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Abstract 

A topic that is  currently inspiring a lot of research i s  
parallel (distributed) computation of transitive closure 
queries. In [lo] the disconnection set approach has 
been introduced as a n  effective strategy f o r  such a com- 
putation. It involves reformulating a transitive closure 
query o n  a relation into a number of transitive closure 
queries o n  smaller fragments; these queries can then  
execute independently o n  the fragments, without need 
f o r  communication and without computing the same 
tuples at more than  one processor. 

N o w  that effective strategies as j u s t  mentioned have 
been developed, the next problem is that of developing 
adequate data fragmentation strategies f o r  these ap- 
proaches. This  is a dif icult  problem, but of paramount 
importance to the success of these approaches. 

W e  discuss the issues that influence data fragmen- 
tation. W e  present a number of algorithms, each fo- 
cusing o n  one of the important issues. W e  discuss the 
pros and cons of the algorithms, and we give some re- 
sults of applying the algorithms t o  different types of 
graphs. This  last aspect shows t o  what respect the al- 
gorithms indeed conform to the goals we set out. 

1 Introduction 

The transitive closure is an important extension of the 
functionality of database systems. For example, in a 
database containing information about edges and the 
cost of edges between nodes, one can formulate ques- 
tions like “Is A connected to B?” and “What is the 
cost of the shortest path between A and B?”. And in 
a database storing information about parts, one can 
express bill-of-material questions. This functionality 
has been proposed in the context of logical query lan- 
guages [6, 171 and in the context of the relational alge- 
bra [l, 131. Independent of the context, at  the imple- 
mentation level one needs an algorithm to efficiently 
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process the transitive closure; many algorithms have 
been proposed, e.g. [16]. 

Efficient evaluation of the transitive closure is still a 
problem. Therefore, much research is currently taking 
place into its parallel computation [3, 8, 12, 15, 19, 
21, 221. For a good overview of parallel strategies for 
computing transitive closure queries, we refer to [5]. 

In [lo, 111 we introduced the disconnection set ap- 
proach as a way of attacking this efficiency problem 
in a parallel environment. The disconnection set a p  
proach is based on the divide-and-conquer principle. 
The basic idea is to split the relation that represents 
a connection network into a number of fragments. In 
addition to the fragmentation, some connectivity in- 
formation for nodes on the intersection of fragments 
is computed and stored. A connection query like, “Is 
A connected to  B?” can now be replaced by n inde- 
pendent transitive closure queries on individual frag- 
ments, followed by one final query on a very small rela- 
tion. The characteristics of this approach are: no com- 
munication between the transitive closure operations, 
high selectivity for the searches on the fragments, and 
no redundant computations. 

Because of these characteristics, the disconnection 
set approach is well suited for parallel evaluation of the 
transitive closure. (Also in a centralized environment 
it performs better than other algorithms.) For good 
fragmentations, it gives a linear speed-up. The choice 
of the fragmentation is vital for the performance; some 
obvious requirements come to mind. First of all, it 
seems a good idea to have fragments of more or less 
the same size, so that the parallel computations take 
the same time. And second, the disconnection sets 
should be rather small to restrict the search and to 
limit the amount of precomputed information. These 
requirements may be conflicting. 

This paper will address the problem of fragment- 
ing a relation to make the (parallel) computation of 
the transitive closure baaed on the disconnection set 
approach efficient. To better understand this design 
problem we will focus on transportation networks. 
These are characterized by clusters of nodes with a 
rather high internal connectivity rate, while these clus- 
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ters are loosely interconnected. Three requirements 
that have to be fulfilled by a fragmentation are for- 
mulated and three different fragmentation strategies 
are presented, each emphasizing one of these require- 
ments. Some test results are presented to show the 
performance of the various fragmentation strategies. 

The paper is organized as follows. In Sec. 2 we 
shortly describe the disconnection set approach again, 
and then go into the characteristics of fragmentations 
that may affect the performance of the disconnection 
set approach. In Sec. 3 we discuss the type of graphs 
that we focus on, and then introduce three algorithms 
for fragmenting a graph; each algorithm focuses on a 
particular characteristic. In Sec. 4 we give test re- 
sults of the developed algorithms on different types 
of graphs. Finally, in Sec. 5 we give conclusions and 
discuss future research. 

2 Disconnection set approach and data 
fragmentat ion 

In this section, we will shortly introduce the discon- 
nection set approach [lo, 111. Then we will discuss 
the characteristics of the disconnection set approach 
that influence fragmentation design. There are sev- 
eral options for fragmentation strategies, depending 
on the issue that is considered to be most relevant. 
As we do not yet know which of these issues has 
the greatest influence on performance, we will de- 
velop several algorithms-each focusing on one of the 
characteristics-later on in Sec. 3 

2.1 Disconnection set approach: a sketch 

The disconnection set approach assumes an initial 
data fragmentation based on application's semantics. 
Consider a railway network connecting cities in Eu- 
rope, and a question about the shortest connection 
between Amsterdam and Milan. Assume that data are 
naturally fragmented by country (e.g., Holland, Ger- 
many, and Italy). Also assume that the border points 
between countries are relatively few. The above ques- 
tion can then be split into several parts: find a path 
from Amsterdam to the eastern Dutch border, find a 
path from the Dutch border to the southern German 
border, find a path from the German border to the 
Italian border, and find a path from the Italian bor- 
der to Milan. All these queries have the same struc- 
ture; they apply only to a fragment of the database, 
and can be executed in parallel. Post-processing is 
required to assemble the shortest path between the 

Figure 1: Intuitive idea of the disconnection set ap- 
proach 

initial and final city, given all shortest paths produced 
within single fragments. The intuitive idea behind the 
disconnection set approach is illustrated in Fig. 1, for 
a query concerning the connection between a node in 
GI and a node in Ge. 

We assume that the base relation R stores the con- 
nection information'; R is partitioned into n frag- 
ments R, (1 5 i 5 n) each stored at  a different com- 
puter or processor. This fragmentation induces a par- 
titioning of G into n subgraphs G,. Disconnection sets 
DSij are given by GinGj (they are thus sets of nodes). 
We assume that the number of nodes belonging to dis- 
connection sets is much less than the total number of 
nodes in G. 

In order to make the above approach feasible,' it is 
required to store in addition some complementary in- 
formation about the identity of border cities and the 
properties of their connections; these properties de- 
pend on the particular path problem considered. For 
instance, for the shortest path problem it is required 
to precompute the shortest path among any two cities 
on the border between two fragments. Complemen- 
tary information about the disconnection set DSij is 
stored at  both sites storing the fragments R, and Rj .  

An important, but not strictly necessary, property 
of a fragmentation is to be loosely connected this 
corresponds to having an acyclic graph G' of com- 
ponents G,. Formally, G' =< N , E  > has a node 
Ni for each fragment Gj and an edge Ejj = (Ni l  N j )  
for each nonempty disconnection set DSij. In Fig. 2 
the fragmentation graph for the graph shown in Fig. 1 
is shown. Intuitively, if the fragmentation graph is 
loosely connected, then it is easier to select fragments 
involved in the computation of the shortest path be- 
tween two nodes. In particular, for any two nodes in 

'R represents a directed graph, where each tuple represents 

zI.e., to guarantee that answers are correct and precise. 
an edge of the graph, possibly with an associated weight 
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Figure 2: Fragmentation graph of fragmented relation 

G there is only one chain of fragments G, such that 
the first one includes the first node, the last one in- 
cludes the last node, and remaining fragments in the 
chain connect the first fragment to the last fragment. 
However, for many practical problems (such as the Eu- 
ropean railway network itself) such property does not 
hold. 

In [lo] it is shown that, if the fragmentation is 
loosely connected, the shortest path connecting any 
two cities is found by involving in the computation 
only the computers along the chain of fragments con- 
necting them3. If the fragmentation is not loosely con- 
nected, it is required to consider all possible chains of 
fragments independently for solving the query.4 Ob- 
viously, if the source and destination are within the 
same fragment, the query can be solved by involving 
only the computer storing data about that fragment, 
including all complementary information about dis- 
connection sets stored at that fragment. In practice, 
this has the nice implication that queries about the 
shortest path of two cities in Holland can be answered 
by the Dutch railway computer system alone, even if 
the path goes outside the Dutch border. 

Along a chain of length n, query processing is per- 
formed in parallel at each computer. Each subquery 
determines a shortest path per fragment; note that 
disconnection sets introduce additional selections in 
the processing of the recursive query, they act as in- 
termediate nodes that must be mandatorily traversed. 
The final processing combines all shortest paths ob- 
tained from the various processors with the comple- 
mentary information, and selects the shortest one 
among them. This final processing is effectively a se- 
quence of binary joins between a number of very small 
relations. 

An important speed-up factor is due to the reduced 
number of iterations required to compute each recur- 

3Note that the shortest path might include nodes outside 
the chain, however, their contribution is precomputed in the 
complementary information. 

41f the fragmentation graph becomes very complex and con- 
tains many routes from one fragment to another, a technique 
called Parallel Hierarchical Evaluation can be used to avoid 
problems [12] 

sive query independently. The number of iterations re- 
quired before reaching a fixpoint is given by the maxi- 
mum diameter of the graph; if the graph is fragmented 
in n fragments Gi of equal size, the diameter of each 
subgraph is highly reduced. 

Note that neither communication nor synchroniza- 
tion is required during the first phase of the computa- 
tion; for evaluating the recursive subquery on a frag- 
ment any suitable single-processor algorithm may be 
chosen; it is also possible to use some other parallel 
method. Only at the end of the computation, com- 
munication is required for computing the final joins. 
These joins will have relatively small operands (since 
the disconnection sets are small) and pipelining may 
be used for their computation. 

The disadvantage of the disconnection set approach 
is mainly due to the pre-processing required for build- 
ing the complementary information and to the careful 
treatment of updates. Complementary information is 
different for each type of path problem. As long as 
updates are not too frequent, the pre-processing costs 
may be amortized over many queries. 

2.2 Important issues for fragmentation 
design 

From the description of the disconnection set ap- 
proach, we may distil three issues that are of major 
importance to its performance: size of the disconnec- 
tion sets, size of the fragments, and the existence of 
cycles in the fragmentation graph. 

Disconnection sets When finding a path from node 
x in fragment F, to node 1/ in fragment F,, a 
number of disconnection sets DSij, DSjk, etc. 
are encountered. These disconnection sets act 
as some sort of keyhole: only paths travelling 
through this keyhole have to be examined. Start- 
ing from this keyhole a sort of ‘magic cone’ is 
build (cf. magic sets). 
As the disconnection sets function as selection cri- 
teria, the smaller they are the better. Selectivity 
is already important in the case of ordinary joins, 
but for transitive closure computations it is even 
more important. As transitive closure computa- 
tions are very computation intensive, and each 
answer from one iteration is used in the next it- 
eration, the higher the selectivity (i.e. the smaller 
the disconnection set) the better. 

Fragments An important aspect in parallel compu- 
tation is balancing the workload. If the workload 
is evenly spread over the processors, they can all 
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finish at  more or less the same time. Any eventual 
final computation that needs access to the result 
of several processors can then start immediately 
at  the end. 

The time needed for computing a transitive clo- 
sure is determined by the number of iterations of 
the transitive closure algorithm and the size of 
the intermediate results. The number of itera- 
tions depends on the diameter of a fragment (the 
number of edges constituting the longest path), 
the size of intermediate results depends on the 
connectivity of the graph. Assuming that the con- 
nectivity and the diameter of the fragments are 
similar, the number of tuples in a fragment is a 
good indication for the workload of a processor. 

Cycles When considering a path from node x in frag- 
ment Fi to node y in fragment F,, the optimal 
situation is to find precisely one chain of frag- 
ments connecting Fi to F,. Therefore, to min- 
imize the number of cycles; a loosely connected 
fragmentation is to be preferred. 

We have now discussed the three most important 
issues when fragmenting a relation to enable the dis- 
connection set approach. Unfortunately, these issues 
are not independent; they may even conflict with each 
other. For instance, the graph may have such a struc- 
ture that we either fragment it in a way that gives 
small disconnection sets but many cycles, or in a way 
that gives no cycles but large disconnection sets. It 
is not obvious which of these fragmentations should 
be preferred. Another example of conflicting require- 
ments may be small disconnection sets vs. fragments 
of similar size. Small disconnection sets minimize com- 
putation on a fragment, fragments of similar size max- 
imize the amount of parallelism (i.e. processors actu- 
ally working at  the same time). Which of these issues 
is most relevant is impossible to say beforehand, but 
will have to be deduced from actual experiments. For 
instance, if the underlying database system has a good 
support of pipelining in query processing, the issue of 
fragment size may become less relevant as processes 
do not need to wait for the final assembling of the 
answers. 

We have now indicated which three issues are of 
main importance when fragmenting a relation. It 
should also be clear that there is no easy way of pre- 
dicting which issue is most important. The issues 
clearly intertwine, and decisions which criterion to fo- 
cus on should be based on experiments. 

In the next section we will discuss a number of frag- 
mentation strategies. Each strategy will focus on a 

Figure 3: Transportation graph consisting of 4 clusters 

particular issue. Once these fragmentation strategies 
have been developed and implemented, we can start 
experiments to decide on the relevance of the issues 
discussed. 

3 Data fragmentation strategies 

It turns out that fragmenting an arbitrary graph in 
a meaningful way is a highly nontrivial problem. Al- 
though a sketch of a particular graph may give us the 
idea that it can easily be fragmented, once we try to 
write an algorithm for it, it turns out to be a real 
problem. 

We will, at  first, restrict ourselves to a specific type 
of graph, which is particularly suited for parallel eval- 
uation using the disconnection set approach. We call 
this type of graph transportation graph; an example 
of it is given in Fig. 3. It consists of a number of 
clusters; each cluster in itself is highly connected, but 
the connection between clusters is very loose. Trans- 
portation graphs occur frequently in real applications, 
consider e.g. local train networks per region and fast 
intercity trains connecting the regions, or local tele- 
phone networks (heavily connected) with a few optic 
fibres connecting these local networks. Because trans- 
portation graphs are very common in applications, we 
feel that our initial restriction to this type of graph is 
justified. We will, however, also test the algorithms 
on arbitrary graphs, later in Sec. 4.2. 

For the transportation graph in Fig. 3, there are 
some obvious candidate nodes for the disconnection 
sets; the clusters should become fragments, and the 
nodes on the inter-cluster connections should end up in 
the disconnection sets. Our first idea was to come up 
with a simple graph-theoretical algorithm that made 
use of the characteristics of transportation graphs. We 
did this by investigating the k-connectivity of a graph 
(this is the smallest number of node-distinct paths be- 
tween any pair of nodes from the graph). The nodes 
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whose removal would increase the k-connectivity of 
the graph were marked as ‘relevant’ nodes, with the 
idea that a number of them could be selected to  form 
disconnection sets. However, even for ‘simple’ graphs 
as depicted in Fig. 3 we would run into problems; as 
soon as the fragmentation graph contains cycles, the 
k-connectivity is influenced by paths taking detours 
through other fragments. Also, algorithms like this 
are very computation intensive, as all possible com- 
binations of nodes and paths have to be taken into 
account. 

We will discuss three other algorithms we devel- 
oped. Each is based on a different characteristic as 
discussed in Sec. 2.2 

3.1 Center-based algorithm 

The center-based algorithm focuses on achieving a bal- 
anced workload. Ideally, all the fragments created by 
this algorithm should require the same amount of com- 
putation when computing the local transitive closure 
from the starting disconnection set to another discon- 
nection set. As described before, the characteristics 
that determine the amount of computation for a frag- 
ment are diameter and number of tuples. Generally, 
it will not make a big difference which of these charac- 
teristics we put first when fragmenting data. However, 
the algorithm we present is flexible and allows us to 
choose either one if it does make a difference. 

The algorithm starts by determining so-called ‘cen- 
ters’ in the graph. These centers should be thought 
of as some kind of gravity points in the graph, very 
much like spiders in a web. Starting from these cen- 
ters the fragments are gradually constructed (a first 
sketch of this approach was given in [12], and a sim- 
ilar idea was, for different purposes, pursued in [2]). 
Centers are determined based on the number of neigh- 
bour nodes (transitively),as expressed by the following 
formula: 

g r a d e ( i ) + a C  nb(j, l)+a2 nb(j, 2)+a3 C nb(j, 3) 

with grade(i) the number of edges adjacent to i, 
nb(j, d )  the grade of node j at d edges from i and 
a < 1. This formula is a variation on the status score 

The number of centers that is chosen may depend 
on factors such as the number of processors available, 
or on the application. 

Once it has been decided which nodes are centers, 
the algorithm iterates over them and repeatedly adds 
edges to  the fragments. In the first step, edges con- 
necting to the center are added. In subsequent steps, 

j j j 

[91. 

/* Input: graph G = (V, E); Output: fragments 
GI,. . . , G,; V = 

{cl,. . . , c,,} := determine-centers(G); 
/* Initialisation */ 
for i from 1 to n do 

K; E = Ui E; */ 

vi := {ci}; 
E; := { ( 2 , ~ )  1 2 = ci V y = ci} 

od; 
k := 1; 
E := E \ Ui E;; 
while E # 8 do 
Ek := Ek U {(Z,y) I ( 2 , ~ )  E E A (2 E v k  v 1/ E vk)}; 
vk := {Z I (Z,y) E Ek v (y,Z) E Ek); 
E := E \ Ek; 
k := (k mod n) + 1 

od 

Figure 4: Center-based fragmentation 

edges are added to a fragment if they connect to edges 
that have already been assigned to that fragment. 

The algorithm is adaptable in the sense that the it- 
eration over the centers may be based on the resulting 
diameter of the fragment or on the number of tuples 
already included. In the first case, one addition of 
edges (in fact, a relational join between intermediate 
result and the relation modeling the graph) is done at 
each iteration. In the second case, the fragment with 
the least number of edges is chosen for expansion un- 
til another fragment becomes the smallest. The first 
variant of this algorithm is shown in Fig. 4. 

In practice, it may occur that centers are relatively 
close to each other, possibly leading to large discon- 
nection sets. If there is a notion of topology in the 
network (as is often the case, cf. countries in a rail- 
road network), an optimization is possible. In this 
case the centers are spread over the graph, using the 
notion of topology. 

3.2 Bond-energy algorithm 

In this section we describe an algorithm that focuses 
on fragmenting a relation in such a way that the node 
intersections of fragments will be small. The algo- 
rithm is a variant of the well-known Bond-energy al- 
gorithm [7]. It uses an adjacency-matrix to denote the 
graph being fragmented. Columns of this matrix are 
reordered in such a way that nodes that are closely 
related are put closely together. In this way, clusters 
are formed along the diagonal of the matrix. By split- 
ting the matrix in such a way that the number of 1’s 
(representing direct connections) outside each cluster 
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1 1 0  
1 1 1  
0 1 1  

0 0 0  
1 1 0  
0 0 0  

Figure 5: Fragmenting a matrix 

is small, the disconnection sets are kept small. Let us 
describe this now in more detail. 

The algorithm starts with an adjacency-matrix M ,  
where each entry M [ i ,  j ]  is 1 if there exists a direct 
connection between i and j, and 0 otherwise. Each 
entry M[i , i ]  is also made 1. An arbitrary column is 
now chosen as the first column of the matrix, next 
to it the column is placed that maximizes the inner 
product of the two columns (defined as xkixkj, 
for columns z;, xj). Then, in each step a new column 
is chosen and put either on the left of the columns that 
have been placed, or on the right, or in between two 
columns, whichever maximizes the sum of the inner 
products of all the placed columns. The outcome of 
this procedure depends on the column that was chosen 
as the first one to be placed. Therefore, it has to be 
iterated over all the columns. Finally, the matrix with 
the greatest sum of inner products is the result. 

Now that the matrix is clustered, the next step is 
to split it. Fragmenting the relation represented by 
the matrix means that we define blocks of contiguous 
columns (rows) as fragments. The 1’s for the columns 
of a block that fall outside the corresponding rows for 
this block, are the connections with other fragments; 
their number indicates the size of the disconnection 
sets. In Fig. 5 a 6 x 6-matrix is shown. If nodes 1- 
3 are grouped together, there are 2 connections with 
nodes outside the block, both with node 5.  If instead 
nodes 1-4 are grouped together, there are 3 connec- 
tions with nodes outside the block, with nodes 5 and 
6. For minimizing the size of the disconnection sets, 
the first fragmentation is to be preferred. 

In general, we will want to split the relation into 
more than 2 fragments; in this case it is not so simple 
to  determine the size of the disconnection sets while 
splitting the matrix. If we decide that the first k 
columns should form a fragment, we can determine 
the overlap of this fragment with the remaining part 
of the matrix. However, this overlap is only an indica- 
tion of the size of the union of all disconnection sets 

for this fragment, not for the size of a disconnection 
set itself. This because fragmenting the rest of the ma- 
trix may lead to a number of overlaps with the first 
fragment, each contributing to the overlap just found. 

Examining all possible ways to split a given ma- 
trix of n columns into m blocks of contiguous columns 
would require far too much work, as there are 

( ) possibilities. We have therefore imple- 

mented a simpler but adequate solution. 
The columns of the matrix are scanned only once, 

from left to right; local conditions are used to deter- 
mine if a good place to split the matrix has been en- 
countered. Several options exist for these local con- 
ditions. One possibility is to  split as soon as a local 
minimum is reached; i.e., as soon as the number of 
connections to nodes outside the current block is in- 
creased. A second possibility is to use a threshold; 
this threshold may be supplied by the user. While 
scanning the matrix from left to right, it is split as 
soon as the number of connections to nodes outside 
the current block reaches the threshold. As optimiz- 
ing to local minima usually turns out not to be best, 
we have implemented the threshold approach. Fur- 
ther finetuning is possible by taking into account the 
number of edges in the current block when deciding to 
apply the local threshold or not; this avoids generating 
fragments that are ‘too small.’ 

3.3 Linear fragmentation algorithm 

In this section we describe an algorithm that frag- 
ments a graph in such a way that the fragmentation 
graph (cf. Sec. 2.1) is guaranteed to be acyclic (i.e., 
loosely connected). An additional assumption we have 
to make is that there is some topological information 
associated to nodes of the graph. For the transporta- 
tion graphs we are focusing on, this is a reasonable 
assumption. We will assume that each node has an 
associated coordinate-pair (2, y). 

The algorithm starts by selecting a group of start 
nodes located on an extreme end of the graph. In each 
iteration, it then accumulates the adjacent edges in a 
fragment; this idea is illustrated in Fig. 6. Once the 
number of edges in a fragment has reached a certain 
threshold (defined as I E I / f , the number of edges di- 
vided by the number of fragments we want), the nodes 
on the boundary are put in a disconnection set and 
used as starting points for the next fragment. Note 
that the disconnection sets may become very large us- 
ing this algorithm. Also note that the fragment size 
may be unbalanced; in each iteration all edges starting 
from the boundary nodes have to be added to the frag- 
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GI DSl2 G2 DS23 G3 OS34 G4 

1 

Figure 6: Intuition behind linear fragmentation algo- 
rithm 

/* Input: graph G = (V, E), f = number of fragments */ 
/* Output: fragments GI , .  . . , G,; V = ui V,; E = U, E; 
threshold := I E I / f; 
start-n := s nodes with smallest z-coordinates; 
k := 1; E1 := Ez := . . . : E,, := 0 
while I E I> 0 do 

while 1 Ek I <  threshold A 1 E )> 0 do 
n e w e  := ((2, y) I z E start-n v y E start-n}; 
start-n := {z I z # vr, A ((z,y) E new-e V (y,z) E new-e)}; 
Ek := Ek U new-e; 
E := E \ new-e 

od; 
D S k ( k + l )  := start-n; 
k : = k + l  

Od 

Figure 7: Linear fragmentation algorithm 

ment to avoid cycles, we may therefore have fragments 
that are just the size of the threshold but also frag- 
ments that are much larger. The algorithm is shown 
in Fig. 7 

The result of the algorithm is influenced by the 
choice of the start nodes. Depending on the shape 
of a graph, a particular choice of start nodes may be 
preferable. This is illustrated in Fig. 8, where the 
ellipses represent the same graph, fragmented into 3 
fragments. It illustrates that starting on the left side 
of the graph and going to the right, is preferable to 
starting at  the top and going down. This, because the 
size of the disconnection sets (nodes on the border be- 
tween fragments) is much smaller that way. However, 
graphs often have capricious forms that make a choice 
of start nodes difficult. We have chosen to start at  the 
leftmost side, but for actual applications we might ask 
the user to provide us with the start nodes. 

Figure 8: Two ways of starting a fragmentation 

4 Experimental results of the algo- 
rit hms 

In the first part of this paper, we have developed a 
number of algorithms for fragmenting graphs for use 
by the disconnection set approach. Each of these al- 
gorithms focused on a specific goal: equally sized frag- 
ments, small disconnection sets, or an acyclic fragmen- 
tation graph. In this section we investigate in what 
respect these goals are achieved. We will show how 
the algorithms behave w.r.t. different types of graphs, 
and investigate the characteristics of the fragmenta- 
tions that result from applying the algorithms we de- 
veloped. 

To test the algorithms, we decided to generate 
graphs (randomly) with particular characteristics. 
Then, we tested the algorithms on these graphs to de- 
termine the characteristics of the resulting fragmenta- 
tions. Here, we will report on tests applied to two 
specific types of graph. First of all, we generated 
transportation graphs according to the structure pre- 
viously shown in Fig. 3. Second, we generated graphs 
without any particular predetermined structure. Our 
main interest lies with transportation graphs, but test- 
ing the algorithms on ‘ordinary’ graphs may also help 
to give insight into the performance of our algorithms 
(in terms of reaching the goals the algorithms were 
developed for). 

We will first discuss how we generated the graphs. 
Then we will discuss the results of applying our algo- 
rithms to these graphs. The results discussed here are 
derived from [MI, which provides more detailed test 
results. 

4.1 Generating graphs 

To test the algorithms, we generated graphs in a ran- 
dom way. Input to the generation algorithm were the 
number of nodes of the graph, the number of frag- 
ments that should be generated (in caae of transporta- 
tion graphs), and two parameters for the probability 
function we used (explained shortly). 

453 



As we needed the nodes of the graph to have coordi- 
nates for the application of the ‘linear fragmentation’ 
algorithm, the first step was to generate coordinates 
for each node; the coordinates were evenly spread over 
a given interval. We decided that these coordinates 
could be of use in generating graphs as well. As our 
main interest is in transportation graphs-where there 
exist many connections inside a cluster, but few con- 
necting different clusters-the use of coordinates is 
particularly appropriate. They can be used to  encour- 
age local connections over connections between remote 
nodes. 

In the second step, we generated the edges of the 
graph. Edges were generated w.r.t. a particular prob- 
ability function, reflecting the fact that the chances of 
connections between nodes that are close (in distance) 
are bigger than the chances of connections between re- 
mote nodes. The function we used is the following: 

~ ( p ,  q)  = (c1/n2)e-c2d(p,q) 

In this function, p and q denote the nodes under con- 
sideration, d ( p ,  q )  is a function returning the Euclidean 
distance between p and q, and c1 and c2 are the user- 
provided parameters. By changing c1 we could influ- 
ence the number of edges generated (and thereby the 
connectivity), and by changing c2 we could influence 
the probability of generating edges between nodes that 
are far apart. 

For transportation graphs, the abovementioned 
procedure was first used to generate the required num- 
ber of fragments. Then, these fragments were con- 
nected following the requirements given by the user. 
Hence, we were able to specify which fragments were 
connected to each other and by how many edges. 

4.2 Fragmenting graphs 

After generating graphs we fragmented them using the 
algorithms described in Sec. 3. We will now present 
the results of this. The characteristics of the fragmen- 
tations that we show are: average size of the fragments 
F (i.e., number of edges), average size of the discon- 
nection sets DS (i.e., number of nodes), average devi- 
ation AF from F ,  and average deviation ADS from 
DS. These characteristics are a good indication in 
how far the goals set out in Sec. 3 have been met. 

4.2.1 Transportation graphs 

In Table 1 the results are shown for a number of tests 
on transportation graphs that have a structure as de- 
picted in Fig. 3. The fragments generated had 25 

bond-energy 
linear 

mi 
13.3 24.2 

Table 1: Fragmentation characteristics for transporta- 
tion graphs, 4 clusters of 25 nodes 

nodes each and the average number of edges in these 
graphs was 429; the average number of edges connect- 
ing fragments was 2.25. 

From these results we may notice the following. As 
intended, the bond-energy algorithm fragments the 
graphs in such a way that the average size of the dis- 
connection sets is smallest (2.4); whereas the linear 
fragmentation algorithm does not take the size of the 
disconnection set in account (13.3). We may also note 
that the variation in size of the fragments is quite large 
with the bond-energy and linear fragmentation algo- 
rithms, whereas the center-based approach achieves 
a better balance in size of the fragments. Also, the 
number of fragments is predetermined with the center- 
based approach, whereas there is a slight variation 
in number of fragments possible with the other algo- 
rithms. 

From the experiments we concluded that the center- 
based approach did not always give the expected re- 
sults, in particular, it turned out that the disconnec- 
tion sets were larger than expected and that there 
was a considerable variation in the size of the frag- 
ments. This was due to the way centers were selected; 
sometimes the selected centers were quite close to each 
other. As we had already assigned coordinates to each 
node, we decided to use these coordinates as well in 
selecting the centers. From now on, we did not se- 
lect the centers at  random from a group of possible 
centers (remember that these were selected using a 
weight-function, as explained in Sec. 3.1). Instead, we 
used the coordinates assigned to the nodes to make 
sure that the selected nodes would not be too close 
toget her. 

The results from this change in selecting the cen- 
ters for the center-based algorithm, is shown in Ta- 
ble 2. These results were obtained for a transporta- 
tion graph of the same type as discussed before, but 
this time with 150 nodes per fragment. The number of 
edges of the graph was 3167. As can be seen from the 
deviation of the average fragment size, and the average 
size of the disconnection sets, using the coordinates in 
selecting the centers gives indeed a considerable im- 
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Algorithm F 
center-based 791.8 
distributed centers 791.8 

Table 2: Fragmentation characteristics with and with- 
out distributed centers, 4 clusters of 150 nodes 

DS AF ADS 
69.5 636.3 13.8 
4.3 12.4 2.9 

cent er-based 1 77 1 18.1 1 40.2 1 8.8 
distributed centers 
bond-energy 
linear 

77 18.9 34.7 5.9 
93.2 5.4 88.4 2.1 
111.8 35.8 42.1 1.25 

Table 3: Fragmentation characteristics for general 
graphs, 1 cluster of 100 nodes 

provement . 

4.2.2 General graphs 

Finally, we tested general graphs, without any super- 
imposed structure as in transportation graphs. Al- 
though we developed the algorithms especially with 
transportation graphs in mind, it is interesting to 
study their applicability in general. 

In Table 3 the results are shown for tests on general 
graphs existing of 100 nodes and an average number 
of edges of 279.5. We may note that the algorithms 
again conform to the idea that underlies them. The 
bond-energy algorithm fragments a graph in such a 
way that the disconnection sets are small (5.4), how- 
ever, the variation in size of the fragments is consid- 
erable. The linear fragmentation achieves an acyclic 
fragmentation, but the size of the disconnection sets 
is large (35.8). Finally, the center-based algorithms 
favour an equally balanced workload over small dis- 
connection sets. W.r.t. the center-based algorithms 
we have to make an additional remark: in the tests 
we have used the variant that takes the diameter of 
a fragment as an indication for the workload, if we 
would have taken the other variant that takes size of 
a fragment as indication this would clearly have shown 
in the results. 

4.2.3 Conclusions on experimental results 

The results of the experiments show that, both for 
transportation graphs and for ‘ordinary’ graphs, the 
algorithms indeed achieve a fragmentation with the in- 
tended characteristics. The variant of the bond-energy 

algorithm renders a fragmentation with small discon- 
nection sets, at  the price of having fragments whose 
size may differ considerably. The linear fragmentation 
algorithm renders a loosely connected fragmentation 
(no cycles in the fragmentation graph), at  the price 
of having large disconnection sets. And the center- 
based algorithm renders a fragmentation with frag- 
ments that are balanced in size, with disconnection 
sets that are in size somewhere in between the ones 
resulting from the other algorithms. 

From our current perspective, we believe that small 
disconnection sets will be the main factor in achieving 
a performance-wise good parallel evaluation of transi- 
tive closure queries; therefore, we feel that the variant 
of the bond-energy algorithm will be most effective 
when fragmenting a relation. However, the result may 
very well depend on both the type of graph considered, 
and on the characteristics of the database system that 
is being used. 

5 Conclusions and future research 

We investigated the topic of fragmenting data in such 
a way that we can achieve a good parallel computa- 
tion of transitive closure queries. In [lo,  111 we intro- 
duced a strategy for parallel computation of transitive 
closure queries, called the disconnection set approach, 
but we did not yet discuss data fragmentation algo- 
rithms. Here we developed and tested the latter. 

We indicated the issues that are of main impor- 
tance when fragmenting data for the disconnection 
set approach. These issues are: small disconnection 
sets, equally sized fragments, and an acyclic fragmen- 
tation graph. We developed several algorithms, each 
focusing on a particular characteristic. We focused on 
a particular class of graphs, so-called transportation 
graphs, but the algorithms also work in the general 
case. We presented test results, showing that the re- 
sults of applying the algorithms indeed conform to the 
characteristics we required. 

If the complexity of the fragmentation graph (de- 
scribing the way fragments are connected) becomes 
very high, finding the paths in it that connect the 
fragment containing the start node with the fragment 
containing the end node might become computation 
intensive. In [12] we have described an extension of 
the disconnection set, called parallel hierarchical eval- 
uation, to cope with that problem. It introduces the 
concept of a ‘high-speed network’; this is a separate 
fragment that mandatorily has to be traversed when 
going to a non-adjacent fragment. 
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Currently, we are undertaking experiments [ 141 
on the PFUSMA multi-processor database machine 
[4,20]. These experiments will show which of the char- 
acteristics identified here, is of main importance when 
striving for an optimal parallel evaluation of transitive 
closure queries. This will show which of the algorithms 
we developed is most useful, and why. It may well be 
the case that the actual algorithm to be used for data 
fragmentation depends on the type of graph that is 
considered, and on the specific characteristics of the 
underlying database system. 
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