
An Application-Tailored MAC Protocol for Wireless Sensor Networks

S. Chatterjea, L.F.W. van Hoesel and P. Havinga
Department of Computer Science, University of Twente

P.O. Box 217, 7500AE Enschede, the Netherlands
{supriyo, hoesel, havinga}@cs.utwente.nl

Abstract

We describe a data management framework
suitable for wireless sensor networks that can be
used to adapt the performance of a medium access
control (MAC) protocol depending on the query
injected into the network. The framework has a
completely distributed architecture and only makes
use of information available locally to capture
information about network traffic patterns. It allows
nodes not servicing a query to enter a dormant mode
which minimizes transmissions and yet maintain an
updated view of the network. We then introduce an
Adaptive, Information-centric and Lightweight MAC
(AI-LMAC) protocol that adapts its operation
depending on the information presented by the
framework. Our results demonstrate how
transmissions are greatly reduced during the
dormant mode. During the active mode, the MAC
protocol adjusts fairness to match the expected
requirements of the query thus reducing latency.
Thus such a data management framework allows the
MAC to operate more efficiently by tailoring its
needs to suit the requirements of the application.

1. Introduction

Environmental monitoring is one of the primary
applications driving wireless sensor network (WSN)
research. WSNs will allow scientists to obtain
measurements at increased spatial and temporal
resolutions that are currently not attainable using
existing monitoring technologies.

It is a well known fact that WSNs are application-
specific networks. This makes it necessary to design
communication protocols that are specifically
tailored for a particular application in order to
improve its level of efficiency. A protocol should be
able to take advantage of certain inherent
behavioural characteristics of the application being
considered by adapting its operation within the
constraints of the application.

The primary focus of this paper is the design of a
data management framework that runs on every
sensor node. The framework collects and stores

information about data (i.e. metadata) that is flowing
through the node itself. It has two modes of
operation – dormant and active - that allow the
collection of metadata using different levels of
granularity. A node switches from dormant to active
mode during the period it services a query. The
dormant mode attempts to minimise energy
consumption by offering a more granular view of the
metadata. The gathered metadata can then be used by
other components of the sensor network architecture
(e.g. MAC, local query processor, routing scheme,
etc.) which can subsequently adapt their operation
accordingly. This would result in a more
“application-aware” WSN architecture. In this paper,
we focus specifically on the adaptation of the MAC
based on the metadata collected.

We illustrate our idea by introducing a novel
adaptive and information-aware medium access
control (AI-LMAC) protocol for wireless sensor
networks (WSNs) that is based on the Lightweight
Medium Access Protocol (LMAC) [1]. AI-LMAC is
different from other existing WSN MAC protocols
[2, 3, 4, 9] that operate independently of the queries
injected into the network. In this case, AI-LMAC
adapts its operation to fit the information presented
by the data management framework. Unlike LMAC
where every node in a network is assigned only one
slot, AI-LMAC assigns multiple slots to nodes that
need to transmit more data.

Section 2 describes the specific application we are
focussing on. In Section 3 we give an overview of
our data management framework. Next, in Section 4
we describe details of the main mechanism of our
MAC protocol. Section 5 explains how the MAC
protocol adapts its operation using the data
management framework presented in Section 3. We
then present our results in Section 6 and related work
is mentioned in Section 7. We conclude the paper
and discuss future work in Section 8.

This work is performed as part of the NWO
funded CONSENSUS project and the European
research project EYES on self-organising and
collaborative energy-efficient sensor networks [2,
10].

2. Details of application

We are setting up a WSN for environmental
monitoring. Currently environmentalists use
satellites to monitor parameters such as temperature
and rainfall over large geographical areas. This data
is not always accurate due to adverse weather
conditions. Also data can only be obtained when the
satellite flies over the area being monitored. Thus
data from WSNs will be used to verify satellite data
and also to obtain readings with higher spatial and
temporal resolution.

2.1 Assumptions and implications

We assume a dense and relatively static network
of heterogeneous nodes (i.e. not all nodes are
expected to have the same set of attached sensors).
New nodes/sensors (e.g. temperature, humidity,
pressure, light, etc.) may be added at any time.

We envision the scenario where the network will
be used as a tool for gathering various types of data.
Thus different users can be expected to inject
different queries that are distributed both spatially
and temporally. Queries running simultaneously may
overlap partially in terms of space, time and the
parameters that need to be measured. This would
imply that at a certain instant, various areas of the
network can be assumed to have different levels of
activity (i.e. some parts generate large amounts of
data while other parts are relatively dormant).

Thus it is essential that various components of the
WSN architecture are able to adapt continuously to
incoming queries to limit the usage of resources (e.g.
energy, bandwidth, etc.) only to areas which require
it. For example, instead of having a MAC with static
duty cycles throughout the entire network, a node
should be able to dynamically change its duty cycle
depending on the amount of data that is flowing
through it in response to the cumulative requirements
of the simultaneously running queries in the system.

3. Description of data management
framework

The data management framework offers two
modes of operation, dormant and active, that offer a
dual-granular view of the network. A node switches
to active mode the moment it receives a query and
reverts back to the dormant mode once the query has
expired. The main objective of the dormant mode is
to keep all nodes updated regarding the current
characteristics (e.g. range of sensor readings) of the
network to allow the efficient dissemination of
future queries. However, this mode only provides a
coarse-grained view of the network since message
transmissions are kept to a minimum to reduce

energy consumption. Upon receiving a query, a node
switches to the active mode and begins collecting
information about the data messages passing through
the node, i.e. metadata. This mode provides a fine-
grained view of the network due to the large number
of messages traversing through the node. It is
important to note that at any single instant, a network
could consist of multiple dormant and active regions.
In other words node activity is not uniform
throughout the network.

The main objective of the dormant and active
modes is to allow a node to maintain the range of
sensor values that may be present in its subtree.
Using this range information eliminates the need to
flood the entire network when a new query is first
injected into the network. It can also be used for
adapting the MAC and efficient query processing.
The latter however, is not discussed here as it is
outside the scope of this paper. The only difference
between the two modes is that they both perform the
same task using slightly different mechanisms which
result in different levels of energy consumption and
accuracy.

3.1 Dormant mode

Initially, once a tree structure has been setup
during network start-up and before any query has
been injected into the network, all the nodes operate
in the dormant mode. As shown in Figure 1, every
node maintains a received_readings table
which stores the latest minimum and maximum
sensor readings that were generated by the node
itself and also transmitted by its immediate children.
(Note that the readings received from immediate
children may not have been generated at the nodes
themselves but somewhere deeper in the tree.) Once
a node samples a reading from its sensor, it checks to
see if this reading differs from its previous reading in
the received_readings table by more than a
certain pre-defined threshold (specified during

Figure 1. Operation during dormant mode

network deployment). If it does, the newly acquired
reading replaces the previous entry in the
received_readings table. The following step
is to pick out the minimum and maximum sensor
readings from the received_readings table
and check both the values against the previously
transmitted readings. Once again, if either one of the
values differs from the previously transmitted
readings by more than the threshold, the node
transmits the minimum and maximum values to its
parent node.

3.2 Active mode

A node changes from operating in the dormant to
active mode the instant it receives a query that either
the node itself or its children can service. Every node
maintains its own set of Data Distribution Tables
(DDTs), Figure 2. Once a node receives a query it
looks up its DDTs to deduce how many of its
children are going to respond to the particular query.
Each DDT corresponds to a sensor type that is
present within a node’s set of child nodes. A DDT is
built over time by monitoring the data that flows
through a particular node. Thus statistics about the
data flowing through the network is collected
without incurring any extra overhead. It is simply
based on the data that already needs to flow through
a node. As the DDT does not actually store any of
the data that flows through it, the size of the DDT is
independent of the total number of children a node
has within the tree. It does however, depend on the
different sensor types, regions defined within the
network and the number of ranges sensor readings
are classified into.

Upon receiving a reading from a child node, the
parent node updates the entry in the appropriate
DDT depending on a number of variables: the type
of sensor that originally generated the reading and
the range within which the received reading falls.
Additionally, the DDT also keeps track of which
particular immediate neighbour sent it the reading.

It is important to highlight that the numbers or
rather the “count” found in the DDT is not simply a
count of the total number of children a node has. It
only includes the number of active children, i.e. the
number of nodes that are actually involved in
servicing a particular query.

Using multiple DDTs and categorising the
incoming data into ranges allows users to formulate
complex query dissemination schemes that would

prevent the need to flood the entire network and
limit query dissemination to only relevant parts of
the network.

An example of a query parsing multiple DDTs
would be: Get solar radiation readings in sector B
only if the temperature reading for the sector is
above 35˚C and the air pressure readings are above
1007mb. Not only would this help in creating highly
specific query dissemination schemes but this can
also help in localised query processing.

Also, when a system component (e.g. MAC)
needs to adapt its operation based on the information
presented by the DDT, the architecture of the DDT
allows decisions to be made based on not just the
requirements of a single query but based on the net
requirements of all queries running simultaneously at
that instant.

4. Overview of AI-LMAC

The Adaptive and Information-aware,
Lightweight Medium Access Protocol (AI-LMAC) is
a TDMA-based protocol that is an adaptive and
information-aware version of the LMAC protocol
[1]. In this section, we describe some of the common
aspects between the two protocols.

Time is divided into time slots, which nodes can
use to transfer data without having to contend for the
medium or having to deal with energy wasting
collisions during transmissions. A time slot consists
of two parts: the Control Message (CM), which is
always transmitted by a node in the time slot(s) it
controls and the Data Message (DM), which contains
the higher protocol layer data. The CM has a fixed
length and specifies the ID of the time slot
controller, distance of the node to the gateway for
simple routing and the intended receivers of the DM.
The DM can have a length up to the end of the time
slot or can even be omitted when the node has no
data to send. For energy-efficiency reasons, nodes
will turn-off their energy consuming transceiver
when they are not the intended receivers of a DM, or
when the transmission of a DM has finished before
the end of the time slot. To be able to maintain the
protocol, nodes will always listen to CMs of their
neighbouring nodes. When a node is not addressed
in that message or the message is not addressed as a
broadcast message, the nodes will switch off their
power consuming transceivers only to wake up at the
next time slot.

To limit the number of time slots necessary in the
network, we allow time slots to be reused at a non-
interfering distance. Unlike traditional TDMA-based
systems, the time slots in AI-LMAC are not divided
among nodes by a central manager. Instead, the
nodes use an algorithm that is based on local
information only to choose time slots to control.
Every node transmits a table in the CM that specifies

Figure 2. Format of Data Distribution Table

which time slots the node considers to be occupied
by itself and its one-hop neighbour nodes. This
information can be efficiently encoded by a number
of bits equal to the number of time slots in a frame.
A node can occupy the appropriate slots when the
required number of slots is considered to be free by
all its neighbours. This method ensures that a time
slot is only reused after at least three hops and that
no collisions will occur.

Figure. 3 gives an example of how a new node in
the network can pick a time slot after it has
discovered all its neighbours. When a node picks a
time slot to control, it will control the same time slot
in consecutive frames. Currently, we are considering
frames of 32 time slots. Note that nodes will only use
their own time slots to transmit data to their
neighbouring nodes.

In the AI-LMAC protocol, nodes are allowed to
control multiple time slots in a frame. To ensure a
connected network, every node controls a minimum
of one time slot. For further details regarding
network setup and routing to the gateway, we refer
the reader to [1].

5. Adapting AI-LMAC to the application
requirements

We now describe how AI-LMAC can adapt its
operation using the information provided in the
DDT. Unlike LMAC, which allows every node
within the network to own only one slot [1], AI-
LMAC allows a node to own multiple slots. Also,
AI-LMAC is able to vary the number of slots a
particular node owns depending on the amount of
data that is expected to flow through it. This ensures
fairness in the sense that the bandwidth allocated to a
node corresponds to the traffic it is expected to
encounter. Note that AI-LMAC uses a single-slot in
the dormant mode and multiple-slots in the active
mode.

In AI-LMAC, we assume that a parent-child
relationship exists between all the nodes in the
network, such that the root of the network can be
considered to be the highest parent in the hierarchy.
Using the DDT, every node would know how much

“importance” to give every one of its immediate
children.

Using the DDTs a node cannot decide by itself,
how much importance it should give itself to
transmit. This is because the DDTs only contain
information about a node’s active child information.
A node is not aware of the data generated by the
other children of its own parent node as they may not
be within transmission range. Thus, the parent is the
only node that has knowledge of the proportion of
data that will be contributed by each of its immediate
children. The idea here is that if a node realizes that
a subset of its immediate children is going to
transmit large quantities of data, then more attention
needs to be paid to this particular subset of child
nodes. In this case, when we say more attention, we
actually refer to assigning multiple slots to a
particular child.

However, even though a parent node knows
which child node deserves more slots to be assigned
to it, it cannot send such a rigid instruction to its
children as in LMAC. This is because in LMAC,
when a node performs slot assignment, it has
knowledge of the slot ownership of its first and
second order nodes. In this case, the parent node
would not know slot ownership information about
the slot assignments of its child node’s second order
nodes since they are three hops away.

Thus, the responsibility of the parent node is
simply to “advise” the child, i.e. the parent node
sends a message to every one of its children
indicating the ideal number of slots that a particular
node should take up under the current conditions. It
is then up to the child node to follow the advice as
closely as possible. This naturally depends on the
number of empty slots available.

The process of giving advice starts at the root
node of the tree when a query is first injected into
the network. This process then percolates down the
branches of the tree towards the leaf nodes. If
however, the process of giving advice started at an
intermediate node, this would increase the chance of
performing unfair slot allocations. This is because a
node assigning slots would not be aware of the
bandwidth requirements of all its sibling nodes
which are not within its direct range. From this
argument, it is obvious that if we apply this rule
repeatedly, the root node is the only node which can
assign slots fairly at the beginning. We term this as
horizontal fairness as the mechanism ensures that all
sibling nodes (i.e. at the same level) under a certain
parent are allocated slots fairly.

Apart from establishing a horizontal relationship
between nodes, we also introduce a mechanism to
include vertical fairness. In order to prevent buffer
overflow problems, our mechanism ensures that that
the total number of slots assigned to the immediate
children of a certain parent node, does not exceed the

Figure 3. A new active node in the network can pick a
time slot when it has discovered all its neighbour nodes

number of slots owned by the parent. This reduces
the likelihood of data packets being dropped due to
lack of bandwidth. Furthermore, leaf nodes are
prevented from being allocated excessive bandwidth
using this mechanism.

Thus introducing two-dimensional fairness
ensures that the number of slots taken up by a node
does not only depend on its siblings but on its parent
as well.

Once a node has received the ideal number of
slots it should take up, it checks to see which slots
are free within its 2nd order neighbourhood. Just like
in LMAC, once a node decides to take up a certain
slot, it “marks” the slot using a “1” to indicate that
the slot has been taken up.

6. Experimental analysis

Simulations for the dormant mode were based on
a dataset acquired from Intel Research Lab at
Berkeley [7] which was generated from the trace of
54 sensors that were placed within the laboratory.
We have used readings of the temperature sensors
over a period of 24 hours. A multihop network was
set up using node 1 as the root, Figure 4. Figure 5
shows the total number of messages that were
transmitted over 24 hours using different threshold
values.

A total of three peaks can be observed from the
graphs – the first peak occurs during the first hour
which is when the nodes initially start up. This is due
to the first few minutes during which a large
proportion of the sensors generated highly erratic
readings (e.g. oscillating between 20˚C and 120˚C).
Such erratic readings resulted in a large number of
range changes and this in turn translated into a large
number of transmissions. Also, even if the errors
occurred in sensors deep in the communication tree,
the “swing” of the readings caused the errors to
propagate up towards the root, thus affecting all the
intermediary nodes as well. While in this case this is
an undesirable effect, it is also important to note that
the same mechanism is ideal for “event detection”
using minimal message transmissions. We however,
plan to solve the problem of minimising erratic
sensor readings in the future using statistical
prediction techniques.

The effect of minimising message transmissions
using a larger threshold had a greater effect when
there was a gradual rise of temperature in the day.
This is evident from the second peak. The third peak
was caused by temperature fluctuations by up to 7
degrees. However, it is important to note that even
when the transmissions peaked at 341 messages
during the first hour (Threshold = 1%), the average
number of message transmissions per node, per hour
was only slightly higher than 6 messages.

Figure 6 illustrates how the number of child
nodes a particular node has affects the numbers of
transmissions. When collecting raw sensor readings,
it is a common occurrence to have nodes with greater
number of children transmitting a larger number of
messages. This will result in premature network
partitioning. Also, when performing aggregation as
described in [6], the number of messages transmitted
by a node is independent of the number of child
node it has. In this case, due to coarse-grained
aggregation being performed, the number of
messages transmitted is dramatically reduced (by up
to a factor of nearly 35) as the number of children
increases. It should be added that while the average
number of transmissions by a leaf node may appear
to be substantially higher than other nodes, on
average, a leaf node only transmits 4.3 messages
every hour.

0

20

40

60

80

100

120

0 5 10 15 20

Threshold = 1%
Threshold = 3%
Threshold = 5%
Threshold = 10%

Total number of children

To
ta

l n
um

be
r o

f m
es

sa
ge

s
tra

ns
m

itt
ed

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Threshold = 1%
Threshold = 3%
Threshold = 5%
Threshold = 10%

Hours

M
es

sa
ge

s
tra

ns
m

itt
ed

 p
er

 h
ou

r

Figure 5. Total number of messages transmitted per
hour by all 54 nodes

Figure 4. Multihop network with Node 1 as the root
[7]

Figure 6. Effect of number of children on message
transmissions

Our framework provides a mechanism to assign
more bandwidth to those parts in the network that
encounter more data traffic than others. In fact, the
assigned bandwidth is proportional to the expected
traffic. Hence our framework is able to minimise the
overall latency in the network and also the number
of messages which need to be buffered in the nodes.
Figure 7 illustrates how latency is reduced as the
maximum number of allowable slots that can be
owned by a node is increased from 1 to 16. These
results are obtained by simulation using the discrete
event simulator OMNeT++ [8]. Results are averaged
over five different network topologies consisting of
49 nodes and one root. Ten different runs were
carried out per topology.

The results clearly indicate that latency is
proportionally reduced with the maximum number of
controlled slots. However, this holds true only until
eight slots. For the sixteen slot scenario, the number
of free slots in the network rapidly decreases with
every hop from the root and thus the nodes are not
able to comply with the advice. Consequently, a
bottleneck is created at a few hops (6 to 8) from the
root, resulting in higher latency for messages created
in those areas.

7. Related work

There are certain parallels between the data
management framework presented here and semantic
routing in [6]. However, semantic routing solely
deals with the dissemination of queries. The primary
difference is that no information is stored by the
nodes about the number of active children that can
be expected to respond to a certain query. Also,
while TinyDB does have some form of
communication scheduling [6], it only helps to
reduce the burden on the underlying MAC protocol;
it does not alter the operation of the MAC itself.
There are also a host of MAC protocols described in
the literature for sensor networks [1, 2, 3, 4, 9].
While some are able to adapt to varying traffic
patterns, none has any knowledge of the queries
injected into the network.

8. Conclusion and future work
Out results indicate that an “application-aware”

MAC results in a substantial reduction of transmitted
messages and allows it to adapt according to the
application requirements.

Future research will look into methods that can be
employed to improve the energy efficiency of the
protocol. For instance, currently the same bandwidth
is allocated for traffic both from and towards the root
node. This can be improved on since data flow can
be expected to be much higher than query flow.
Also, instead of assigning slots randomly, we plan to
minimise switching by assigning slots in a
contiguous manner. We also plan to include other
information in the data management framework such
as data generation rates and degree of aggregation
and also investigate various statistical techniques
that may be employed to reduce energy consumption
during data acquisition.

9. References

[1] L. van Hoesel and P. Havinga. A lightweight medium
access protocol (LMAC) for wireless sensor networks:
Reducing preamble transmissions and transceiver state
switches. In Proceedings of 1st International Workshop on
Networked Sensing Systems, 2004.

[2] W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient mac protocol for wireless sensor networks. 2002.

[3] A.Woo and D. E. Culler. A transmission control
scheme for media access in sensor networks. In Mobile
Computing and Networking, pages 221–235, 2001.

[4] K. O. V. Rajendran and J. J. Garcia-Luna-Aceves.
Energy-efficient collision-free medium access control for
wireless sensor networks. In Proceedings of the 1st
internationalconference on Embedded networked sensor
systems, pages 181–192. ACM Press, 2003.

[5] Consensus homepage: http://consensus.ctit.utwente.nl/.

[6] Samuel Madden. The Design and Evaluation of a
Query Processing Architecture for Sensor Networks. PhD
Thesis, UC Berkeley, 2003.

[7] Intel Lab Data, http://berkeley.intel-research.net/
labdata/.

[8] Omnet++ discrete event simulator,
http://www.omnetpp.org.

[9] B. K. G. Lu and C. Raghavendra. An adaptive energy-
efficient and low-latency mac for data gathering in sensor
networks. In In Proceedings of 4th International Workshop
on Algorithms for Wireless, Mobile, Ad Hoc and Sensor
Networks(WMAN 04), 2004.

[10] EYES homepage: http://www.eyes.eu.org.

Figure 7. Effect of number of children on message
transmissions

