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Abstract. We consider the online scheduling problem of parallel jobs on
parallel machines, P |online − list, mj |Cmax. For this problem we present
a 6.6623-competitive algorithm. This improves the best known 7- com-
petitive algorithm for this problem. The presented algorithm also applies
to the special case where machines are ordered on a line and only ad-
jacent machines can be assigned to a job and, therefore, also to online
orthogonal strip packing. Since previous results for online orthogonal
strip packing assume bounded rectangles, the presented algorithm is the
first with a constant competitive ratio.

1 Introduction

Consider the following online machine scheduling problem. Jobs j = 1, 2, ..., n
are presented one by one to the decision maker and are characterized by their
processing time and the number of machines simultaneously required for process-
ing. Job j has processing time pj and requires simultaneously mj out of the
available m machines. As soon as a job becomes known, it has to be scheduled
irrevocably (i.e. its start time has to be set) without knowledge of successive
jobs. Preemption is not allowed and the objective is to minimize the makespan.

Using the three-field notation introduced in [2], this problem is denoted by
P |online − list, mj |Cmax, see also [5,6]. Note that sometimes sizej is used instead
of mj to denote the parallel machine requirement of job j.

The quality of an online algorithm is measured by its competitive ratio. An
online algorithm is called ρ-competitive if for any sequence of jobs it produces a
schedule with makespan at most ρ times the makespan of the optimal schedule.
For background on online scheduling see [6].

The problem P |online − list, mj |Cmax gained considerable attention in the
last few years. It was pointed out by Johannes [5] that a greedy algorithm which
schedules the jobs as early as possible, has a competitive ratio of m. She was
also the first to design an online algorithm with a constant competitive ratio,
which has a competitive ratio of 12. This result was successively improved by
Ye and Zhang, first to an 8 and later to a 7-competitive algorithm [7,8]. For
the special case with only 2 machines an greedy algorithm is optimal [4], i.e.
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no online algorithm for P2|online − list, mj |Cmax with competitive ratio strictly
less than 2 exists.

Far less is known about lower bounds for the general m machine case. In [4]
an ILP formulation is presented to derive lower bounds, and by means of an ILP
solver a lower bound of 2.43 is derived. The best analytical lower bound is the
bound of 2 from the two machine case.

In the literature also semi-online cases have been studied, e.g. jobs appear
with non-increasing processing times, jobs appear with non-increasing machine
requirement or the largest processing time is known. For these semi-online prob-
lems the gap between the lower and the upper bound on the competitive ratio
is much smaller, see [7,8]. Variations on the scheduling model, where jobs are
malleable or preemption is allowed, or with different online paradigms such as
non-clairvoyance and online-time, are also considered in the literature. For an
overview of these various models see [5,6,8].

The problem P |online − list, mj |Cmax resembles online orthogonal strip pack-
ing. The difference lies in the following. In the scheduling problem any choice of
mj machines for processing job j is allowed, where in strip packing rectangles
cannot be split. If the machines were to be ordered on a line and job j requires
mj adjacent machines for its processing, the problems become the same. As it
turns out, the analysis of the online algorithm presented in this paper also hold
in the presence of such a machine ordering and adjacency requirement. There-
fore, the presented online algorithm applies to online orthogonal strip packing
as well. Till now, the performance ratio of the best online algorithm for online
orthogonal strip packing is 6.99, which is due to Baker and Schwarz [1]. It is
worthwhile to mention, that the existing bounds for orthogonal strip packing
are attained under the assumption that the rectangles have height at most 1.
Analogous, the processing time of the jobs is bounded by 1. To the best of our
knowledge, the presented algorithm is the first online algorithm with constant
competitive ratio for orthogonal strip packing without knowledge of the overall
maximum processing time of a job.

The presented approach in this paper leads to a new online algorithm for
P |online − list, mj |Cmax. The algorithm takes two parameters, one parameter
defines the borderline between big jobs (jobs with large mj) and small jobs,
and the second parameter defines classes of processing times. Small jobs with
processing times of the same class get scheduled in parallel. A proper choice of
the two parameters leads to an online algorithm that has a competitive ratio of
at most 7

2 +
√

10(≈ 6.6623).
In Section 2, we present the online algorithm and prove that it has a com-

petitive ratio of at most 6.6623. In Section 3, we show that the algorithm also
applies to the online orthogonal strip packing problem.

2 The Online Algorithm

Before we present the algorithm and the proof of its competitive ratio, we intro-
duce some notation and basic results.



Online Algorithm for Parallel Job Scheduling and Strip Packing 69

Given a sequence of jobs σ = (1, 2, ..., n) we can derive two lower bounds on
the makespan of the optimal offline schedule, denoted by OPT (σ). On the one
hand, the optimal makespan is bounded by the length of the longest job in σ,
i.e. OPT (σ) ≥ maxn

j=1{pj}. On the other hand, if the work load of a job j is
given by mj · pj , then the total work load divided by m is a lower bound on
OPT (σ), i.e. OPT (σ) ≥ 1

m

∑n
j=1 mj · pj .

Let S(σ) be the schedule created by an online algorithm and denote its
makespan by ON(σ). For a collection of disjoint intervals X from [0, ON(σ)],
we denote by |X | the cumulative length of the intervals in X .

The next lemma follows directly from the above presented lower bounds on
OPT (σ).

Lemma 1. If [0, ON(σ)] can be partitioned in X and Y such that |X | ≤ x ·
maxn

j=1{pj} and |Y | ≤ y · 1
m

∑n
j=1 mj · pj, then ON(σ) ≤ (x + y) · OPT (σ).

In the following, we design an online algorithm for P |online − list, mj|Cmax such
that the constructed schedules can be partitioned in X and Y as in Lemma 1
such that x+y is small. To do this, we distinguish between two types of jobs; jobs
with a large machine requirement and jobs that require only a few machines for
processing. A job j is called big if it has machine requirement mj ≥ �α ·m� with
α ∈ (0, 1

2 ], and called small otherwise. This is a generalization of the distinction
between big and small jobs found in [5,7,8], where α is a priori fixed to either
1
2 or 1

3 . Furthermore, the small jobs are classified according to their length. A
small job j belongs to job class Jk if βk ≤ pj < βk+1, where β > 1 is the second
parameter of the algorithm. Note that k may be negative. Similar classifications
can be found in Shelf Algorithms for Strip Packing [1], which are applied to
group rectangles of similar height. The online algorithm to be described in the
following, takes α and β as parameters and is denoted by ONα,β .

In the schedules created by the online algorithm ONα,β , big jobs are never
scheduled in parallel to other jobs, and (where possible) small jobs are put in
parallel to other small jobs of the same job class. The intuition behind the online
algorithm ONα,β is the following. Big jobs have a relative high average load and
small jobs are either grouped together to a high average load or there is a small
job with a relative long processing time. In the proof of Theorem 1, the intervals
with many small jobs, together with the intervals with big jobs will be compared
to the work load bound for OPT (σ) (the Y part for Lemma 1), and the intervals
with only a few small jobs are compared to the longest job bound for OPT (σ)
(the X part for Lemma 1).

The following gives a precise description of the algorithm ONα,β . The algo-
rithm creates schedules with sparse intervals Sk and dense intervals Di

k for the
small jobs of class Jk. With nk we count the number of dense intervals created
for Jk. All small job scheduled in such an interval [a, b) start at a. As a conse-
quence, job j fits in interval [a, b) if the machine requirement of the jobs already
in [a, b) plus mj is at most m.
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Algorithm ONα,β:
When scheduling job j and

1. job j is small, i.e. mj < �α ·m�, and belongs to job class Jk. Try in the given
order:
– Schedule job j in the first Di

k where it fits.
– Schedule job j in Sk.
– Let nk := nk + 1 and Sk becomes Dnk

k . Create a new interval Sk at the
end of the current schedule with length βk+1. Schedule job j in Sk.

2. job j is big, i.e. mj ≥ �α · m�. Schedule job j at the end of the current
schedule.

The structure of the schedule created by ONα,β is illustrated by Fig. 1. Note
that at any time for each job class Jk there is at most one sparse interval Sk.

a big job

βk βk

small jobs with another big job

βk+1 βk+1

Dnk
k Sk

m
m

ac
hi

ne
s

length in [βk, βk+1)

Fig. 1. Part of a schedule created by ONα,β

In the proof of Theorem 1 we will use the fact that the dense intervals Di
k

contain quite some load, i.e. there is a small job from job class Jk that did not
fit in the dense intervals and had to be scheduled in a newly created sparse
interval. When considering the length of the dense intervals, we take the load
of both the dense and sparse intervals into account. Lemma 2 formalizes this.
Slightly abusing notation, we will also refer to Sk and Di

k as the set of jobs that
are scheduled in intervals Sk and Di

k.

Lemma 2. For any α ∈ (0, 1
2 ] and β > 1, the total work load in the dense

and sparse intervals of schedule S(σ) created by ONα,β, is at least 2m
3β times the

length of all dense intervals.
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Proof. Let σ be an arbitrary list of jobs and let S(σ) be the corresponding
schedule constructed by the online algorithm ONα,β . Consider all dense intervals
in S(σ) corresponding to one job class Jk. Since all jobs in Di

k are scheduled to
start at the beginning of interval Di

k and have a processing time of at least βk,
the interval Di

k has
∑

j∈Di
k
mj machines in use for at least the first 1

β fraction
of Di

k. If α ≤ 1
3 this number of machines in use is larger than 2m

3 , and we are
done. If α ∈ (1

3 , 1
2 ], we claim that for each job class Jk this number of machine

in use is for at most one dense interval less than 2m
3 .

Let α ∈ (1
3 , 1

2 ] and let Dl
k be the first dense interval of job class Jk for which∑

j∈Di
k
mj < 2m

3 . After the creation of this dense interval, all newly created
dense intervals for job class Jk, contain only small jobs with machine requirement
mj > m

3 (otherwise these jobs would have been scheduled in Dl
k or in an earlier

dense interval). This implies that all successively created dense intervals for job
class Jk have at least 2m

3 machines in use. More precisely, they contain two
small jobs with machine requirement mj > m

3 . Furthermore, the existence of Dl
k

implies that Sk contains at least one job with machine requirement mj > m
3 .

So, for each job class Jk there is either one Dl
k with machine usage less than

2m
3 and Sk contains a job with mj > m

3 , or all Di
k have machine usage of at least

2m
3 . Thus, the total load of the small jobs in job class Jk is at least 2m

3β times
the total length of all dense intervals corresponding to this job class. 	


Next we will prove the upper bound on the performance guarantee of the online
algorithm ONα,β .

Theorem 1. For any α ∈ (0, 1
2 ] and β > 1 the competitive ratio of the online al-

gorithm ONα,β for the problem P |online − list, mj|Cmax is at most max{ 1
α , 3β

2 }+
β2

β−1 .

Proof. Let σ be an arbitrary list of jobs and let S(σ) be the corresponding
schedule constructed by the online algorithm ONα,β . We partition [0, ONα,β(σ)]
into three parts: The first part B consists of the intervals in which big jobs are
scheduled, the second part D consists of the dense intervals, and finally the third
part S contains the sparse intervals.

Since part B contains only jobs with machine requirement mj ≥ �α · m�, the
total work load in B is at least α ·m · |B|. According to Lemma 2, the total work
load in D and S is at least 2m

3β · |D|. This work load is also in the optimal offline
schedule. Therefore, min{α · m, 2m

3β } · (|B| + |D|) ≤ m · OPT (σ), or equivalently

|B| + |D| ≤ max{ 1
α

,
3β

2
} · OPT (σ) . (1)

To simplify the arguments for bounding |S|, we normalize the jobs in S(σ)
by letting J0 be the smallest job class, i.e. the smallest processing time of the
small jobs is between 1 and β. Then |Sk| = βk+1. Let k̄ be the largest k for which
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there is a sparse interval in S(σ). Since there is at most one sparse interval for
each job class Jk, the length of S is bounded by

|S| ≤
k̄∑

k=0

|Sk| =
k̄∑

k=0

βk+1 =
βk̄+2 − β

β − 1
.

On the other hand, since Sk̄ is not empty, we know that there is a job in S(σ)
with processing time at least |Sk̄|

β = βk̄. Thus,

|S| ≤ β2

β − 1
· OPT (σ) . (2)

Using Lemma 1, (1) and (2) lead to the following bound on the makespan of
the schedule created by online algorithm ONα,β :

ONα,β(σ) ≤
(

max{ 1
α

,
3β

2
} +

β2

β − 1

)

· OPT (σ) .

Thus, ONα,β has a competitive ratio of at most max{ 1
α , 3β

2 } + β2

β−1 . 	


To find the best possible performance bound of ONα,β , we have to find values
of α and β which minimize the competitive ratio from Theorem 1.

Corollary 1. The worst case bound for ONα,β is minimal if α ≥ 10
3(5+

√
10)

(≈
0.4084) and β = 1+

√
10
5 (≈ 1.6325), leading to a competitive ratio of 7

2 +
√

10 (≈
6.6623).

Proof. If 1
α > 3β

2 then by increasing the value of α, the value of max{ 1
α , 3β

2 } can
be decreased. Therefore, it is best to choose 1

α ≤ 3β
2 . The competitive ratio then

becomes 3β
2 + β2

β−1 . The optimal value for β can be found by differentiating this
term. 	


It is interesting to note that there is not just one setting of α and β that gives
the best performance guarantee, but for β = 1.6325 all α ∈ [0.4084, 0.5] result
in 6.6623-competitiveness of ONα,β .

3 Machines on a Line and Orthogonal Strip Packing

The presented online algorithm also applies to scheduling problems where the
machines are ordered on a line and only adjacent machines can be assigned to a
specific job. To let the presented algorithm apply to this case, we simply specify
that whenever a job j is assigned to some interval, it is scheduled not only at the
start of the interval, but also assigned to the first mj machines available (first
with respect to the line ordering of the machines). This way we can guarantee
that each job j gets assigned to mj adjacent machines and the algorithm still
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gives the same schedule as before. To the best of our knowledge the presented
online algorithm is the first with constant competitive ratio for this problem.
For previous developed online algorithms for P |online − list, mj |Cmax no such
adaptation makes them applicable to this special case.

Since the presented online algorithm also applies to this special case, it ap-
plies to the online orthogonal strip packing problem. The online orthogonal strip
packing problem is a two-dimensional packing problem. Without rotation rec-
tangles have to be packed on a strip with fixed width and unbounded height. The
objective is to minimize the height of the strip used. In the online setting one
rectangle is presented after the other and has to be assigned without knowledge
of successive rectangles.

To see that these problems are equivalent, let the machines correspond to the
width of the strip, and time to the height of the strip. The width of a rectangle j
corresponds to the machine requirement of job j and its height to the processing
time. Minimizing the height of the strip used is equivalent to minimizing the
makespan of the machine scheduling problem.

Although most of the research on online orthogonal strip packing focuses on
asymptotic performance ratios, Baker and Schwarz [1] developed a Shelf Algo-
rithm that has competitive ratio 6.99 under the assumption that the height of a
rectangle is at most 1. So, the presented algorithm not only improves the best
known competitive ratio for online orthogonal strip packing, but also does not
require the assumption on the bounded height.

4 Conclusions

In this paper we presented a new online algorithm for P |online − list, mj |Cmax
with a competitive ratio of 6.6623. Due to the optimization of the parameters
of ONα,β a better online algorithm can only be found by employing new ideas,
both in the design and analysis. There is room for improvement since the gap
with the best lower bound (2.43) is large.

The presented algorithm also applies to the problem where the machines are
ordered on a line and to online orthogonal strip packing. It is an interesting open
question whether or not the additional requirement of a line ordering will lead
to a different competitive ratio of the problem.

Note
In the independent work of Han et al. [3] the same results where obtained in the
setting of online orthogonal strip packing.
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