
 

 

 

  
Abstract—This paper studies probabilistic reachability 

analysis for large scale stochastic hybrid systems (SHS) as a 

problem of rare event estimation. In literature, advanced rare 

event estimation theory has recently been embedded within a 

stochastic analysis framework, and this has led to significant 

novel results in rare event estimation for a diffusion process 

using sequential MC simulation. This paper presents this rare 

event estimation theory directly in terms of probabilistic 

reachability analysis of an SHS, and develops novel theory 

which allows to extend the novel results for application to a 

large scale SHS where a very huge number of rare discrete 

modes may contribute significantly to the reach probability. 

Essentially, the approach taken is to introduce an aggregation 

of the discrete modes, and to develop importance sampling 

relative to the rare switching between the aggregation modes. 

The practical working of this approach is demonstrated for the 

safety verification of an advanced air traffic control example.   

Index Terms— Air transportation, Collision processes, 

Monte Carlo methods, Risk analysis, Safety, Sequential 

estimation, Stochastic systems 

I. INTRODUCTION 

HIS study is motivated by the problem of safety 

verification of a future air traffic concept of operation 

through the analysis of reach probabilities. From a control 

theoretic perspective such an advanced concept of 

operations is a blueprint of a controlled Stochastic Hybrid 

System (SHS). Recently, Sastry and co-workers [1]-[2] 

studied the optimization of the control policy of a discrete-

time SHS, such that the probability of staying within some 

prescribed safe set remains above some prescribed 

minimum level. [1] developed a theoretical framework 

which expressed the reach probability as a multiplicative 

function, and this was used to develop a dynamic 

programming based approach to compute probabilistic 

maximal safe sets, i.e. initial states of a system for which 

control policies exists that assure the reach probability to 

stay below some given value. [2] showed this problem to be 

complementary to the problem of how to optimize the 

control policy of an SHS such that the reach probability of 
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 some prescribed unsafe set remains below some given 

maximum level, and that the same dynamic programming 

based computation of maximal safe sets can be used. The 

dynamic programming approach becomes computationally 

intractable when the SHS considered is of large scale type. 

Prandini and Hu [3] developed a Markov chain 

approximation based method for the computation of reach 

probabilities for a continuous time SHS. This way the 

dynamic programming challenge was avoided, however the 

computational load of their method prohibits application to 

a large scale SHS.  

In theory, reach probability estimation can be done by 

simulating many trajectories of the process considered, and 

to count the fraction of cases where the simulated trajectory 

reaches the unsafe set within some given period T. When 

the reach probability value is very small then the number of 

straightforward MC simulations needed is impractically 

large. Rare event estimation literature forms a potentially 

rich source of information for speeding up MC simulation 

through combining methods from large deviation and 

importance sampling theories, e.g. [4], [29]. An early 

successful development in this area is sequential MC 

simulation for the estimation of the intensity of radiation 

that penetrates a shield of absorbing material in nuclear 

physics, e.g. [5]. More recently this approach has also 

found application in non-nominal delay time and loss 

estimation in telecommunication networks, e.g. [6]. 

L’Ecuyer at al. [7] provide a very good recent overview of 

these sequential MC simulation developments.  

In order to exploit rare event estimation theory within 

probabilistic reachability analysis of controlled SHS, we are 

in need of establishing a theoretically unambiguous 

connection between the two concepts. Implicitly, this 

connection has recently been elaborated by Del Moral and 

co-workers [8]-[11]. They embedded theoretical physics 

equations, which supported the development of advanced 

MC simulations, within the stochastic analysis setting that is 

typically used for probabilistic reachability analysis. They 

subsequently showed that this embedding provides a  

powerful background for the development and analysis of 

sequential MC simulation for rare event simulation.  

The aim of this paper is to present a part of the 

framework developed by Del Moral et al. [8]-[11] in a 
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probabilistic reachability setting, to further develop this   

for a large scale SHS, and to demonstrate its practical use 

for safety verification of an advanced air traffic operation. 

In [12]-[13], the practical use of the approach of Del Moral 

[8]-[11] for safety verification of an advanced air traffic 

operation has already been demonstrated for some specific 

scenarios. In these scenarios, the main contributions to the 

reach probability value came from diffusion behavior. It 

also became clear that the same sequential MC simulation 

approach failed to work for scenarios of the same air traffic 

operation where the reach probability is determined by rare 

switching between modes. This paper is aimed to handle 

such more demanding rare event estimation problems for 

large scale controlled SHS. Essentially the approach is to 

introduce an aggregation of the discrete mode process, and 

to develop importance sampling approaches for the large 

scale SHS which work relative to the switching between the 

aggregated modes.   

The paper is organized as follows. Section II develops a 

factorization of the reach probability. Section III explains 

the approach of [8]-[11]. Section IV develops the 

aggregation mode process and characterizes key relations 

with the controlled SHS. Section V develops a novel 

sequential MC simulation approach for estimating reach 

probabilities. Section VI applies this approach towards 

estimating reach probabilities for an air traffic scenario for 

which the approach of [8]-[11] falls short.  

II. FACTORIZATION OF REACH PROBABILITY 

Throughout this and the following sections, all stochastic 

processes are defined on a complete stochastic basis (Ω, F, 

IF, P, T) with (Ω, F, P) a complete probability space, and IF  

an increasing sequence of sub-σ-algebra’s on the positive 

time line T=IR+, i.e. IF { }FFJ (, ),T∈
∆

,tt , J containing all 

P-null sets of F and FFFJ ⊂⊂⊂ ts  for every s < t. 

Let us denote 
nE′ = ×R M , with M  a discrete set. 

Let ε ′  be the Borel σ − algebra of E′ . We consider a 

time-homogeneous strong Markov process which also is a 

generalised stochastic hybrid process { }t tx θ,  [16], [19]-

[21], with{ }tx assuming values in 
n
R  and { }tθ  assuming 

values inM . The first component of { }tx equals t  and the 

other components of { }tx form an 
1n−

R  valued cadlag 

process { }ts . The problem considered is to estimate the 

probability that { }ts  hits a given “small” closed subset 

1nD −⊂ R  within a given time period [0, )T , i.e. 

( [0, );  )tP t T s D∃ ∈ ∈ . 

Following Del Moral and co-workers [8]-[11], this 

probability can be characterized in the form of a 

multiplicative function the terms of which are defined 

through an arbitrarily assumed nested sequence of closed 

subsets
1 1m mD D D … D−= ⊂ ⊂ ⊂ , with the constraint 

that 0 1( ) 0P s D∈ = . In order to derive a multiplicative 

functional characterization of the hitting probability, we set 

0 0τ =  and define ,  1,.., ,k k mτ =  as the first moment 

that { }ts hits subset k, i.e. 

inf{ 0;  s }k t kt Dτ = > ∈  (1) 

which implies ( [0, );  ) ( )t m mP t T s D P Tτ∃ ∈ ∈ = < . 

We also define {0,1}-valued random variables 

{ , 0,.., }k k mχ = as follows:  

if or

else.

1,       0

    0,   

k k T kχ τ= < =

=
 

By using these kτ and kχ definitions and the fact that 

each component of { }ts that may hit any ,  1,..,kD k m= , 

has continuous paths, we can write the probability of 

{ }ts hitting D  before T  as a product of conditional 

probabilities of reaching 
kD  given 

1kD −  has been reached 

at some earlier moment in time, i.e. 

1

1 1

1

1 1

( ) [ ] [ ] [ 1]

                ( )

m m

m m k k k

k k

m m

k k k

k k

P T

P T T

τ χ χ χ χ

τ τ γ

−
= =

−
= =

< = = = =

= < < =

∏ ∏

∏ ∏

E E E

 
(2) 

with 
1

( )
k k k

P T Tγ τ τ −< <≜  

With this, the problem can be seen as one to estimate the 

conditional probabilities kγ  in such a way that the product 

of the estimators 
kγɶ  is unbiased. Because of the 

multiplication of the various individual kγɶ  estimators, 

which depend on each other, in general such a product may 

be heavily biased. Garvels et al. [17]-[18] was the first to 

show that for a discrete-time Markov process this approach 

guarantees unbiased estimation. The key novelty of [8]-[11] 

was to develop a sequential MC simulation approach for the 

estimation of the
kγ ’s in (2), which guarantees unbiased 

estimation of ( )mP Tτ <  under the condition that { }ts is 

(or is embedded in) a strong Markov process.  

III. SEQUENTIAL MC SIMULATION 

For the process { }t tx θ,  we follow the approach of [8]-
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[11] to characterize how the evolution proceeds from 

1k Tτ − ∧ to 
k Tτ ∧ . For any B ε∈ ′ , let 

'
( 1)

k k
p Bξ χ| |  

denote the conditional probability of 

( , )
k kk T Tx Bτ τξ θ∧ ∧= ∈  given 

' 1.kχ =  Under the 

assumption that 
0 1( ) 0P s D∈ = , we characterize the 

following recursive sequence of transformations  

 
prediction conditioning

1 1 1
(. 1) (. 1) (. 1)

             

          

k k k k k k

k

p p pξ χ ξ χ ξ χ

γ

− − −| | || → | → |

↓

 

Because { }t tx θ,  is a strong Markov process, { }kξ  is a 

Markov sequence. Hence the prediction step satisfies a 

Chapman-Kolmogorov equation:  

1 1 1 1
( 1) ( ) ( 1)

k k k k k kE
p B p B p dξ χ ξ ξ ξ χξ ξ

− − − −| | |′
| = | |∫        (3) 

Next we characterize the conditional probability of reaching 

the next subset: 

1

1 1

1 (4)

( ) ( 1 1)

[ 1] 1 ( ) ( 1),      
k kk

k k k k k

k k QE

P T T P

p dξ χ

γ τ τ χ χ

χ χ ξ ξ
−

− −

− |′

= < | < = = | = =

= | = = |∫E

where (0 )k kQ T D, × ×≜ M . 

Similarly, the condition step satisfies, for any B ε∈ ′ : 

1

1

(5)
1 ( ) ( 1)

( 1) .              
1 ( ') ( ' 1)

k kk

k k

k kk

QB

QE

p d
p B

p d

ξ χ

ξ χ

ξ χ

ξ ξ

ξ ξ
−

−

|

|

|′

|
| =

|

∫
∫

With this, the kγ ’s in (2) are characterized as a solution of 

the set of recursive equations (3)-(5). Following [8]-[11], 

this recursive characterization can numerically be 

approximated through a sequential MC simulation to 

estimate ( )mP Tτ < . This is referred to as the IPS 

(Interacting Particle System) algorithm, and works as 

follows. 

Simulate pN  random trajectories of { }t tx θ,  over 

[0, )T , each of which starts from a random initial 

condition 0 0((0, ) )s θ, , with 0 1s D∉ . Each simulated 

trajectory stops at 1 Tτ ∧ , i.e. upon hitting 1Q  or when the 

first x -component reaches T . The full hybrid states of 

these trajectory end points form an empirical density 
1πɶ  as 

an approximation of 
1 1

(. 1)pξ χ| | . This empirical density is 

used to generate (i.e. to resample) pN  initial conditions of 

trajectories which are subsequently simulated until hitting 

2Q  or when the first x -component reaches T ; the end 

points in 2Q  form an empirical density 2πɶ  as an 

approximation of 
2 2

(. 1)pξ χ| | .  This cycle repeats from 2Q  

to 
3Q  , …, and finally from 

1mQ −  to 
mQ Q= . During the 

k -th cycle, a fraction ɶ kγ  of the pN  simulated trajectories 

arrives at kQ . The product of these m  fractions forms an 

estimator for ( )mP Tτ < .  

Using the recursive characterization of the conditional 

density, [8],[10] have also shown that the product of these 

fractions kγɶ  forms an unbiased estimate of the probability 

of { }ts  to hit the set D  within the time period [0, )T , i.e. 

1 1
[ ] ( )

m m

k kk k
P Tγ τγ

= =
= = <∏ ∏ɶE  

In addition there is a bound on the 
1L  estimation error, i.e.: 

1 1
( )

m m p

k kk k

p

c

N
γ γ

= =
− ≤ ,∏ ∏ɶE  

with pc a finite constant which depends on the simulated 

scenario and the sequence of nested subsets adopted. [30] 

develops some complementary error bounds. 

Application of this IPS algorithm to air traffic operation 

may work well for specific scenarios where rare discrete 

modes are not significantly contributing to the reach 

probability [12]-[13]. However, there also are relevant 

scenarios which do not satisfy the latter condition. In the 

next section we develop theory to handle such cases.   

IV. AGGREGATION OF MODES 

In [14]-[16], hybrid versions of the baseline IPS 

algorithm [8]-[11] have been developed, which take into 

account that rare discrete modes may contribute 

significantly to the reach probability to be estimated. In 

[14], the hybrid IPS version simulates another, more 

frequent switching, M -valued process { }tθ
⌣

 and 

compensates importance weights for the difference between 

{ }tθ
⌣

 and { }tθ . In [15], the hybrid IPS version uses exact 

probabilistic equations for the evolution of { }tθ rather than 

performing simulations. Both hybrid IPS versions resample 

at the end of each IPS cycle pN  x -values from (., )
k

π θɶ  

for each mode θ ∈M , leading to a total of | |pN × M  

particles, where | |M  is the number of elements in M . 

When | |M  is very large, then these hybrid IPS approaches 

are computationally intractable.  
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The idea is to improve the situation for very large | |M  

through application of the hybrid IPS approaches not 

to{ }tθ but to a K -valued process { }tκ  with | | | |≪K M . 

In order to accomplish this, we introduce a 

partition  { ,  }κ κ ∈M K , such that κ
κ∈

=∪
K

M M  and 

' {}κ κ =∩M M  for ',κ κ≠  and define a K -valued 

aggregation mode process { }t
κ as follows:  

( )tκ ω κ=  ,  if ( ) .t κθ ω ∈M                            (6) 

Because the evolution of the aggregation mode process 

{ }t
κ  depends of the evolution of { }t

θ , { }t
κ  may inherit 

rare mode switching from { }t
θ . In order to avoid these 

rare effects in the evolution of particles, we also define a 

K -valued Markov chain { }t
κ⌣ with known non-rare 

transition rates, and use the transition rates of { }t
κ⌣  to 

determine for each particle a new κ
⌣

-value at some time 

step h  later. The particle weight is compensated with the 

corresponding importance switching ratio 

,
( , ) / ( )

hh x
p x p

τττττ τκ κ κθκ
κ κ θ κ κ

++
|| ,

| , |⌣ ⌣
⌣ ⌣

, where , ,xκ θ  

denote the given ( , , )xτ τ τκ θ  particle value, and κ
⌣

 

denotes the value newly sampled for hτκ +

⌣
.  

Next, the prediction of the new hτθ +  particle from the 

( , )xτ τθ  particle values is done conditional on the newly 

sampled κ
⌣

 value. Theorem 1 provides a probabilistic 

characterization of such κ
⌣

-conditional θ -prediction. 

 

Theorem 1  (κ
⌣

-conditional θ -prediction) 

Let τ  be an arbitrary stopping time, then 

'

1 ( ) ( )
( )

1 ( ') ( ' )

h

h h

h

x

x

x

p x
p x

p x

κ τ τ τ

τ τ τ τ

κ τ τ τ

θ θ
θ θ κ

θ θ
η

η η θ
η θ κ

η η θ
+

+ +

+

| ,
| , ,

| ,
∈

| ,
| , , =

| ,∑
⌣

⌣

⌣ M

M

M

                      (7) 

Proof: Using Bayes yields:  

( )
h hx

p x
τ τ τ τθ θ κ η θ κ

+ +| , , | , , =
⌣

             

      

'

( ) ( )

( ') ( ' )

h h h

h h h

x

x

p p x

p p x

τ τ τ τ τ

τ τ τ τ τ

κ θ θ θ

κ θ θ θη

κ η η θ

κ η η θ
+ + +

+ + +

| | ,

| | ,∈

| | ,

| | ,∑

⌣

⌣
M

 

Substituting ( ) 1 ( )
h h

p
τ τ κκ θ κ η η

+ +| | = ⌣

⌣
M

 yields (13).  

                       Q.E.D. 

The prediction of the x-part of the particle over time step h 

is done by drawing a sample from (. ).
h hx x

p x
τ τ τ τθ θ θ η

+ +| , , | , ,  

In order to identify all particles that arrive at 
kQ  before 

time T, the prediction over time step h has to be done up to 

T/h times. After these prediction steps, there is no guarantee 

that for each κ ∈
⌣
K  some minimum number of particles 

have arrived at 
kQ . Hence we resample the 

kQ -arrived 

particles such that we regain pN  particles for each 

κ ∈K . In order to make this possible, in Theorem 2 we  

provide a characterization of the (conditional) probabilities 

h
p

τκ +
and 

hx
p

τ τ τθ κ +, | as a function of 
x

p
τ τθ, , for arbitrary 

stopping time τ  and time step h.  This characterization 

allows to sample a fixed number of particles per 

aggregation mode κ ∈K , and to sample for each particle 

a novel θ  value conditional on the aggregation mode value. 

  

Theorem 2 (Hierarchical interaction)  

If  ( ) 0
h

p
τκ κ

+
>  for arbitrary stopping time τ , then  

(8)

( ) ( ).

          . ( ) / ( )   

h h

h

x x

x

p dx p x

p dx p

τ τ τ τ τ τ

κ

τ τ τ

θ κ θ θ
η

θ κ

θ κ η θ

θ κ

+ +

+

, | | ,
∈

,

, | = | ,

,

∑
M

 

(9)

( )  ( ).

                               . ( )          

h h

n

x

x

p p x

p dx

τ τ τ τ

κ

τ τ

κ θ θ
θ η

θ

κ η θ

θ

+ + | ,
∈ ∈

,

= | ,

,

∑ ∑∫
M MR

 

Proof: 

By definition of the partitioning  { ,  }κ κ ∈M K  we have 

, ,
( , ) ( , )

h hx x
p dx p dx

τ τ τ τ τ τ

κ

κ θ θ θ
η

κ θ η θ
+ +, ,

∈

, = ,∑
M

 

             ( ) ( )
h x x

p x p dx
τ τ τ τ τ

κ

θ θ θ
η

η θ θ
+ | , ,

∈

= | , ,∑
M

 

Dividing left and right hand sides by ( )
h

p
τκ κ

+
 yields (8). 

From the law of total probability we have: 

( ) , ( , )
h x

h

p

n

p dx
τκ κ θ

τ τ τ
θ

κ η θ
+ ,

+
∈

= ,∑ ∫
MR

 

Substitution of the latter in the former yields (9).  Q.E.D. 

 

In order to see what Theorem 2 means for the empirical 

kind of densities that will be used, we assume (.)xp
τ τθ,  

equals an empirical density: 

( )
1

( ) ( )i i

N
i

x x
i

p dx dx

κ

κ κ
τ τ

κ
θ θ

κ

θ δ θω , ,
,

, ,
∈ =

, = ,∑∑
K

           (10) 

with 1{ }i i i N

ix
κκ κ κθ ω κ, , ,

=, , , ∈ ,K  a given set of particles. 

Substituting (10) into (8) and evaluation yields: 
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( ) ( ).
h hx x

p dx p x
τ τ τ τ τ τ

κ

θ κ θ θ
η

θ κ η θ
+ +, | | ,

∈

, | = | ,∑
M

    

   

'

' '

'

( )
1

( ) / ( )i i
h

N
i

x
i

dx p

κ

κ κ
τ

κ
κθ

κ

δ θ κω , ,
+

,
,

′∈ =

⋅ ,∑∑
K

 

'

, ,

1

( ).
h

N
i i

x

i

p x

κ

τ τ τ

κ

κ κ
θ θ

κ η

η θ
+

′ ′
| ,

′∈ = ∈

= | ,∑∑∑
K M

       

     ' '

'

( )
( ) / ( )i i

h

i

x
dx pκ κ

τ

κ
κθ

δ θ κω , ,
+

,
,

⋅ ,      (11) 

Similarly, substituting (10) into (9) yields 
'

, , '

1

( ) ( )
h h

N
i i i

x

i

p p x

κ

τ τ τ τ

κ

κ κ κ
κ θ θ

κ η

κ η θ ω
+ +

′ ′ ,
| ,

′∈ = ∈

= | ,∑∑∑
K M

 

                              (12) 

The idea is to use equation (11) for resampling 
pN  

particles from 
,

(. )
hk k k

x
p

τ τ τθ κ κ
+| |  for each κ -value once at 

the beginning of a prediction cycle from 
kτ to 

1kτ + . 

Equation (12) is used to compensate each particle weight 

for this resampling.  

V. HIERARCHICAL HYBRID IPS ALGORITHM 

Similar as in the IPS algorithm for an SHS [12-13], a 

particle is defined as a triplet ( )x θ ω, , , [0 1]ω ∈ , , 

n
x ∈R  and θ ∈M . Numerical approximations ɶ kγ   and 

�
kπ  are used for kγ  and (. 1)

k k
pξ χ| |  respectively. When 

simulating from 
1k Tτ − ∧  to 

k Tτ ∧ , a fraction ɶ kγ  of the 

Monte Carlo simulated trajectories only will reach kQ . The 

Hierarchical Hybrid Interacting Particle System (HHIPS) 

algorithm estimates these fractions and their product in a 

recursive way, using the following steps: 

Step 0 generates per κ -value pN initial particles at 

0k = , and then starts the cycling through steps 1 through 

3 for : 1,2,...k m= .  

Step 1 extrapolates each particle from 1k Tτ − ∧  to  

k Tτ ∧  in time steps of length h, using importance 

switching for the new κ -value and κ -conditional 

sampling of a new θ  value. For the latter use is made of the  

κ -conditional θ -prediction characterization in Theorem 1. 

Step 2 evaluates the particles that have arrived at kQ . 

For this, use is made of equations (4)-(5).  

Step 3 resamples from the particles that have arrived at 

kQ . In order to draw pN  samples per κ -value, use is 

made of the hierarchical interaction characterization in 

Theorem 2. 

Each of these steps is specified in detail below.  

 

Hierarchical Hybrid Interacting Particle System 

(HHIPS) Step 0: Initial sampling for 0k = .  

• At time 0t =  we start with a set of : pN N
κ =  

particles for each aggregation mode κ ∈K : 

1{ } pNi i i

ix
κ κ κθ ω κ, , ,

=, , , ∈ ,K  where the particles are 

obtained as follows. 

First 
iκθ ,
 are independently drawn from 

00
( )pθ κ

κ| ⋅ | . 

Then 
1

1{0} /i n
x D

κ , −∈ ×R  are independently drawn 

from 
0 0

( )i

x
p

κ
θ θ ,
| ⋅ |  with the first component of 

i
x

κ ,
 

equal to zero. The initial weights satisfy 

0
( )

1  
i

p

p

p
i … N

N

κκ
κ

ω κ, = , = , , , ∈ .K  

• With this we have 
0 1γ =ɶ  and 

00 , ( )
1

( , ) ( )i i

N
i

x x
i

p dx dx

κ

κ κ
κ

θ θ
κ

θ ω δ θ, ,

,

,
∈ =

= ,∑∑ɶ
K

 

• Choose a sufficiently large number J  of equal 

discretization steps of time length /h T J= , which 

allows to use a numerical integration time step h . 

• Choose an appropriate positive value for  1/ Jα < . 

 

HHIPS iteration cycle: For 1k … m= , ,  cycle over step 1 

(prediction), step 2 (assessment) and step 3 (resampling): 

 

HHIPS Step 1. Prediction:  

• Start with empty sets kS
κ

, ,κ ∈K  to store all particles 

that arrive at (0 )k kQ T D= , × ×M . 

• For 1j … J= , , , iterate over substeps 1.a, 1.b and 1.c.  

 

Substep 1.a  Sample hτκ +  using importance switching. 

If 1k >  and 1j = , then goto substep 1b, else for each 

κ ∈K  and 1i … N
κ= , , :  

• If 0iκω , =  then  :i iκ κω ω, ,=
⌣

 and :iκκ κ, =
⌣

; else, 

sample a 
iκκ , ∈

⌣
K  with probability α  for each of the 

values in K /{κ }, and  with probability 

1 ( 1)α− −K for the value κ , and correct  the 

corresponding weight according to this importance 

switching, i.e. 
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• The resulting sets of particles are 
'

' ' ' '

1{ } ' .l l l l N

lx
κκ κ κ κθ ω κ κ, , , ,

=, , , , ∈
⌣ ⌣

K  For each 

κ ∈K , collect from these particles those N
κ

 

particles for which 
' lκκ κ, =
⌣

, i.e. 

'

'

 
',

{ }
' 1

0

: 1 ( )
N

l

l

N

N

κ

κ

κ κ
κ

κ

κ
∈ =

≠

= ∑ ∑
⌣

K

.  

• For each κ ∈K , renumber the indices of these  

N
κ

particles such that the first index equals κ and the 

second index runs over {1,..., }N
κ . This yields for each 

κ ∈K  the following new set of 

particles
1{ }i i i N

ix
κκ κ κθ ω, , ,

=, ,  if 0N
κ ≠ , and an empty 

set {} if N 0.κ =  

 

Substep 1.b hτκ + -conditional prediction of ( , )h hxτ τθ+ + . 

For each κ ∈K , determine the new set of particles 

1{ }i i i N

ix
κκ κ κθ ω, , ,

=, ,  as follows: 

• For each , iκ  for which 0iκω , = , set 
, ,:i i

x x
κ κ=  and 

, ,:i iκ κθ θ= . Else, use Theorem 1 to sample a new 

value 
iκθ ,
 from:  

,

'

( , )

1 ( ) ( )
                

1 ( ') ( ' )

h h

h

h

i i

x

i i

x

i i

x

p x

p x

p x

τ ττ τ

κ τττ

κ τττ

κ κ
θ θ κ

κ κ
θ θ

κ κ
η θ θ

η κθ

η η θ

η η θ

+ +

+

+

, ,
| ,

, ,
| ,

, ,
| ,∈

| , =

| ,
=

| ,∑
M

MM

and a new value 
i

x
κ ,

 from 

( )
h h

i i i

xx
p dx x

τττ τ

κ κ κ
θ θ θθ

+ +

, , ,
| , ,

| , , . 

• The weights are not changed, i.e. 
, ,:i iκ κω ω= . 

 

Substep 1.c. Memorizing particles that arrived at 
k

Q :  

• If ( , )i i

k
x Q

κ κθ, , ∈  and 0iκω , ≠ , then a copy of the 

particle { }i i i
x

κ κ κθ ω, , ,, ,  is stored in the set 
kS
κ

. 

• Subsequently, we set : 0iκω , =  in the original particle. 

• If j J= , then step 1 is complete, hence go to step 2, 

else, repeat substeps 1a,b,c for  j := j+1. 

 

HHIPS Step 2.  Evaluate the 
k

Q arrived particles: 

• The particles which are memorized in kS
κ

, κ ∈K , 
provide an estimate of (. 1)

k k
pξ χ| | and kγ . 

• Renumbering the particles in kS
κ

 yields a set of 

particles 
1{ }i i i N

ix
κκ κ κθ ω, , ,

=, ,ɶ ɶɶ  with N
κ

the number of 

particles in kS
κ

. 

• Weighted fraction kγɶ  of the 
k

Q arrived particles: 

,

1

0

N
i

k k

i

N

κ

κ

κ

κ

γ γ ω
∈ =

≠

≈ = ∑ ∑ɶ ɶ
K

 

• If 0N
κ =  for all κ ∈K , then the algorithm stops 

with estimate (0 ) 0.hitP T, ≈  

• If  k = m, then stop HHIPS with the estimate 

1
(0 )

m

hit kk
P T γ

=
, ≈ ∏ ɶ . 

• For each κ ∈K  and 1i … N
κ= , , :  

 
, ,: /i i

k

κ κω ω γ=ɶ ɶ ɶ  

• The estimated (. 1)
k k

pξ χ| |  satisfies: 

, ,

,

( , )

1

0

( , )( , 1) ( , )    i i
k k

N
i

k x

i

N

dxp dx dx

κ

κ κ

κ

κ
ξ χ θ

κ

ω δ θθ π θ|
∈ =

≠

| ≈ = ∑ ∑ ɶɶ
ɶɶ

K

HHIPS Step 3. Copy the 
k

Q arrived particles through 

k hτκ + -conditional resampling.   

• Evaluate aggregated mode probabilities at : kτ τ= using 

(12): 

'

'

'

' ''

,
' 1

0

( 1) ( )

       ( )

kh

h

N
i ii

x
i

N

p

p x

τ

κ

τττ
κ

κ

χκ

κ κκ
θ θ

κ η

κ ϕ κ

η ωθ

+

+

|

, ,,
|

∈ = ∈

≠

| ≈ =

= | ,∑ ∑ ∑ ɶ ɶɶ
K M

 

• For each κ ∈K  independently draw pN  random 

pairs ( )i i
x

κ κθ, ,, , 1 pi … N= , ,  from the particle 

spanned empirical measure, using (11):      
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• This yields, for each κ ∈K , a set of particles 

1{ } pNi i i

ix
κ κ κθ ω, , ,

=, ,  with : ( )i

pNκ ϕ κω , = / . 

• If k m< , then repeat steps 1-3 for k := k+1 and 

: pN N
κ =  

 

Remark: The key extensions of HHIPS over IPS for an 

SHS [12-13] are:  

1. Embedding of an aggregation mode process; 

2. Particles are maintained per aggregation mode;  

3. Importance switching of aggregation mode is used 

for the conditional prediction of SHS particles; 

4. Hierarchical interaction is used for the resampling 

of particles that reached ,  1,.., 1.
k

k mQ = −  

VI. FREE FLIGHT AIR TRAFFIC EXAMPLE 

We consider a specific free flight operational concept 

that has been developed within a recent European research 

project [22]. In order to use MC simulation for the 

estimation of safety risk, we first developed a MC simulator 

of these operations such that the simulated trajectories 

constitute executions of a generalized SHS [23]. The 

dimensionality of the resulting MC simulation model is very 

large, e.g. in simulating two aircraft there are about 2510  

discrete mode combinations, and the Euclidean state may 

go up to 
336ℝ  [12]. In [12]-[13], [24] we developed a way 

to cast the air traffic SHS model within the setting of the 

IPS formulation, and used the IPS to evaluate demanding 

high risk bearing multi-aircraft scenarios. This IPS 

approach, however, did not work properly anymore for low 

risk bearing scenarios. The aim of this section is to 

demonstrate that the novel HHIPS works well for such a 

low risk bearing scenario, using the same SHS model.  

The kD ’s are defined by three parameters, the values of 

which are given in Table 1 for a sequence of eight nested 

subsets. Here dk and hk define a cylinder of diameter dk and 

height hk respectively. The ∆ k value is the time period over 

which position and velocity differences between the two 

aircraft are compared. If within ∆ k the predicted position 

difference falls within the corresponding cylinder, then 
kD   

is said to be reached. The three parameters of 
8D  are such 

that its reaching represents a collision between the aircraft. 

 
TABLE 1 

IPS CONFLICT LEVEL PARAMETER VALUES 

k 1 2 3 4 5 6 7 8 

dk 

Nm 
5.0 5.0 5.0 5.0 2.5 1.25 .50 .054 

hk  

ft 
1000 1000 1000 1000 1000 500 250 131 

∆ k 

min 
8 2.5  1.5 0 0 0 0 0 

 

In the low risk bearing scenario considered, two aircraft 

start at the same flight level, some 250 km away from each 

other, and fly on opposite direction flight plans head-on 

with a ground speed of 240 m/s. This means that collision 

may be reached after about 500s simulation, hence we set T 

= 600s. The collision reach probability is estimated through 

running ten times the HHIPS algorithm
1
. The aggregation 

modes chosen are all combinations of the following high 

level mode values: global communication support is ‘up’ or 

‘down’, and decision-making (DM) loop of aircraft 1 is ‘up’ 

or ‘down’. This leads to a total of four aggregation mode 

values. The number of particles used is 5,000 per 

aggregation mode value; hence 20,000 particles are used 

per HHIPS run. The time step h = 1s, and α = 0.001. 

Results of these HHIPS runs are presented in Tables II-IV.  

 

Table II: kγɶ values estimated by first four HHIPS runs. IPS 

based estimation typically yields values 0.0 for 4k ≥ . 

k  Run 1 Run 2 Run 3 Run 4 

1 0.993 0.992 0.999 0.999 

2 0.295 0.280 0.289 0.294 

3 0.040 0.048 0.050 0.047 

4 2.71E-4 2.59E-4 2.69E-4 2.70E-4 

5 0.206 0.143 0.118 0.233 

6 0.427 0.539 0.527 0.396 

7 0.855 0.858 0.889 0.759 

8 0.810 0.823 0.827 0.754 

Π  1.93E-7 1.86E-7 1.76E-7 1.96E-7 

 

Table II presents the values for 
kγɶ which have been 

estimated during the first four HHIPS runs. The estimated 

mean probability of collision between the two aircraft 

equals 1.9×10-7. The estimated standard deviation is 

0.8×10
-8

, which shows that the estimated value is quite 

accurate. It should be noticed that the variation in the 

fractions per level is significantly larger than the variation 

in the product of the fractions. Apparently, the dependency 

between the fractions  
kγɶ  reduces the variation in the 

 
1 In [25] a similar kind of two aircraft encounter scenario has been 

simulated using a heuristic precursor of the current HHIPS.   
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multiplication of these fractions.   

Table III shows the percentage in contribution to 

collision reach probability for each of the four aggregation 

mode values. This shows that the risk contribution is almost 

completely caused by “global communication down”.   

 

Table III. Contribution to reach probability. 

Global 

comm. 

DM-loop Share 

% 

Up Up 0.5 

Up Down 1.1 

Down Up 98.4 

Down Down 0.002 

 

Finally we improved the availability/reliability of the 

ASAS related systems by a factor 100, and then conducted 

the ten HHIPS runs again. This resulted in a 100-fold  

decrease of the collision reach probability.  These results 

demonstrate that HHIPS works well for this large scale 

SHS. 
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