave differently from
what is agreed, and wants to keep confidential some of its
own business rules and processes. This makes the design
of interorganizational coordination both different and more
difficult than workflow design.

We consider the problem of designing static coordination
processes, i.e. processes that are agreed upon in advance
among a set of business partners and then are executed as
specified. An example is the trade procedure for interna-
tional container trade [6], used as an example in this paper.

We approach this problem by observing that when two or
more businesses coordinate their activities, presumably they
do this because it is beneficial for each of them. We assume
that this is the reason that each of the businesses decided to
join the cooperation—in the absence of a hierarchical deci-
sion structure, each business will decide whether the cooper-
ation is profitable, or at least beneficial for its own interests
in some way. A coordination designer must therefore first
understand this business model, so that he or she can define

1320

2005 ACM Symposium on Applied Computing

coordination actions that facilitate it. Note that correctness
of a coordination process with respect to a business model
is not a guarantee that the benefits for each partner will ac-
tually materialize by the cooperation. Rather, correctness
should entail that the business transactions deemed to be
beneficial according to the business model, can be executed
according to the process. The precise notion of correctness
involed will be detailed later in this paper. Along the way,
it will turn out that the correctness of a coordination pro-
cess with respect to a business model must be supplemented
with the correctness of trust assumptions that are made by
the business model and coordination process. The less the
business partners trust each other, the more complex the co-
ordination process and underlying business model, and vice
versa. In sum, this paper argues for the following claims.

• A coordination process design must be based on a busi-
ness model in which two or more business actors decide
to cooperate.

• This business model is a model of profitable value ex-
changes among businesses.

• A coordination process must be proven to be correct
with respect to the underlying business model.

• A coordination process comes with trust assumptions
that determine its scope of application.

In section 2 we explain how we can specify business mod-
els in which two or more business partners can engage in
a number of business transactions in which they exchange
objects of economic value. In section 3 we then show how
we can design a coordination process based on a business
model. In section 4 we show how this can be shown to be
correct with respect to the business model. Sections 5 and 6
refine the notion of correctness by introducing the notion of
trust. Section 7 draws methodogical lessons from this, and
section 8 concludes the paper with a discussion of further
work.

2. VALUE MODELS
Since we claim that a coordination process should be cor-

rect with respect to a business model, we must show what a
business model looks like. We consider the core of a business
model to be a model of value exchanges, showing which busi-
nesses perform valuable services for which other businesses.
To represent this economic value aspect of a business model,
we use the e3-value method [14] to describe the value ex-
changes in the business model. We illustrate e3-value with
a simple business model: a shipper ships goods through a
carrier to a consignee (see Fig. 1). The value model of Fig. 1
shows the economic value aspect of this business model. It
shows that in return for delivering goods, the consignee pays
the shipper, and in return for providing a transport service,
the shipper pays the carrier. More in detail, an e3-value
model contains the following concepts.

Actor. An actor is perceived by its environment as an in-
dependent economic (and often also legal) entity. An actor
intends to make a profit or to provide a non-profit service.
In a sound, sustainable, business model each actor should be
capable of creating a net value. Commercial actors should
be able to make a profit, and non-profit actors should be
able to create a value that in monetary terms exceeds the

Figure 1: A simple value model of a business trans-
action. The legend is not part of the notation.

costs of producing it in order to sustain. In Fig. 1 three
actors are show: a consignee, a shipper and a carrier.

Value Object. Actors exchange value objects, which are ser-
vices, products, money, or even consumer experiences. A
value object is of value to at least one actor. In Fig. 1 Good
and Fee are value objects, as well as Transport. Specifically,
we view services as value objects that can be delivered to
actors.

Value Port. An actor uses a value port to show to its envi-
ronment that it wants to provide or request value objects. A
value port has a direction, namely outbound (e.g. a service
provision) or inbound (e.g. a service consumption). A value
port is represented by a small arrowhead that represents its
direction.

Value Interface. A value interface consists of ingoing and
outgoing ports of an actor. Grouping of ingoing and outgo-
ing ports model economic reciprocity: an object is delivered
via a port, and another object is expected in return. An ac-
tor has one or more value interfaces, each modelling different
objects offered and reciprocal objects requested in return.
The exchange of value objects across one value interface is
atomic: either all objects are exchanged, or none at all. A
value interface is represented by an ellipsed rectangle.

Value Transfer. A value transfer connects two value ports
of opposite directions of different actors with each other.
It is one or more potential trades of value objects between
these value ports. A value transfer is represented by a line
connecting two value ports. In e3-value , value transfers
model service deliveries.

Value Transaction. Value transfers come in economic recip-
rocal pairs, which are called value transactions. This mod-
els ‘one good turn deserves another’: you offer something to
someone else only if you get adequate compensation for it.
So, Fig. 1 contains two value transactions, each consisting of
the two exchanges, namely Good/Fee, and Transport/Fee.

Note that a value model describes an ideal world: In the
actual world, a consignee may not pay for the goods, a ship-
per may sell forged goods, a carrier may loose the goods,
etc. This is not modeled in a business model. A business
model represents the ideal state of affairs in which actors
make money by engaging in certain business transactions.
The question whether this model holds up against all con-
tingencies of the real world, and which safeguards must be
built in to avoid fraud, is one to be answered by the coordi-
natioon process that implements the business model. This is
related to the fact that a business model does not represent
a process; it merely says that certain business transactions
take place. We return to this point in a moment.

1321

With the concepts introduced so far, we can describe who
exchanges values with whom. However, one of the uses of
a value model is to assess the net cash flow of each busi-
ness actor as the result of a consumer need (see [14] for an
elaborated example). The whole network of business actors
exists to satisfy a consumer need (the need of the consignee
in Fig. 1). To assess the net cash flow generated by the
occurrence of such a need, we must count the number of
value transfers triggered by one consumer need. To do this,
we include in the business value model a representation of
dependency paths between value interfaces. A dependency
path connects value interfaces in an actor, meaning that if
one of these interfaces is triggered, the other ones connected
to it must be triggered as well. We need to know this for a
profitability computation because if value crosses one inter-
face, values cross the interfaces dependent on it as well.

A dependency path consists of dependency nodes and con-
nections.

Dependency node. A dependency node is a stimulus (repre-
sented by a bullet), an AND-fork or AND-join (short line),
an OR-fork or OR-join (triangle), or an end node (bull’s
eye). A stimulus represents a consumer need and can be
seen as a trigger for the exchange of economic value objects.
An end node represents a model boundary (for instance, in
Fig. 1 we do not consider exchanges the carrier has to do to
deliver transport).

Dependency connection. A dependency connection connects
dependency nodes and value interfaces. It is represented by
a dashed line.

Dependency path. A dependency path is a set of connected
dependency nodes and connections, that leads from one value
interface to other value interfaces or end nodes of the same
actor. The meaning of the path is that if a values are ex-
changed at value interface I, then value interfaces pointed to
by the path that starts at interface I are triggered according
to the and/or logic of the dependency path. If a branch of
the path points to an end node, then no more exchanges are
triggered.

Dependency paths allow one to reason about a network as
follows: When an end consumer generates a stimulus, this
triggers a number of value interfaces of the consumer as in-
dicated by the dependency path starting from the triggering
bullet inside the consumer. These value interfaces are con-
nected to value interfaces of other actors by value transfers,
and so these other value interfaces are triggered too. This
in turn triggers more value interfaces as indicated by depen-
dency paths inside those actors, and so on. Following the
value transfers and dependency paths, and estimating the
value of each value transfer for the involved actors, we can
compute the net incoming and outgoing cash flows for each
actor triggered by a consumer need.

Note that an e3-value model should not be seen as a pro-
cess model [15]. A value model does not represent behav-
ior but only shows objects that are of economic value for
someone. We will see that a process model expressing co-
ordination between the actors, shows many objects that are
not of direct value, but are needed to control the process
flow or synchronize activities in different actors. Fig. 1 does
not show control flow and there is a variety of coordination
processes that can implement the desired value transfers.
Additionally, business coordination processes do not have

Consignee Shipper

Send P.O. P.O.
Receive

P.O.

Send P.O.
ack

P.O. ack
Receive
P.O. ack

Send
documents

Receive
documents

Invoice,
GSP−A

Money
Send

money
Receive
money

Carrier

Receive
goods

Deliver
goods

Receive
goods

Ship
goods

Goods

Goods

Request
transport

Receive trans
request

Transport
request

Transport
acceptance

Pay
transport fee

Receive
transport fee

Money

Accept
transport

Receive
transport accept

Figure 2: A simple coordination process that cor-
rectly implements the value model of 1.

the notion of economic reciprocity, which is in e3-value cap-
tured by the ’value interface’ concept. If we confuse deci-
sions about the exchange of economic values with decisions
about the coordination processes that put such exchanges
into operation, we confuse exchanges essential for the busi-
nesses with activities that might be changed without chang-
ing the business model.

3. COORDINATION PROCESSES
The business model in Fig. 1 assumes an ideal world: In

response to a consumer need of the consignee, the consignee
and shipper will exchange both a good and a fee, and the
shipper and carrier will exchange a transport service and
fee, or none of this will happen. It is for instance in Fig. 1
not possible that a consignee obtains a good without paying
for it.

To implement the business value model of Fig. 1 in a co-
ordination process, we need to make the basic choice who
takes the risk of not getting anything in return for a deliv-
ered service. For example, if the consignee pays before the
goods are shipped, the shipper is sure of getting his money
but the consignee takes the risk of not getting the goods.
If the shipper ships first, the risks are reversed. This is a
business decision that depends upon how much trust each
actor places in the other. If all actors trust each other com-
pletely, it does not matter who takes the risk because the
other party can be trusted to honour his part of the deal. Let
us first assume all three parties in the model can be trusted
completely and ask what a correct coordination process is.

We use simple activity diagrams as notation for coordina-
tion processes, using the UML 2.0 notation (see www.uml.

org). This choice is reasonable because UML activity di-
agrams are used in at least two coordination process stan-
dards, namely BPSS [10] and RosettaNet [18]. However, our
approach does not depend on the choice of UML activity di-
agrams and is valid for other process notations too that can

1322

express object flows. For example, Bons et al. [6] use an
extension of Petri Nets called Documentary Petri Nets.

Fig. 2 shows a simple coordination process for the sim-
ple business transaction of Fig. 1. Ovals represent activi-
ties, rectangles represent objects (data, material, or money),
unbroken arrows represent control flow and dashed arrows
represend object flow. In our diagrams, objects can contain
data, goods, services, or money. Control flow can be struc-
tured using solid bars to represent parallel splits and parallel
joins, diamonds to represent choices, a bullet to point at the
start of the process, and a “lamp” (crossed circle) to repre-
sent the end of a flow. A parallel split indicates that parallel
processes start. The ordering of actions in different parallel
procsseses is not specified: If A is parallel to B, this means
that A can occur before, during or after B.

We structure the layout of the diagram in such a way that
the actions of one business actor are listed in one column.
We put the name of the actor at the top of the column and
separate the columns with dotted lines so that each actor
has its own swimlane.

Fig. 2 shows three actors, a consignee, a shipper and a
carrier. We use the diagram to represent a coordination pro-
cess, which means that it is a prescription: the three actors
are required to behave this way. They may actually behave
in many other possible ways, but this is not represented in
the diagram.

The three actors are required to perform their part of the
process in parallel, which is why we start with a parallel
split. The consignee must start with sending a purchase
order (P.O.) to the shipper, who must respond by sending
an acknowledgement. The shipper then must negotiate a
transport agreement with a carrier (there may be an um-
brella contract with a carrier, in which case the negotiation
is very simple). Having agreed on a transport agreement, the
shipper pays the fee for the transport and ships the goods.
In a parallel process the shipper sends an invoice to the cus-
tomer and a document called GPS-A, which is a certificate
of origin. Upon receiving these, the consignee must pay and
must receive the goods from the carrier.

Note that the two business transactions in figure 1 are
implemented in activities distributed in time, which in dif-
ferent process executions may occur in different sequences.
The transaction between shipper and carrier is implemented
by the money transfer between them and the carrier activ-
ities “Receive goods” and “Deliver goods”. The transac-
tion between consignee and shipper are implemented by the
money transfer between these two actors, and the series of
activities starting with “Ship goods(Shipper)” and ending
with “Receive goods(Consignee)”. Due to the presence of
parallel activity flows, there is no simple sequence between
the two transactions in the value model. For example, in
one execution, the consignee may pay the fee for the good
after he receives the good, and in another execution, he may
pay before the goods are shipped.

A second observation is that the transport service pro-
vided by the carrier does not occur as an activity in the
coordination process. It is sufficient to know in the coordi-
nation process that after the carrier receives the goods from
the shipper, it will delivers them to the consignee. This
is modeled by the activities “Receive goods” and “Deliver
goods” of the carrier.

It is possible to give activity diagrams a formal execution
semantics [11]. Here, we make three remarks about our in-

tended execution semantics: First, a parallel split starts two
or more processes whose actions may be interleaved in any
other. For example, our model specifies that the consignee
must pay after receiving the documents, but it allows pay-
ment to occur before or after receiving the goods. Similarly,
the two parallel processes in which the shipper interacts with
the consignee and the carrier, respectively, may be executed
in any interleaving.

A second remark to be made about execution semantics
is that the control arrow (the unbroken arrow) contains a
wait state: if an actor performs activity A followed by B,
then the actor may wait indefinitely inbetween. So after the
coordination starts, all three actors may wait indefinitely
before performing their first activity, and after an actor per-
formed an activity, it may wait indefinitely before executing
the next.

A third and final remark about control flow is that

• each activity needs its inputs when it starts,

• each activity must terminate, and

• when it terminates, an activity produces its output.

This implies that the first activity of the process in Fig. 2 is
“Send P.O.”.

4. BASIC CORRECTNESS CRITERIA
In which sense is the coordination process of Fig. 2 correct

with respect to the value model of Fig. 1? An informal
statement of the correctness property is this:

• The coordination process is correct with respect to the
value model if after every possible execution of the pro-
cess, the value transactions triggered by the consumer
need in the value model have all been executed.

To formalize this, we must indicate when a value transaction
has been performed in the coordination process. In our sim-
ple example, there are two business transactions. We now
introduce two definitions.

• We define the value transaction between the shipper
and consignee to have occurred when in the coordina-
tion process, the activities “Receive goods” and “Re-
ceive Money” have been executed by the consignee and
shipper, respectively.

• We define the value transaction between the shipper
and carrier to have occurred when the activities “Pay
transport fee” and “deliver goods” have been performed
by the shipper and carrier, respectively.

Note that these definitions are part of process design. They
have to be validated with the businesses.

The atomicity of the value transactions means that for
every occurrence of a consumer need, both transactions are
performed entirely or none at all. Using the above two def-
initions, this translates in the coordination process into the
property that in every terminating execution of the coor-
dination process, the actions defined to implement a value
transaction are either all executed or none at all.

We can formalize by defining the proposition Receive-
Goods(Consignee) to be true exactly in the state where
the consignee just finished executing the activity “Receive
goods”. We define the propositions ReceiveMoney(Shipper),

1323

Figure 3: A value model of a business transaction
using a bank as trusted third party.

ReceiveTransportFee(Carrier) and DeliverGoods(Carrier)
analogously. We can then express the correctness property
in linear temporal logic [17] as follows:

(3ReceiveGoods(Consignee)∧3ReceiveMoney(Shipper))

∧(3ReceiveMoney(Carrier)∧3ReceiveMoney(Carrier)).

3 means “some time in the future”. So the formula is true if
in all execution paths, ReceiveGoods(Consignee), Receive-
Money(Shipper), ReceiveTransportFee(Carrier) and De-
liverGoods(Carrier) become true before the execution ter-
minates (but necessarily all at the same time). We can
check this by mapping the activity diagram to the input
of a model checker [9] and using the model checker to check
this formula [11, 12]. However, we are not concerned with
formalization of correctness criteria in this paper, but with
the analysis of possible definitions of correctness, and with
the methodological support for the service designer we can
extract from that. To continue this exploration, we now
drop one of our trust assumptions to see what happens with
our value and coordination processes.

5. DISTRUSTING THE CONSIGNEE
As pointed out, the activity diagram of Fig. 2 is not a

description of all possible things that might happen, but a
prescription of what must happen in a particular coordina-
tion process. We have checked that this process implements
the value model of Fig. 1. Now we drop one of our trust
assumptions: What if the consignee does not pay? What if
the consignee does not follow the prescribed process of fig-
ure 2? This consignee may or may not pay. The standard
solution to avoid this in international trade procedures is to
use a trusted third party, in most cases a bank, that handles
payment by the consignee.

5.1 Value model
The value model of this solution is given by Gordijn and

Tan [16] and is shown in Fig. 3. We number the nodes in
the diagram for ease of reference; this is not part of the
notation. The idea is that the bank has a relationship with
both shipper and consignee. If the bank has no relationship
with the shipper, then a second bank is introduced that does
have a relationship with the shipper. To keep the picture
simple we consider the situation with one bank only. We
now make the following trust assumption:

• The bank, shipper and carrier are to be trusted.

The bank now issues a letter of credit (LoC) to the con-
signee, stating the credit-worthiness of the consignee. Es-
sentially, the LoC can be seen as a service delivered by the
bank to the consignee that guarantees the shipper that he
will be paid for his delivered good. This is a service to the
consignee, not to the shipper, because the consignee has an
interest in getting the shipper to deliver the goods. This is
made clear in the value model because in return for this ser-
vice, the consignee pays the bank a fee (transaction between
interfaces #4#5). Transaction #4#5 facilitates transaction
#2#3, the exchange of a promise by the shipper to deliver
a good, for a guarantee of the consignee pay for that good.
Payment by the consignee is guaranteed by the LoC. Note
that whenever a consumer need occurs (#1), both business
transactions take place due to the AND-fork.

The carrier produces a bill of lading (BoL) and hands this
over to the shipper in return for the goods to be delivered
(#8#10). The BoL is a guarantee that the goods have been
shipped [6]. Whoever has the BoL, can claim the goods
as owner. It is a performative document in that only the
original can have this function; copies of it do not have the
legal force of a guarantee. The shipper gives the BoL to the
bank and gets paid for the delivery of the goods (#9#11).
The bank in turn collects the fee from the consignee, who
receives the BoL in return (#12#13) and thereby can claim
the goods. When the carrier delivers the goods (#14#15),
he hands over the goods in return for the BoL.

This process does not make it impossible for the consignee
to omit payment, but it does alter the distribution of risk:
Under the trust assumptions listed above, the shipper is sure
of being paid, and the consignee runs the risk of losing his
relationship with the bank when he does not pay.

5.2 Coordination process
An activity diagram of a coordination process that imple-

ments this value model is shown in Fig. 4. It extends the
coordination process of Fig. 2 at several points:

• The consignee acquires a LoC from the bank. The
bank sends a copy of this to the shipper, who then
knows that it is safe to ship the goods.

• In parallel to shipping the goods, the shipper receives
a BoL from the carrier and uses this to obtain payment
from the bank.

• After receiving the documents from the bank, the con-
signee pays for the BoL, and in parallel to that waits
for the goods.

• When the goods arrive, the consignee obtains them by
handing over the BoL.

It is interesting to see when business transaction #2#3 takes
place in this process. The transaction takes place when the
consignee terminates the activity “Receive LoC”. Given the
trust assumptions, at this point the shipper obntains the de-
sired guarantee, and is therefore willing to promise delivery
of goods.

6. MORE CORRECTNESS CRITERIA
To show that the updated process is correct with respect

to the updated value model, we must again associate with

1324

Consignee Bank Shipper

Send P.O. P.O.
Receive

P.O.

Send P.O.
ack

P.O. ack
Receive
P.O. ack

LoC
Copy of

LoC
Send LoCReceive LoC

Receive
copy of LoC

Send
documents

BoL,
Invoice,
GSP−A

Receive
documents

Send
documents

Send
money

Receive
documents

BoL,
Invoice,
GSP−A

Money

Money
Send

money
Receive
money

Receive
money

Carrier

Receive
transport fee

Produce
BoL

Receive BoLGive BoL

Pay
transport fee

Money

Goods

Receive
BoL

BoL

BoL

Transport
request

Receive trans
request

Transport
request

Transport
acceptance

Pay for
LoC service

Receive LoC
payment

Money

Ship
goods

Receive
goods

Goods

Accept
transport

Receive
transport accept

Receive
goods

Deliver
goods

Figure 4: A coordination process that correctly implements the value model of figure 3.

1325

every business transaction a correctness formula. For exam-
ple, the correctness formula of transaction #4#5 is

3ReceiveLoC(Consignee),

where ReceiveLoC(Consignee) is defined to be true exactly
in the state where the consignee terminated the activity “Re-
ceive LoC”. The other formulas are defined similarly. We
abbreviate these formulas by the numbers that indicate the
business transactions. The formula representing the correct-
ness of the coordination process with respect to the value
model then says that when a consumer need occurs (#1 in
the value model), then all business transactions in the de-
pendency path starting from #1 are triggered, according to
the Boolean logic of the connectors in the path. In the value
model of Fig. 3, there is one and-split (#7), so this leads to
a simple conjunction as follows:

#4#5 ∧ (#2#3∧

(#9#11 ∧ #12#13 ∧ #14#15)∧

#8#10)

This formula follows the structure of the dependency path.
At this point it is useful to step back and see what we

have done. We started with the claim that a coordination
process must be correct with respect to a business model.
This claim was formalized by choosing the e3-value notation
for business models and activity diagrams for coordination
processes. Furthermore, we found that the coordination pro-
cess is really a prescription. It is a trade procedure to be
followed by business actors. We then formulated the ques-
tion When is an activity diagram of a coordination process
correct with respect to an e3-value value model? The answer
we propose is that the coordination process should contain
activities that realize the business transactions in the value
model, according to the logic of the dependency paths. We
used LTL to suggest how this can be formalized.

Now, we found a correct coordination process in Fig. 2,
but we also found that this is correct under some strong trust
assumptions. The correctness problem is therefore shifted
from the relationship between the coordination process and
the value model to the relationship between the coordination
process and actual business behavior.

Both activity diagrams are correct with respect to their
respective value models, according to the proposed correct-
ness criterion stated above. However, there are many cases
where the trust assumptions of the first coordination pro-
cess are not satisfied and we need the second coordination
process, which creates security for the shipper that he gets
paid. Even this model contains a trust assumption often
times violated, namely that the shipper always delivers his
goods to the carrier. We can drop this assumption if we
add an insurance company that insures the freight and that
pays the consignee when the goods are paid for but not
delivered—and we add the assumption that the insurance
company can be trusted. The insurance company must be
paid by the shipper, so the value model must be adapted
to this as well, and this in turn creates additional activities
and service provisions in the coordination process. The more
trust assumptions we drop, the more complex the coordina-
tion processes and value model become, and the closer they
get to the actual procedures for overseas trade [5].

7. METHODOLOGICAL DISCUSSION
Our correctness criterion has two properties.

• The coordination process involves the same business
actors as the value model.

• A transaction between actors A1 and A2 in the busi-
ness model need not be realized by an activity of A1 or
A2 in the coordination process. We saw that transac-
tion #2#3 is implemented by an activity involving the
consignee but not the shipper. In general, a business
transaction between actors A1 and A2 in the business
model may be realized by an activity involving differ-
ent A3 or A4 in the coordination process.

We extract the following methodological guidelines for co-
ordination process design from our analysis.

• The business requirements for the process are derived
from the business model. So start by representing the
business model by a value model. Note that the co-
ordination process designer does not design the busi-
ness model. He describes it, using a particular nota-
tion, namely e3-value . Note also that it is not feasible
to design a business model in its full complexity. In
practice, we first design a simple model that assume
maximum trust among partners and we then stepwise
remove the trust assumptions that are not realistic.

• Note the trust assumptions made by the value model.
The process must make the same trust assumptions,
so that the process is applicable in the same cases as
the value model is. The trust assumptions determine
which possible process violations you can afford to ig-
nore. Business people are usually expert at identifying
trust assumptions and risks taken (or they would be
out of business), so these assumptions must be identi-
fied jointly with the business people.

• For every business transaction in the value model, de-
cide which activities in the process implement the trans-
action.

• Start with assuming maximal trust and design the pro-
cess accordingly. Prove correctness with respect to the
value model by showing that every execution path con-
tains the activities that implement the business trans-
actions according to the Boolean logic of the depen-
dency path triggered by the consumer need.

• Drop trust assumptions as necessary, adding actors
and activities as needed. Again, standard trade pat-
terns exist to deal with every dropped trust assump-
tion.

The added value of using a value model to identify the busi-
ness requirements for the coordination process is that iden-
tifies exactly the services exchanged between the business
involved in the coordination. This allows us to identify es-
sential activities needed in the coordination process, that im-
plement these transactions, from accidental activities, used
in the process for determining control flow. The essential ac-
tivities must be present in every process implementing the
business model, the accidental ones may differ in different
implementations of the business model.

Furthermore, every business in the cooperation is an in-
dependent decision center that makes decisions in its own

1326

interests. This makes it critical for the success of the coor-
dination design, to base this design on a business model that
makes the interests of each business partner in the coordina-
tion clear. The e3-value value model does this, and the cor-
rectness argument for the activity diagram then makes clear
that the coordination process does indeed support these in-
terests.

8. CONCLUSIONS AND FURTHER WORK
We presented an approach to designing coordination pro-

cesses that starts by identifying essential services in the busi-
ness model and designs the process so that it performs the
required business transactions according to the logic of the
business model. This places the coordination process in the
required context of business cooperation.

A number of topics need to be elaborated. First, we need
to develop automated support for generating correctness for-
mulas from business models. Once the designer supplied
correctness formulas for each business transaction, the com-
plete formula can be generated automatically from the value
model. Second, due to the presence of data, model checking
activity diagrans with object flows is substantially more dif-
ficult than model checking diagrams without object flows.
We yet have to extend our model checking implementa-
tion [12] with object flows. Third, there is a huge benefit to
be reaped by using patterns known from organizational con-
trol theory to build coordination process patterns. Schaad
and Moffett [19] have made a start towards this but they
do not focus particularly on cross-organizational service co-
ordination processes. A lot of work can be done in this
area, with potentially large rewards in making web services
a business reality. Finally, we want to study the automatic
generation of coordination process specifications from activ-
ity diagrams. An initial proposal exists for BPEL4WS [13],
but we yet have to investigate which execution semantics
is implemented in this prototype. Additionally, we want to
look at other notations, such BPMN (Business Process Mod-
eling Notation) [7], that is intended to visuale BPEL4WS,
and of course and see if we can formalize this to make it
formally verifiable, as we have done with activity diagrams.

9. ACKNOWLEDGMENTS
The authors thank Rik Eshuis of the Technical University

Eindhoven and Pascal van Eck of the University of Twente
for constructive comments on an earlier version of this paper.

10. REFERENCES
[1] W. v. d. Aalst. Don’t go with the flow: Web services

composition standards exposed. IEEE Intelligent
Systems, 18(1):72–76, 2003.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services: Concepts, Architectures and
Applications. Springer, 2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawanara. Business
Process Execution Language for Web Services Version
1.1. Technical report, BEA Systems, IBM, Microsoft,
SAP, Siebel, 5 May 2003.

[4] A. Arkin, S. Askary, S. Fordin, W. Jekeli,
K. Kawaguchi, D. Orchard, S. Pogliani, K. Riener,
S. Struble, P. Takasci-Nagy, I. Trickovic, and

S. Zimek. Web Service Choreography Interface
(WSCI) 1.0. Technical report, BEA Systems, Intalio,
SAP, SUN Microsystems, 8 August 2002.

[5] R. Bons, R. Lee, and R. Wagenaar. Implementing
international electronic trade using open-edi. European
Journal of Information Systems and
Inter-Organizational Networks, 1994.

[6] R. Bons, R. Lee, R. Wagenaar, and C. Wrigley.
Modelling inter-organizational trade procedures using
documentary Petri nets. In Proceedings of the Hawaii
International Conference on System Sciences, 1995.

[7] Business process modeling notation, working draft
(1.0), August 25 2003. www.bpmi.org.

[8] L. Cabrera, G. Copeland, W. Cox, M. Feingold,
T. Freund, J. Johnson, C. Kaler, J. Klein,
D. Langworthy, A. Nadalin, D. Orchard, I. Robinson,
J. Shewchuk, and T. Storey. Web Services
Coordinatioon (WS-Coordination). Technical report,
BEA Systems, IBM, Microsoft, September 2003.
ftp://www6.software.ibm.com/software/

developer/library/ws-coordination.pdf.

[9] E. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[10] ebXML Business Process Specification Schema Version
1.01. http://www.ebxml.org/specs/ebBPSS.pdf, 11
May 2001.

[11] R. Eshuis and R. Wieringa. Verification support for
workflow design with UML activity graphs. In 24th
International Conference on Software Engineering
(ICSE 2002), pages 166–176, 2002.

[12] R. Eshuis and R. Wieringa. Tool support for verifying
UML activity diagrams. IEEE Transactions on
Software Engineering, Accepted for publication.

[13] T. Gardner. UML modelling of automated business
processes with a mapping to BPEL4WS. In First
European Workshop on Object Orientation and Web
Service (EOOWS), Darmstadt, Germany, 21 July
2003.

[14] J. Gordijn and J. Akkermans. Value-based
requirements engineering: Exploring innovative
e-commerce ideas. Requirements Engineering Journal,
8(2):114–134, 2003.

[15] J. Gordijn, J. M. Akkermans, and J. C. van Vliet.
Business modelling is not process modelling. In S. W.
Liddle and H. C. Mayr, editors, Conceptual Modeling
for E-Business and the Web, volume 1921 of LNCS,
pages 40–51, Berlin, D, 2000c. Springer Verlag. Also
available from http://www.cs.vu.nl/~gordijn/.

[16] J. Gordijn and Y.-H. Tan. A design methodology for
modeling trustworthy value webs. International
Journal of Electronic Commerce, to appear.

[17] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent System Specification.
Springer, 1992.

[18] RosettaNet. Rosettanet overview.
www.rosettanet.org, Web site.

[19] A. Schaad and J. D. Moffett. A framework for
organisational control principles. In 18th Annual
Computer Security Applications Conf., page paper 25,
Las Vegas, Nevada, 2002. ACSAC, Columbia.

1327

