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Thermoacoustic engines use heat to produce acoustic power. The subject of this manuscript is modeling of thermoacoustic engines. A finite
element simulation has been performed on a theoretical example of a two-dimensional standing wave thermoacoustic engine. The simulation
solves the linearized Navier-Stokes equations in the frequency domain. The analysis is used to obtain the (thermo)acoustic eigenfrequencies and
the corresponding mode shapes of the engine. The nonlinear eigenfrequency problem is solved using an iterative (modified) Newton-Raphson
method. The engine starts to oscillate (onset) when a linear instability is present. An instability can be determined when the imaginary part of an

eigenfrequency of the engine crosses zero and becomes negative.
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INTRODUCTION

Thermoacoustic (TA) engines are heat engines which convert heat into acoustic power. The
acoustic power can be converted to useful electricity by means of an electro-acoustic energy
transducer, such as a linear alternator. The established theory for the design and modeling of
thermoaoustic systems is the one developed by Swift et al [1], based on the linear thermoacoustic
theory of Rott et al [2]. This essentially 1D theory is implemented in the program DELTAEC [3],
which is widely used as a design tool for thermoacoustic systems. The theory is valid when a
significant distinction can be made between the wave propagation direction and the direction
perpendicular to it (the cross-direction). In most cases, prismatic tubes are considered with a typical
cross-section length scale (i.e. the hydraulic radius) which is much smaller than the acoustic
wavelength. However, for accurate modeling of curved tubes, changes in cross-sectional area, etc., a
more-dimensional analysis is required. Hence, for the design of diverse and compact thermoacoustic
engine geometries, a 3D linear thermoacoustic model is developed. With this model, stability
analyses of actual thermoacoustic engine geometries can be performed. In this paper, the
implementation such a theory is illustrated by means of a 2D standing wave (noise generating) TA
engine.

MODEL

The model is based on linearization of the governing equations, i.e. the continuity, momentum
and energy equation accompanied with a suitable equation of state. We consider only the fluid
domain, and in this case, Fourier-Newtonian perfect gas behavior is assumed. Body forces are
neglected, and furthermore it is assumed that the fluid is in mechanical equilibrium, so no mean
flow is present. The fluid is heated with a hot heat exchanger and kept cool with a cold one. The
heat exchanger surface in contact with the fluid domain is assumed to be isothermal, so the heat
input at the hot heat exchangers is roughly proportional to the temperature difference between the
hot and the cold heat exchanger; this creates a non-isothermal fluid domain. The temperature field
in the fluid can be obtained by solving the heat equation,

V.- (xnVT,) =0, (D

with the boundary conditions T, = T, at boundary I';, and —«x,,VT,, =0 at I',4. x,;, denotes the
(mean temperature dependent) thermal conductivity of the fluid and 7', the mean temperature.
When the heat equation is solved, a mean temperature field is obtained, from which the mean
density field is computed using the ideal gas law (the mean pressure is constant throughout the
domain). For the stability analysis, we look at small deviations (perturbations) from equilibrium.
The perturbations are considered so small, that they do not influence the mean field. The model
equations for these small perturbations, including thermal and viscous effects, are the
inhomogeneous Fourier transformed Linearized Navier-Stokes (FLNS) equations. The FLNS
equations were derived in earlier work [4], where a homogeneous quiescent mean field was
assumed. Thermoacoustic effects are included when the mean temperature and density fields are
non-constant. The terms corresponding to the inhomogeneous field are added to the FLNS
equations. The ’extended’ Fourier transformed acoustic continuity, momentum and enthalpy
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equations then become:

o2 - )+ Vo -2 = g (2a)
iwppu1+Vpy = V.1, (2b)
pmcpiwTi+uy-VTy,)—iwpy = V-(x,VT7) (2¢)

A detailed derivation is given in [5]. p denotes the pressure, u the velocity and T the temperature.
Subscript m denotes mean (time-invariant) quantities. In addition, the phasor notation of Swift [1]
is adopted: &'(x,t) = R(E1e'“t). Where ¢’ is one of the fluctuations p’, p’ or u’. Note that the gas law
has been used to replace the gradient of the density with the gradient of the temperature. 7,
denotes the acoustic viscous stress tensor:

T, = HUm (Vu +(Vu)T—%um(V-u)I)+uB(V-u)I 3)

Here, u,, denotes the mean dynamic viscosity and up the bulk viscosity. To solve the system of
equations [2], a weak formulation is derived:

prw(iw(g—;—TT—;)+V-u1—u1~%)dQ = 0, (4a)
fQ (iwpmui-uy, +71,:Vu, —p1V-u,)dQ = frtl ‘u,dT, (4b)
fQ[Tw (omepwT1+u1-VTy)—iwp1)+VTy - (k,VT1)]dQ = —frquyndl“, (4c)

where subscript w denotes the weighting function. Note that the natural boundary conditions as
they result from partial integration are put on the right hand side. They comprise the normal
traction (t1) for the momentum equation and the normal acoustic heat flux (qq -n) for the energy
equation. If equations 4 are true for all weighting functions, then equations 2 are satisfied. In the
finite element method however, the equations are not satisfied for all weighting functions, but only
for a limited number. In this case, the Galerkin method is chosen, so the weighting function basis is
chosen to be equal to the basis functions of the dependent variables [6]. The weak formulations are
implemented in the commercial software package Comsol Multiphysics [7]. Once a choice is made
for the interpolation functions, the system of equations can be assembled. For a given frequency and
mean temperature field, a linear system of equations is obtained.

Solution method

With equations 2, two types of analyses can be done: a frequency response analysis and an
eigenfrequency analysis. The last one is of interest for thermoacoustic engines, since a
thermoacoustic engine is not “driven” at a certain frequency, but starts when a linear instability
arises.

As mentioned before, the resulting algebraic system from weak formulations 4 is linear.
However, the eigenfrequency problem can still become nonlinear when an analysis has to be done
with nonlinear frequency dependent impedance boundary conditions. An example of such a
boundary condition is an acoustic open end from which sound is radiated. Because the impedance at
the open end is a nonlinear function of the frequency, the eigenfrequency problem becomes
nonlinear as well. To deal with this inconvenience, the problem is not solved as a regular eigenvalue
problem. Instead, we apply a unit acoustic pressure (the unit pressure scales the mode) at the open
end and calculate the impedance at the open end from the finite element result (Zrgys). The
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FIGURE 1: Flow chart to obtain the solution of the nonlinear eigenfrequency problem.

resulting impedance is compared with the required radiation impedance (Z,). A modified
Newton-Raphson solution technique is used to solve the frequency for which the calculated
impedance matches the radiation impedance. It is modified in the sense that the Jacobian matrix
0(Zrem—Zp)ow is estimated with forward Euler finite differences. The difference dw is chosen as 5%
the convergence criterium (¢). Convergence is reached when the absolute difference between the
updated frequency and the current frequency is smaller than 1072 rad/s. A flowchart of the iterative
scheme is shown in figure 1.

The resulting eigenfrequencies are complex and the imaginary part of the eigenfrequency is a
measure for the damping of the eigenmode, since: e’?! = ¢S . o R@) Hence, a negative
imaginary part of the eigenfrequency results in an unstable (thermo)acoustic eigenmode. The
eigenfrequencies change when a different mean temperature field is applied.

EXAMPLE: 2D STANDING WAVE ENGINE

Figure 2 shows a 2D standing wave engine. The dimensions are listed in table 1. When
sufficient heat is added at the hot heat exchangers (the red part), the first (thermo)acoustic
eigenmode becomes unstable. The acoustic medium is air, so a 3D variant of this engine will
typically run with a dominating oscillation frequency close to co/4Ly. Where cg is the ambient speed
of sound (= 340 m/s) at the reference temperature (20 °C) and L is the length of the engine. We are
interested in the thermoacoustic eigenmodes of this engine, as a function of the hot temperature
boundary condition of the stack. Table 2 shows an overview of the different boundaries with their
corresponding boundary conditions. The sound is radiated from the right side (acoustic open end),
where a radiation impedance of a baffled piston is applied [8]. At all other walls, the no-slip
boundary condition is applied for the acoustic velocity. The acoustic temperature fluctuation is
assumed to be zero at the walls. We are interested in the first two eigenmodes of the system. The
starting value for the Newton Raphson method is chosen close to the eigenfrequency, in this case,
since L is 0.17m: f1 =500 Hz, f3 = 1500 Hz. A mesh study has been performed to determine the
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TABLE 1: Dimensional parameters of the 2D standing wave engine

Parameter Value Parameter Value

Ly 17cm Ly 3 cm
Ly 1.5cm Ly 0.15cm
Wo 21cm yp 0.5 mm
o 10/21
X
- Lo >
[ "m—m, l
o I'r FW/ r g
Dp e Z : >>
140 :
L, . L,
Ly Ly

FIGURE 2: Schematic of the 2D standing wave engine including dimensional parameters

required mesh size. The final mesh is chosen such that the results become nearly
mesh-independent. Since the problem is only 2D, the velocity vector comprises only the x- and
y-velocity.

Results

Figure 3 shows the real part of the acoustic pressure of the first and second mode corresponding
to the mean temperature distribution with 77, = 100°C on I'z, and Tg at 20 °C on I'g. Due to the
boundary condition at the open end where the pressure phase is set to 0°, i.e., p1 = 1+ 0i Pa, this
figure shows the instantaneous acoustic pressure at the time ¢ = 0. The mode shapes correspond
very well with the expected 1/4 and 31/4 mode shapes respectively. Figure 4 shows the velocity
profile at the first eigenfrequency in the engine. Two cross sections are taken. One in the stack
fromy =0 to y = Wy and one accros the whole engine from x =0 to x = L. The cross-velocity profile
closely resembles the expected analytic hyperbolic cosine function result [1]. Due to the decrease in
porosity, the acoustic velocity in the stack is higher than in the resonator parts, roughly
proportional to the inverse of the porosity. In figure 5, the imaginary part of the eigenfrequency
(scaled with the magnitude of the eigenfrequency) is plotted against temperature 7'z, in the system,
keeping the temperature Tz constant (20 °C). At T, = 250 °C, S(w) of the first mode crosses zero.
Therefore, we expect oscillation onset at this temperature difference. The second mode shows a slow
trend to get more unstable at a higher temperature. However in the calculated temperature range,
this mode stays stable. The calculated mean temperature gradient in the stack varies between

TABLE 2: Boundary conditions for the 2D standing wave engine

I'z I'r 'y I'z
Mean temperature Tw=Tr Tpn=Tr q,-n=0 gq,-n=0
Acoustic velocity u; =0 u; =0 u; =0 free
Acoustic temperature T:1=0 T1=0 Ti1=0 q1-n=0
Acoustic pressure free free free pi;=1Pa
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FIGURE 3: Real part of the pressure distribution of the first (above) and second eigenmode (below) of the 2D standing
wave engine. At the p1 =0 plane, the mesh is plotted.
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FIGURE 4: x-velocity profile of the first eigenmode plotted as a function of the y-coordinate in the stack (left) at x =
Li+ %Ls, and as a function of the x-position in the resonator at y = 11/21- Wy (right). (- = =) = R(uq); ( ) = S(uqp)

-8.0-10% and —6.7-10% K/m. It is slightly nonlinear in the x-direction due to the temperature
dependent thermal conductivity. In this study, the transverse heat conduction between the stack
material and the acoustic medium is neglected by the application of the zero normal heat flux
boundary condition. Therefore, it is noted that this mean temperature field deviates more from a
linear temperature profile than in a real stack.
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FIGURE 5: Scaled imaginary part of the eigenfrequency vs hot temperature for the first two eigenmodes: (===) 1/4 mode;
(= + = 1) 31/4 mode.
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CONCLUSIONS AND FUTURE WORK

A stability analysis of a thermoacoustic system can be performed using the finite element
method. The method is applied to compute the eigenfrequency as a function of the temperature
distribution for two eigenmodes of a 2D standing wave engine. The geometry of this 2D standing
wave engine is chosen such that the 1D theory still yields accurate results, so a comparison can be
made. A verification of the current finite element implementation is shown in [5], including a
method to compute the stability limit. The stability limit is the precise amount of heating to obtain
self-sustained oscillations. Future work will involve the expansion of the current theory to second
order. This allows the computation of (weakly) nonlinear effects. Furthermore, the saturation
amplitude, acoustic power production, as well as second order acoustic streaming patterns will be
calculated.
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