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Abstract 
 

We describe a data management framework 
suitable for wireless sensor networks that can be 
used to adapt the performance of a medium access 
control (MAC) protocol depending on the query 
injected into the network. The framework has a 
completely distributed architecture and only makes 
use of information available locally to capture 
information about network traffic patterns. It allows 
nodes not servicing a query to enter a dormant mode 
which minimizes transmissions and yet maintain an 
updated view of the network. We then introduce an 
Adaptive, Information-centric and Lightweight MAC 
(AI-LMAC) protocol that adapts its operation 
depending on the information presented by the 
framework. Our results demonstrate how 
transmissions are greatly reduced during the 
dormant mode. During the active mode, the MAC 
protocol adjusts fairness to match the expected 
requirements of the query thus reducing latency. 
Thus such a data management framework allows the 
MAC to operate more efficiently by tailoring its 
needs to suit the requirements of the application.  
 
1. Introduction 
 

Environmental monitoring is one of the primary 
applications driving wireless sensor network (WSN) 
research. WSNs will allow scientists to obtain 
measurements at increased spatial and temporal 
resolutions that are currently not attainable using 
existing monitoring technologies.  

It is a well known fact that WSNs are application-
specific networks. This makes it necessary to design 
communication protocols that are specifically 
tailored for a particular application in order to 
improve its level of efficiency. A protocol should be 
able to take advantage of certain inherent 
behavioural characteristics of the application being 
considered by adapting its operation within the 
constraints of the application. 

The primary focus of this paper is the design of a 
data management framework that runs on every 
sensor node. The framework collects and stores 

information about data (i.e. metadata) that is flowing 
through the node itself. It has two modes of 
operation – dormant and active - that allow the 
collection of metadata using different levels of 
granularity. A node switches from dormant to active 
mode during the period it services a query. The 
dormant mode attempts to minimise energy 
consumption by offering a more granular view of the 
metadata. The gathered metadata can then be used by 
other components of the sensor network architecture 
(e.g. MAC, local query processor, routing scheme, 
etc.) which can subsequently adapt their operation 
accordingly. This would result in a more 
“application-aware” WSN architecture. In this paper, 
we focus specifically on the adaptation of the MAC 
based on the metadata collected. 

We illustrate our idea by introducing a novel 
adaptive and information-aware medium access 
control (AI-LMAC) protocol for wireless sensor 
networks (WSNs) that is based on the Lightweight 
Medium Access Protocol (LMAC) [1]. AI-LMAC is 
different from other existing WSN MAC protocols 
[2, 3, 4, 9] that operate independently of the queries 
injected into the network. In this case, AI-LMAC 
adapts its operation to fit the information presented 
by the data management framework. Unlike LMAC 
where every node in a network is assigned only one 
slot, AI-LMAC assigns multiple slots to nodes that 
need to transmit more data. 

Section 2 describes the specific application we are 
focussing on. In Section 3 we give an overview of 
our data management framework. Next, in Section 4 
we describe details of the main mechanism of our 
MAC protocol. Section 5 explains how the MAC 
protocol adapts its operation using the data 
management framework presented in Section 3. We 
then present our results in Section 6 and related work 
is mentioned in Section 7. We conclude the paper 
and discuss future work in Section 8. 

This work is performed as part of the NWO 
funded CONSENSUS project and the European 
research project EYES on self-organising and 
collaborative energy-efficient sensor networks [2, 
10].  
 



2. Details of application 
 

We are setting up a WSN for environmental 
monitoring. Currently environmentalists use 
satellites to monitor parameters such as temperature 
and rainfall over large geographical areas. This data 
is not always accurate due to adverse weather 
conditions. Also data can only be obtained when the 
satellite flies over the area being monitored. Thus 
data from WSNs will be used to verify satellite data 
and also to obtain readings with higher spatial and 
temporal resolution. 
 
2.1 Assumptions and implications 
 

We assume a dense and relatively static network 
of heterogeneous nodes (i.e. not all nodes are 
expected to have the same set of attached sensors). 
New nodes/sensors (e.g. temperature, humidity, 
pressure, light, etc.) may be added at any time. 

We envision the scenario where the network will 
be used as a tool for gathering various types of data. 
Thus different users can be expected to inject 
different queries that are distributed both spatially 
and temporally. Queries running simultaneously may 
overlap partially in terms of space, time and the 
parameters that need to be measured. This would 
imply that at a certain instant, various areas of the 
network can be assumed to have different levels of 
activity (i.e. some parts generate large amounts of 
data while other parts are relatively dormant). 

Thus it is essential that various components of the 
WSN architecture are able to adapt continuously to 
incoming queries to limit the usage of resources (e.g. 
energy, bandwidth, etc.) only to areas which require 
it. For example, instead of having a MAC with static 
duty cycles throughout the entire network, a node 
should be able to dynamically change its duty cycle 
depending on the amount of data that is flowing 
through it in response to the cumulative requirements 
of the simultaneously running queries in the system. 

 
3. Description of data management 
framework 
 

The data management framework offers two 
modes of operation, dormant and active, that offer a 
dual-granular view of the network. A node switches 
to active mode the moment it receives a query and 
reverts back to the dormant mode once the query has 
expired.  The main objective of the dormant mode is 
to keep all nodes updated regarding the current 
characteristics (e.g. range of sensor readings) of the 
network to allow the efficient dissemination of 
future queries. However, this mode only provides a 
coarse-grained view of the network since message 
transmissions are kept to a minimum to reduce 

energy consumption. Upon receiving a query, a node 
switches to the active mode and begins collecting 
information about the data messages passing through 
the node, i.e. metadata. This mode provides a fine-
grained view of the network due to the large number 
of messages traversing through the node. It is 
important to note that at any single instant, a network 
could consist of multiple dormant and active regions. 
In other words node activity is not uniform 
throughout the network. 

The main objective of the dormant and active 
modes is to allow a node to maintain the range of 
sensor values that may be present in its subtree. 
Using this range information eliminates the need to 
flood the entire network when a new query is first 
injected into the network. It can also be used for 
adapting the MAC and efficient query processing. 
The latter however, is not discussed here as it is 
outside the scope of this paper. The only difference 
between the two modes is that they both perform the 
same task using slightly different mechanisms which 
result in different levels of energy consumption and 
accuracy. 
 
3.1 Dormant mode 
 

Initially, once a tree structure has been setup 
during network start-up and before any query has 
been injected into the network, all the nodes operate 
in the dormant mode. As shown in Figure 1, every 
node maintains a received_readings table 
which stores the latest minimum and maximum 
sensor readings that were generated by the node 
itself and also transmitted by its immediate children. 
(Note that the readings received from immediate 
children may not have been generated at the nodes 
themselves but somewhere deeper in the tree.) Once 
a node samples a reading from its sensor, it checks to 
see if this reading differs from its previous reading in 
the received_readings table by more than a 
certain pre-defined threshold (specified during 

Figure 1. Operation during dormant mode 



network deployment). If it does, the newly acquired 
reading replaces the previous entry in the 
received_readings table. The following step 
is to pick out the minimum and maximum sensor 
readings from the received_readings table 
and check both the values against the previously 
transmitted readings. Once again, if either one of the 
values differs from the previously transmitted 
readings by more than the threshold, the node 
transmits the minimum and maximum values to its 
parent node. 

 
3.2 Active mode 
 

A node changes from operating in the dormant to 
active mode the instant it receives a query that either 
the node itself or its children can service. Every node 
maintains its own set of Data Distribution Tables 
(DDTs), Figure 2. Once a node receives a query it 
looks up its DDTs to deduce how many of its 
children are going to respond to the particular query. 
Each DDT corresponds to a sensor type that is 
present within a node’s set of child nodes. A DDT is 
built over time by monitoring the data that flows 
through a particular node. Thus statistics about the 
data flowing through the network is collected 
without incurring any extra overhead. It is simply 
based on the data that already needs to flow through 
a node. As the DDT does not actually store any of 
the data that flows through it, the size of the DDT is 
independent of the total number of children a node 
has within the tree. It does however, depend on the 
different sensor types, regions defined within the 
network and the number of ranges sensor readings 
are classified into. 

Upon receiving a reading from a child node, the 
parent node updates the entry in the appropriate 
DDT depending on a number of variables: the type 
of sensor that originally generated the reading and 
the range within which the received reading falls. 
Additionally, the DDT also keeps track of which 
particular immediate neighbour sent it the reading. 

It is important to highlight that the numbers or 
rather the “count” found in the DDT is not simply a 
count of the total number of children a node has. It 
only includes the number of active children, i.e. the 
number of nodes that are actually involved in 
servicing a particular query. 

Using multiple DDTs and categorising the 
incoming data into ranges allows users to formulate 
complex query dissemination schemes that would 

prevent the need to flood the entire network and 
limit query dissemination to only relevant parts of 
the network. 

An example of a query parsing multiple DDTs 
would be: Get solar radiation readings in sector B 
only if the temperature reading for the sector is 
above 35˚C and the air pressure readings are above 
1007mb. Not only would this help in creating highly 
specific query dissemination schemes but this can 
also help in localised query processing.  

Also, when a system component (e.g. MAC) 
needs to adapt its operation based on the information 
presented by the DDT, the architecture of the DDT 
allows decisions to be made based on not just the 
requirements of a single query but based on the net 
requirements of all queries running simultaneously at 
that instant. 

 
4. Overview of AI-LMAC 
 

The Adaptive and Information-aware, 
Lightweight Medium Access Protocol (AI-LMAC) is 
a TDMA-based protocol that is an adaptive and 
information-aware version of the LMAC protocol 
[1]. In this section, we describe some of the common 
aspects between the two protocols. 

Time is divided into time slots, which nodes can 
use to transfer data without having to contend for the 
medium or having to deal with energy wasting 
collisions during transmissions. A time slot consists 
of two parts: the Control Message (CM), which is 
always transmitted by a node in the time slot(s) it 
controls and the Data Message (DM), which contains 
the higher protocol layer data. The CM has a fixed 
length and specifies the ID of the time slot 
controller, distance of the node to the gateway for 
simple routing and the intended receivers of the DM. 
The DM can have a length up to the end of the time 
slot or can even be omitted when the node has no 
data to send. For energy-efficiency reasons, nodes 
will turn-off their energy consuming transceiver 
when they are not the intended receivers of a DM, or 
when the transmission of a DM has finished before 
the end of the time slot. To be able to maintain the 
protocol, nodes will always listen to CMs of their 
neighbouring nodes. When a node is not addressed 
in that message or the message is not addressed as a 
broadcast message, the nodes will switch off their 
power consuming transceivers only to wake up at the 
next time slot. 

To limit the number of time slots necessary in the 
network, we allow time slots to be reused at a non-
interfering distance. Unlike traditional TDMA-based 
systems, the time slots in AI-LMAC are not divided 
among nodes by a central manager. Instead, the 
nodes use an algorithm that is based on local 
information only to choose time slots to control. 
Every node transmits a table in the CM that specifies 

Figure 2. Format of Data Distribution Table 



which time slots the node considers to be occupied 
by itself and its one-hop neighbour nodes. This 
information can be efficiently encoded by a number 
of bits equal to the number of time slots in a frame. 
A node can occupy the appropriate slots when the 
required number of slots is considered to be free by 
all its neighbours. This method ensures that a time 
slot is only reused after at least three hops and that 
no collisions will occur. 

Figure. 3 gives an example of how a new node in 
the network can pick a time slot after it has 
discovered all its neighbours. When a node picks a 
time slot to control, it will control the same time slot 
in consecutive frames. Currently, we are considering 
frames of 32 time slots. Note that nodes will only use 
their own time slots to transmit data to their 
neighbouring nodes. 

In the AI-LMAC protocol, nodes are allowed to 
control multiple time slots in a frame. To ensure a 
connected network, every node controls a minimum 
of one time slot. For further details regarding 
network setup and routing to the gateway, we refer 
the reader to [1]. 
 
5. Adapting AI-LMAC to the application 
requirements 
 

We now describe how AI-LMAC can adapt its 
operation using the information provided in the 
DDT. Unlike LMAC, which allows every node 
within the network to own only one slot [1], AI-
LMAC allows a node to own multiple slots. Also, 
AI-LMAC is able to vary the number of slots a 
particular node owns depending on the amount of 
data that is expected to flow through it. This ensures 
fairness in the sense that the bandwidth allocated to a 
node corresponds to the traffic it is expected to 
encounter. Note that AI-LMAC uses a single-slot in 
the dormant mode and multiple-slots in the active 
mode. 

In AI-LMAC, we assume that a parent-child 
relationship exists between all the nodes in the 
network, such that the root of the network can be 
considered to be the highest parent in the hierarchy. 
Using the DDT, every node would know how much 

“importance” to give every one of its immediate 
children. 

Using the DDTs a node cannot decide by itself, 
how much importance it should give itself to 
transmit. This is because the DDTs only contain 
information about a node’s active child information. 
A node is not aware of the data generated by the 
other children of its own parent node as they may not 
be within transmission range. Thus, the parent is the 
only node that has knowledge of the proportion of 
data that will be contributed by each of its immediate 
children. The idea here is that if a node realizes that 
a subset of its immediate children is going to 
transmit large quantities of data, then more attention 
needs to be paid to this particular subset of child 
nodes. In this case, when we say more attention, we 
actually refer to assigning multiple slots to a 
particular child. 

However, even though a parent node knows 
which child node deserves more slots to be assigned 
to it, it cannot send such a rigid instruction to its 
children as in LMAC. This is because in LMAC, 
when a node performs slot assignment, it has 
knowledge of the slot ownership of its first and 
second order nodes. In this case, the parent node 
would not know slot ownership information about 
the slot assignments of its child node’s second order 
nodes since they are three hops away. 

Thus, the responsibility of the parent node is 
simply to “advise” the child, i.e. the parent node 
sends a message to every one of its children 
indicating the ideal number of slots that a particular 
node should take up under the current conditions. It 
is then up to the child node to follow the advice as 
closely as possible. This naturally depends on the 
number of empty slots available. 

The process of giving advice starts at the root 
node of the tree when a query is first injected into 
the network. This process then percolates down the 
branches of the tree towards the leaf nodes. If 
however, the process of giving advice started at an 
intermediate node, this would increase the chance of 
performing unfair slot allocations. This is because a 
node assigning slots would not be aware of the 
bandwidth requirements of all its sibling nodes 
which are not within its direct range. From this 
argument, it is obvious that if we apply this rule 
repeatedly, the root node is the only node which can 
assign slots fairly at the beginning. We term this as 
horizontal fairness as the mechanism ensures that all 
sibling nodes (i.e. at the same level) under a certain 
parent are allocated slots fairly. 

Apart from establishing a horizontal relationship 
between nodes, we also introduce a mechanism to 
include vertical fairness. In order to prevent buffer 
overflow problems, our mechanism ensures that that 
the total number of slots assigned to the immediate 
children of a certain parent node, does not exceed the 

Figure 3. A new active node in the network can pick a 
time slot when it has discovered all its neighbour nodes



number of slots owned by the parent. This reduces 
the likelihood of data packets being dropped due to 
lack of bandwidth. Furthermore, leaf nodes are 
prevented from being allocated excessive bandwidth 
using this mechanism. 

Thus introducing two-dimensional fairness 
ensures that the number of slots taken up by a node 
does not only depend on its siblings but on its parent 
as well. 

Once a node has received the ideal number of 
slots it should take up, it checks to see which slots 
are free within its 2nd order neighbourhood. Just like 
in LMAC, once a node decides to take up a certain 
slot, it “marks” the slot using a “1” to indicate that 
the slot has been taken up. 

 
6. Experimental analysis 
 

Simulations for the dormant mode were based on 
a dataset acquired from Intel Research Lab at 
Berkeley [7] which was generated from the trace of 
54 sensors that were placed within the laboratory. 
We have used readings of the temperature sensors 
over a period of 24 hours. A multihop network was 
set up using node 1 as the root, Figure 4. Figure 5 
shows the total number of messages that were 
transmitted over 24 hours using different threshold 
values. 

A total of three peaks can be observed from the 
graphs – the first peak occurs during the first hour 
which is when the nodes initially start up. This is due 
to the first few minutes during which a large 
proportion of the sensors generated highly erratic 
readings (e.g. oscillating between 20˚C and 120˚C). 
Such erratic readings resulted in a large number of 
range changes and this in turn translated into a large 
number of transmissions. Also, even if the errors 
occurred in sensors deep in the communication tree, 
the “swing” of the readings caused the errors to 
propagate up towards the root, thus affecting all the 
intermediary nodes as well. While in this case this is 
an undesirable effect, it is also important to note that 
the same mechanism is ideal for “event detection” 
using minimal message transmissions. We however, 
plan to solve the problem of minimising erratic 
sensor readings in the future using statistical 
prediction techniques. 

The effect of minimising message transmissions 
using a larger threshold had a greater effect when 
there was a gradual rise of temperature in the day. 
This is evident from the second peak. The third peak 
was caused by temperature fluctuations by up to 7 
degrees. However, it is important to note that even 
when the transmissions peaked at 341 messages 
during the first hour (Threshold = 1%), the average 
number of message transmissions per node, per hour 
was only slightly higher than 6 messages.  

Figure 6 illustrates how the number of child 
nodes a particular node has affects the numbers of 
transmissions. When collecting raw sensor readings, 
it is a common occurrence to have nodes with greater 
number of children transmitting a larger number of 
messages. This will result in premature network 
partitioning. Also, when performing aggregation as 
described in [6], the number of messages transmitted 
by a node is independent of the number of child 
node it has. In this case, due to coarse-grained 
aggregation being performed, the number of 
messages transmitted is dramatically reduced (by up 
to a factor of nearly 35) as the number of children 
increases. It should be added that while the average 
number of transmissions by a leaf node may appear 
to be substantially higher than other nodes, on 
average, a leaf node only transmits 4.3 messages 
every hour.  
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Figure 5. Total number of messages transmitted per 
hour by all 54 nodes

Figure 4. Multihop network with Node 1 as the root 
[7] 

Figure 6. Effect of number of children on message 
transmissions 



Our framework provides a mechanism to assign 
more bandwidth to those parts in the network that 
encounter more data traffic than others. In fact, the 
assigned bandwidth is proportional to the expected 
traffic. Hence our framework is able to minimise the 
overall latency in the network and also the number 
of messages which need to be buffered in the nodes. 
Figure 7 illustrates how latency is reduced as the 
maximum number of allowable slots that can be 
owned by a node is increased from 1 to 16. These 
results are obtained by simulation using the discrete 
event simulator OMNeT++ [8]. Results are averaged 
over five different network topologies consisting of 
49 nodes and one root. Ten different runs were 
carried out per topology. 

The results clearly indicate that latency is 
proportionally reduced with the maximum number of 
controlled slots. However, this holds true only until 
eight slots. For the sixteen slot scenario, the number 
of free slots in the network rapidly decreases with 
every hop from the root and thus the nodes are not 
able to comply with the advice. Consequently, a 
bottleneck is created at a few hops (6 to 8) from the 
root, resulting in higher latency for messages created 
in those areas. 

 
7. Related work 

There are certain parallels between the data 
management framework presented here and semantic 
routing in [6]. However, semantic routing solely 
deals with the dissemination of queries. The primary 
difference is that no information is stored by the 
nodes about the number of active children that can 
be expected to respond to a certain query. Also, 
while TinyDB does have some form of 
communication scheduling [6], it only helps to 
reduce the burden on the underlying MAC protocol; 
it does not alter the operation of the MAC itself. 
There are also a host of MAC protocols described in 
the literature for sensor networks [1, 2, 3, 4, 9]. 
While some are able to adapt to varying traffic 
patterns, none has any knowledge of the queries 
injected into the network. 

8. Conclusion and future work 
Out results indicate that an “application-aware” 

MAC results in a substantial reduction of transmitted 
messages and allows it to adapt according to the 
application requirements. 

Future research will look into methods that can be 
employed to improve the energy efficiency of the 
protocol. For instance, currently the same bandwidth 
is allocated for traffic both from and towards the root 
node. This can be improved on since data flow can 
be expected to be much higher than query flow. 
Also, instead of assigning slots randomly, we plan to 
minimise switching by assigning slots in a 
contiguous manner. We also plan to include other 
information in the data management framework such 
as data generation rates and degree of aggregation 
and also investigate various statistical techniques 
that may be employed to reduce energy consumption 
during data acquisition. 
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