
Data fragment at ion for parallel transitive closure strategies

Maurice A.W. Houtsma* Peter M.G. Apers Gideon L.V. Schipper
University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands

Abstract

A topic that is currently inspiring a lot of research i s
parallel (distributed) computation of transitive closure
queries. In [lo] the disconnection set approach has
been introduced as a n effective strategy f o r such a com-
putation. It involves reformulating a transitive closure
query o n a relation into a number of transitive closure
queries o n smaller fragments; these queries can then
execute independently o n the fragments, without need
f o r communication and without computing the same
tuples at more than one processor.

N o w that effective strategies as j u s t mentioned have
been developed, the next problem is that of developing
adequate data fragmentation strategies f o r these ap-
proaches. This is a dif icult problem, but of paramount
importance to the success of these approaches.

W e discuss the issues that influence data fragmen-
tation. W e present a number of algorithms, each fo-
cusing o n one of the important issues. W e discuss the
pros and cons of the algorithms, and we give some re-
sults of applying the algorithms t o different types of
graphs. This last aspect shows t o what respect the al-
gorithms indeed conform to the goals we set out.

1 Introduction

The transitive closure is an important extension of the
functionality of database systems. For example, in a
database containing information about edges and the
cost of edges between nodes, one can formulate ques-
tions like “Is A connected to B?” and “What is the
cost of the shortest path between A and B?”. And in
a database storing information about parts, one can
express bill-of-material questions. This functionality
has been proposed in the context of logical query lan-
guages [6, 171 and in the context of the relational alge-
bra [l, 131. Independent of the context, at the imple-
mentation level one needs an algorithm to efficiently

*The research of Maurice Houtsma has been made possible
by a fellowship of the Royal Netherlands Academy of Arts and
Sciences; email: houtsmaQcs.utwente.nl

process the transitive closure; many algorithms have
been proposed, e.g. [16].

Efficient evaluation of the transitive closure is still a
problem. Therefore, much research is currently taking
place into its parallel computation [3, 8, 12, 15, 19,
21, 221. For a good overview of parallel strategies for
computing transitive closure queries, we refer to [5].

In [lo, 111 we introduced the disconnection set ap-
proach as a way of attacking this efficiency problem
in a parallel environment. The disconnection set a p
proach is based on the divide-and-conquer principle.
The basic idea is to split the relation that represents
a connection network into a number of fragments. In
addition to the fragmentation, some connectivity in-
formation for nodes on the intersection of fragments
is computed and stored. A connection query like, “Is
A connected to B?” can now be replaced by n inde-
pendent transitive closure queries on individual frag-
ments, followed by one final query on a very small rela-
tion. The characteristics of this approach are: no com-
munication between the transitive closure operations,
high selectivity for the searches on the fragments, and
no redundant computations.

Because of these characteristics, the disconnection
set approach is well suited for parallel evaluation of the
transitive closure. (Also in a centralized environment
it performs better than other algorithms.) For good
fragmentations, it gives a linear speed-up. The choice
of the fragmentation is vital for the performance; some
obvious requirements come to mind. First of all, it
seems a good idea to have fragments of more or less
the same size, so that the parallel computations take
the same time. And second, the disconnection sets
should be rather small to restrict the search and to
limit the amount of precomputed information. These
requirements may be conflicting.

This paper will address the problem of fragment-
ing a relation to make the (parallel) computation of
the transitive closure baaed on the disconnection set
approach efficient. To better understand this design
problem we will focus on transportation networks.
These are characterized by clusters of nodes with a
rather high internal connectivity rate, while these clus-

447
1063-638W93 $03.00 0 1993 IEEE

ters are loosely interconnected. Three requirements
that have to be fulfilled by a fragmentation are for-
mulated and three different fragmentation strategies
are presented, each emphasizing one of these require-
ments. Some test results are presented to show the
performance of the various fragmentation strategies.

The paper is organized as follows. In Sec. 2 we
shortly describe the disconnection set approach again,
and then go into the characteristics of fragmentations
that may affect the performance of the disconnection
set approach. In Sec. 3 we discuss the type of graphs
that we focus on, and then introduce three algorithms
for fragmenting a graph; each algorithm focuses on a
particular characteristic. In Sec. 4 we give test re-
sults of the developed algorithms on different types
of graphs. Finally, in Sec. 5 we give conclusions and
discuss future research.

2 Disconnection set approach and data
fragmentat ion

In this section, we will shortly introduce the discon-
nection set approach [lo, 111. Then we will discuss
the characteristics of the disconnection set approach
that influence fragmentation design. There are sev-
eral options for fragmentation strategies, depending
on the issue that is considered to be most relevant.
As we do not yet know which of these issues has
the greatest influence on performance, we will de-
velop several algorithms-each focusing on one of the
characteristics-later on in Sec. 3

2.1 Disconnection set approach: a sketch

The disconnection set approach assumes an initial
data fragmentation based on application's semantics.
Consider a railway network connecting cities in Eu-
rope, and a question about the shortest connection
between Amsterdam and Milan. Assume that data are
naturally fragmented by country (e.g., Holland, Ger-
many, and Italy). Also assume that the border points
between countries are relatively few. The above ques-
tion can then be split into several parts: find a path
from Amsterdam to the eastern Dutch border, find a
path from the Dutch border to the southern German
border, find a path from the German border to the
Italian border, and find a path from the Italian bor-
der to Milan. All these queries have the same struc-
ture; they apply only to a fragment of the database,
and can be executed in parallel. Post-processing is
required to assemble the shortest path between the

Figure 1: Intuitive idea of the disconnection set ap-
proach

initial and final city, given all shortest paths produced
within single fragments. The intuitive idea behind the
disconnection set approach is illustrated in Fig. 1, for
a query concerning the connection between a node in
GI and a node in Ge.

We assume that the base relation R stores the con-
nection information'; R is partitioned into n frag-
ments R, (1 5 i 5 n) each stored at a different com-
puter or processor. This fragmentation induces a par-
titioning of G into n subgraphs G,. Disconnection sets
DSij are given by GinGj (they are thus sets of nodes).
We assume that the number of nodes belonging to dis-
connection sets is much less than the total number of
nodes in G.

In order to make the above approach feasible,' it is
required to store in addition some complementary in-
formation about the identity of border cities and the
properties of their connections; these properties de-
pend on the particular path problem considered. For
instance, for the shortest path problem it is required
to precompute the shortest path among any two cities
on the border between two fragments. Complemen-
tary information about the disconnection set DSij is
stored at both sites storing the fragments R, and Rj .

An important, but not strictly necessary, property
of a fragmentation is to be loosely connected this
corresponds to having an acyclic graph G' of com-
ponents G,. Formally, G' =< N , E > has a node
Ni for each fragment Gj and an edge Ejj = (Ni l N j)
for each nonempty disconnection set DSij. In Fig. 2
the fragmentation graph for the graph shown in Fig. 1
is shown. Intuitively, if the fragmentation graph is
loosely connected, then it is easier to select fragments
involved in the computation of the shortest path be-
tween two nodes. In particular, for any two nodes in

'R represents a directed graph, where each tuple represents

zI.e., to guarantee that answers are correct and precise.
an edge of the graph, possibly with an associated weight

448

Figure 2: Fragmentation graph of fragmented relation

G there is only one chain of fragments G, such that
the first one includes the first node, the last one in-
cludes the last node, and remaining fragments in the
chain connect the first fragment to the last fragment.
However, for many practical problems (such as the Eu-
ropean railway network itself) such property does not
hold.

In [lo] it is shown that, if the fragmentation is
loosely connected, the shortest path connecting any
two cities is found by involving in the computation
only the computers along the chain of fragments con-
necting them3. If the fragmentation is not loosely con-
nected, it is required to consider all possible chains of
fragments independently for solving the query.4 Ob-
viously, if the source and destination are within the
same fragment, the query can be solved by involving
only the computer storing data about that fragment,
including all complementary information about dis-
connection sets stored at that fragment. In practice,
this has the nice implication that queries about the
shortest path of two cities in Holland can be answered
by the Dutch railway computer system alone, even if
the path goes outside the Dutch border.

Along a chain of length n, query processing is per-
formed in parallel at each computer. Each subquery
determines a shortest path per fragment; note that
disconnection sets introduce additional selections in
the processing of the recursive query, they act as in-
termediate nodes that must be mandatorily traversed.
The final processing combines all shortest paths ob-
tained from the various processors with the comple-
mentary information, and selects the shortest one
among them. This final processing is effectively a se-
quence of binary joins between a number of very small
relations.

An important speed-up factor is due to the reduced
number of iterations required to compute each recur-

3Note that the shortest path might include nodes outside
the chain, however, their contribution is precomputed in the
complementary information.

41f the fragmentation graph becomes very complex and con-
tains many routes from one fragment to another, a technique
called Parallel Hierarchical Evaluation can be used to avoid
problems [12]

sive query independently. The number of iterations re-
quired before reaching a fixpoint is given by the maxi-
mum diameter of the graph; if the graph is fragmented
in n fragments Gi of equal size, the diameter of each
subgraph is highly reduced.

Note that neither communication nor synchroniza-
tion is required during the first phase of the computa-
tion; for evaluating the recursive subquery on a frag-
ment any suitable single-processor algorithm may be
chosen; it is also possible to use some other parallel
method. Only at the end of the computation, com-
munication is required for computing the final joins.
These joins will have relatively small operands (since
the disconnection sets are small) and pipelining may
be used for their computation.

The disadvantage of the disconnection set approach
is mainly due to the pre-processing required for build-
ing the complementary information and to the careful
treatment of updates. Complementary information is
different for each type of path problem. As long as
updates are not too frequent, the pre-processing costs
may be amortized over many queries.

2.2 Important issues for fragmentation
design

From the description of the disconnection set ap-
proach, we may distil three issues that are of major
importance to its performance: size of the disconnec-
tion sets, size of the fragments, and the existence of
cycles in the fragmentation graph.

Disconnection sets When finding a path from node
x in fragment F, to node 1/ in fragment F,, a
number of disconnection sets DSij, DSjk, etc.
are encountered. These disconnection sets act
as some sort of keyhole: only paths travelling
through this keyhole have to be examined. Start-
ing from this keyhole a sort of ‘magic cone’ is
build (cf. magic sets).
As the disconnection sets function as selection cri-
teria, the smaller they are the better. Selectivity
is already important in the case of ordinary joins,
but for transitive closure computations it is even
more important. As transitive closure computa-
tions are very computation intensive, and each
answer from one iteration is used in the next it-
eration, the higher the selectivity (i.e. the smaller
the disconnection set) the better.

Fragments An important aspect in parallel compu-
tation is balancing the workload. If the workload
is evenly spread over the processors, they can all

449

finish at more or less the same time. Any eventual
final computation that needs access to the result
of several processors can then start immediately
at the end.

The time needed for computing a transitive clo-
sure is determined by the number of iterations of
the transitive closure algorithm and the size of
the intermediate results. The number of itera-
tions depends on the diameter of a fragment (the
number of edges constituting the longest path),
the size of intermediate results depends on the
connectivity of the graph. Assuming that the con-
nectivity and the diameter of the fragments are
similar, the number of tuples in a fragment is a
good indication for the workload of a processor.

Cycles When considering a path from node x in frag-
ment Fi to node y in fragment F,, the optimal
situation is to find precisely one chain of frag-
ments connecting Fi to F,. Therefore, to min-
imize the number of cycles; a loosely connected
fragmentation is to be preferred.

We have now discussed the three most important
issues when fragmenting a relation to enable the dis-
connection set approach. Unfortunately, these issues
are not independent; they may even conflict with each
other. For instance, the graph may have such a struc-
ture that we either fragment it in a way that gives
small disconnection sets but many cycles, or in a way
that gives no cycles but large disconnection sets. It
is not obvious which of these fragmentations should
be preferred. Another example of conflicting require-
ments may be small disconnection sets vs. fragments
of similar size. Small disconnection sets minimize com-
putation on a fragment, fragments of similar size max-
imize the amount of parallelism (i.e. processors actu-
ally working at the same time). Which of these issues
is most relevant is impossible to say beforehand, but
will have to be deduced from actual experiments. For
instance, if the underlying database system has a good
support of pipelining in query processing, the issue of
fragment size may become less relevant as processes
do not need to wait for the final assembling of the
answers.

We have now indicated which three issues are of
main importance when fragmenting a relation. It
should also be clear that there is no easy way of pre-
dicting which issue is most important. The issues
clearly intertwine, and decisions which criterion to fo-
cus on should be based on experiments.

In the next section we will discuss a number of frag-
mentation strategies. Each strategy will focus on a

Figure 3: Transportation graph consisting of 4 clusters

particular issue. Once these fragmentation strategies
have been developed and implemented, we can start
experiments to decide on the relevance of the issues
discussed.

3 Data fragmentation strategies

It turns out that fragmenting an arbitrary graph in
a meaningful way is a highly nontrivial problem. Al-
though a sketch of a particular graph may give us the
idea that it can easily be fragmented, once we try to
write an algorithm for it, it turns out to be a real
problem.

We will, at first, restrict ourselves to a specific type
of graph, which is particularly suited for parallel eval-
uation using the disconnection set approach. We call
this type of graph transportation graph; an example
of it is given in Fig. 3. It consists of a number of
clusters; each cluster in itself is highly connected, but
the connection between clusters is very loose. Trans-
portation graphs occur frequently in real applications,
consider e.g. local train networks per region and fast
intercity trains connecting the regions, or local tele-
phone networks (heavily connected) with a few optic
fibres connecting these local networks. Because trans-
portation graphs are very common in applications, we
feel that our initial restriction to this type of graph is
justified. We will, however, also test the algorithms
on arbitrary graphs, later in Sec. 4.2.

For the transportation graph in Fig. 3, there are
some obvious candidate nodes for the disconnection
sets; the clusters should become fragments, and the
nodes on the inter-cluster connections should end up in
the disconnection sets. Our first idea was to come up
with a simple graph-theoretical algorithm that made
use of the characteristics of transportation graphs. We
did this by investigating the k-connectivity of a graph
(this is the smallest number of node-distinct paths be-
tween any pair of nodes from the graph). The nodes

450

whose removal would increase the k-connectivity of
the graph were marked as ‘relevant’ nodes, with the
idea that a number of them could be selected to form
disconnection sets. However, even for ‘simple’ graphs
as depicted in Fig. 3 we would run into problems; as
soon as the fragmentation graph contains cycles, the
k-connectivity is influenced by paths taking detours
through other fragments. Also, algorithms like this
are very computation intensive, as all possible com-
binations of nodes and paths have to be taken into
account.

We will discuss three other algorithms we devel-
oped. Each is based on a different characteristic as
discussed in Sec. 2.2

3.1 Center-based algorithm

The center-based algorithm focuses on achieving a bal-
anced workload. Ideally, all the fragments created by
this algorithm should require the same amount of com-
putation when computing the local transitive closure
from the starting disconnection set to another discon-
nection set. As described before, the characteristics
that determine the amount of computation for a frag-
ment are diameter and number of tuples. Generally,
it will not make a big difference which of these charac-
teristics we put first when fragmenting data. However,
the algorithm we present is flexible and allows us to
choose either one if it does make a difference.

The algorithm starts by determining so-called ‘cen-
ters’ in the graph. These centers should be thought
of as some kind of gravity points in the graph, very
much like spiders in a web. Starting from these cen-
ters the fragments are gradually constructed (a first
sketch of this approach was given in [12], and a sim-
ilar idea was, for different purposes, pursued in [2]).
Centers are determined based on the number of neigh-
bour nodes (transitively),as expressed by the following
formula:

g r a d e (i) + a C nb(j, l)+a2 nb(j, 2)+a3 C nb(j, 3)

with grade(i) the number of edges adjacent to i,
nb(j, d) the grade of node j at d edges from i and
a < 1. This formula is a variation on the status score

The number of centers that is chosen may depend
on factors such as the number of processors available,
or on the application.

Once it has been decided which nodes are centers,
the algorithm iterates over them and repeatedly adds
edges to the fragments. In the first step, edges con-
necting to the center are added. In subsequent steps,

j j j

[91.

/* Input: graph G = (V, E); Output: fragments
GI,. . . , G,; V =

{cl,. . . , c,,} := determine-centers(G);
/* Initialisation */
for i from 1 to n do

K; E = Ui E; */

vi := {ci};
E; := { (2 , ~) 1 2 = ci V y = ci}

od;
k := 1;
E := E \ Ui E;;
while E # 8 do
Ek := Ek U {(Z,y) I (2 , ~) E E A (2 E v k v 1/ E vk)};
vk := {Z I (Z,y) E Ek v (y,Z) E Ek);
E := E \ Ek;
k := (k mod n) + 1

od

Figure 4: Center-based fragmentation

edges are added to a fragment if they connect to edges
that have already been assigned to that fragment.

The algorithm is adaptable in the sense that the it-
eration over the centers may be based on the resulting
diameter of the fragment or on the number of tuples
already included. In the first case, one addition of
edges (in fact, a relational join between intermediate
result and the relation modeling the graph) is done at
each iteration. In the second case, the fragment with
the least number of edges is chosen for expansion un-
til another fragment becomes the smallest. The first
variant of this algorithm is shown in Fig. 4.

In practice, it may occur that centers are relatively
close to each other, possibly leading to large discon-
nection sets. If there is a notion of topology in the
network (as is often the case, cf. countries in a rail-
road network), an optimization is possible. In this
case the centers are spread over the graph, using the
notion of topology.

3.2 Bond-energy algorithm

In this section we describe an algorithm that focuses
on fragmenting a relation in such a way that the node
intersections of fragments will be small. The algo-
rithm is a variant of the well-known Bond-energy al-
gorithm [7]. It uses an adjacency-matrix to denote the
graph being fragmented. Columns of this matrix are
reordered in such a way that nodes that are closely
related are put closely together. In this way, clusters
are formed along the diagonal of the matrix. By split-
ting the matrix in such a way that the number of 1’s
(representing direct connections) outside each cluster

451

1 1 0
1 1 1
0 1 1

0 0 0
1 1 0
0 0 0

Figure 5: Fragmenting a matrix

is small, the disconnection sets are kept small. Let us
describe this now in more detail.

The algorithm starts with an adjacency-matrix M ,
where each entry M [i , j] is 1 if there exists a direct
connection between i and j, and 0 otherwise. Each
entry M[i , i] is also made 1. An arbitrary column is
now chosen as the first column of the matrix, next
to it the column is placed that maximizes the inner
product of the two columns (defined as xkixkj,
for columns z;, xj). Then, in each step a new column
is chosen and put either on the left of the columns that
have been placed, or on the right, or in between two
columns, whichever maximizes the sum of the inner
products of all the placed columns. The outcome of
this procedure depends on the column that was chosen
as the first one to be placed. Therefore, it has to be
iterated over all the columns. Finally, the matrix with
the greatest sum of inner products is the result.

Now that the matrix is clustered, the next step is
to split it. Fragmenting the relation represented by
the matrix means that we define blocks of contiguous
columns (rows) as fragments. The 1’s for the columns
of a block that fall outside the corresponding rows for
this block, are the connections with other fragments;
their number indicates the size of the disconnection
sets. In Fig. 5 a 6 x 6-matrix is shown. If nodes 1-
3 are grouped together, there are 2 connections with
nodes outside the block, both with node 5. If instead
nodes 1-4 are grouped together, there are 3 connec-
tions with nodes outside the block, with nodes 5 and
6. For minimizing the size of the disconnection sets,
the first fragmentation is to be preferred.

In general, we will want to split the relation into
more than 2 fragments; in this case it is not so simple
to determine the size of the disconnection sets while
splitting the matrix. If we decide that the first k
columns should form a fragment, we can determine
the overlap of this fragment with the remaining part
of the matrix. However, this overlap is only an indica-
tion of the size of the union of all disconnection sets

for this fragment, not for the size of a disconnection
set itself. This because fragmenting the rest of the ma-
trix may lead to a number of overlaps with the first
fragment, each contributing to the overlap just found.

Examining all possible ways to split a given ma-
trix of n columns into m blocks of contiguous columns
would require far too much work, as there are

() possibilities. We have therefore imple-

mented a simpler but adequate solution.
The columns of the matrix are scanned only once,

from left to right; local conditions are used to deter-
mine if a good place to split the matrix has been en-
countered. Several options exist for these local con-
ditions. One possibility is to split as soon as a local
minimum is reached; i.e., as soon as the number of
connections to nodes outside the current block is in-
creased. A second possibility is to use a threshold;
this threshold may be supplied by the user. While
scanning the matrix from left to right, it is split as
soon as the number of connections to nodes outside
the current block reaches the threshold. As optimiz-
ing to local minima usually turns out not to be best,
we have implemented the threshold approach. Fur-
ther finetuning is possible by taking into account the
number of edges in the current block when deciding to
apply the local threshold or not; this avoids generating
fragments that are ‘too small.’

3.3 Linear fragmentation algorithm

In this section we describe an algorithm that frag-
ments a graph in such a way that the fragmentation
graph (cf. Sec. 2.1) is guaranteed to be acyclic (i.e.,
loosely connected). An additional assumption we have
to make is that there is some topological information
associated to nodes of the graph. For the transporta-
tion graphs we are focusing on, this is a reasonable
assumption. We will assume that each node has an
associated coordinate-pair (2, y).

The algorithm starts by selecting a group of start
nodes located on an extreme end of the graph. In each
iteration, it then accumulates the adjacent edges in a
fragment; this idea is illustrated in Fig. 6. Once the
number of edges in a fragment has reached a certain
threshold (defined as I E I / f , the number of edges di-
vided by the number of fragments we want), the nodes
on the boundary are put in a disconnection set and
used as starting points for the next fragment. Note
that the disconnection sets may become very large us-
ing this algorithm. Also note that the fragment size
may be unbalanced; in each iteration all edges starting
from the boundary nodes have to be added to the frag-

452

GI DSl2 G2 DS23 G3 OS34 G4

1

Figure 6: Intuition behind linear fragmentation algo-
rithm

/* Input: graph G = (V, E), f = number of fragments */
/* Output: fragments GI , . . . , G,; V = ui V,; E = U, E;
threshold := I E I / f;
start-n := s nodes with smallest z-coordinates;
k := 1; E1 := Ez := . . . : E,, := 0
while I E I> 0 do

while 1 Ek I < threshold A 1 E)> 0 do
n e w e := ((2, y) I z E start-n v y E start-n};
start-n := {z I z # vr, A ((z,y) E new-e V (y,z) E new-e)};
Ek := Ek U new-e;
E := E \ new-e

od;
D S k (k + l) := start-n;
k : = k + l

Od

Figure 7: Linear fragmentation algorithm

ment to avoid cycles, we may therefore have fragments
that are just the size of the threshold but also frag-
ments that are much larger. The algorithm is shown
in Fig. 7

The result of the algorithm is influenced by the
choice of the start nodes. Depending on the shape
of a graph, a particular choice of start nodes may be
preferable. This is illustrated in Fig. 8, where the
ellipses represent the same graph, fragmented into 3
fragments. It illustrates that starting on the left side
of the graph and going to the right, is preferable to
starting at the top and going down. This, because the
size of the disconnection sets (nodes on the border be-
tween fragments) is much smaller that way. However,
graphs often have capricious forms that make a choice
of start nodes difficult. We have chosen to start at the
leftmost side, but for actual applications we might ask
the user to provide us with the start nodes.

Figure 8: Two ways of starting a fragmentation

4 Experimental results of the algo-
rit hms

In the first part of this paper, we have developed a
number of algorithms for fragmenting graphs for use
by the disconnection set approach. Each of these al-
gorithms focused on a specific goal: equally sized frag-
ments, small disconnection sets, or an acyclic fragmen-
tation graph. In this section we investigate in what
respect these goals are achieved. We will show how
the algorithms behave w.r.t. different types of graphs,
and investigate the characteristics of the fragmenta-
tions that result from applying the algorithms we de-
veloped.

To test the algorithms, we decided to generate
graphs (randomly) with particular characteristics.
Then, we tested the algorithms on these graphs to de-
termine the characteristics of the resulting fragmenta-
tions. Here, we will report on tests applied to two
specific types of graph. First of all, we generated
transportation graphs according to the structure pre-
viously shown in Fig. 3. Second, we generated graphs
without any particular predetermined structure. Our
main interest lies with transportation graphs, but test-
ing the algorithms on ‘ordinary’ graphs may also help
to give insight into the performance of our algorithms
(in terms of reaching the goals the algorithms were
developed for).

We will first discuss how we generated the graphs.
Then we will discuss the results of applying our algo-
rithms to these graphs. The results discussed here are
derived from [MI, which provides more detailed test
results.

4.1 Generating graphs

To test the algorithms, we generated graphs in a ran-
dom way. Input to the generation algorithm were the
number of nodes of the graph, the number of frag-
ments that should be generated (in caae of transporta-
tion graphs), and two parameters for the probability
function we used (explained shortly).

453

As we needed the nodes of the graph to have coordi-
nates for the application of the ‘linear fragmentation’
algorithm, the first step was to generate coordinates
for each node; the coordinates were evenly spread over
a given interval. We decided that these coordinates
could be of use in generating graphs as well. As our
main interest is in transportation graphs-where there
exist many connections inside a cluster, but few con-
necting different clusters-the use of coordinates is
particularly appropriate. They can be used to encour-
age local connections over connections between remote
nodes.

In the second step, we generated the edges of the
graph. Edges were generated w.r.t. a particular prob-
ability function, reflecting the fact that the chances of
connections between nodes that are close (in distance)
are bigger than the chances of connections between re-
mote nodes. The function we used is the following:

~ (p , q) = (c1/n2)e-c2d(p,q)

In this function, p and q denote the nodes under con-
sideration, d (p , q) is a function returning the Euclidean
distance between p and q, and c1 and c2 are the user-
provided parameters. By changing c1 we could influ-
ence the number of edges generated (and thereby the
connectivity), and by changing c2 we could influence
the probability of generating edges between nodes that
are far apart.

For transportation graphs, the abovementioned
procedure was first used to generate the required num-
ber of fragments. Then, these fragments were con-
nected following the requirements given by the user.
Hence, we were able to specify which fragments were
connected to each other and by how many edges.

4.2 Fragmenting graphs

After generating graphs we fragmented them using the
algorithms described in Sec. 3. We will now present
the results of this. The characteristics of the fragmen-
tations that we show are: average size of the fragments
F (i.e., number of edges), average size of the discon-
nection sets DS (i.e., number of nodes), average devi-
ation AF from F , and average deviation ADS from
DS. These characteristics are a good indication in
how far the goals set out in Sec. 3 have been met.

4.2.1 Transportation graphs

In Table 1 the results are shown for a number of tests
on transportation graphs that have a structure as de-
picted in Fig. 3. The fragments generated had 25

bond-energy
linear

mi
13.3 24.2

Table 1: Fragmentation characteristics for transporta-
tion graphs, 4 clusters of 25 nodes

nodes each and the average number of edges in these
graphs was 429; the average number of edges connect-
ing fragments was 2.25.

From these results we may notice the following. As
intended, the bond-energy algorithm fragments the
graphs in such a way that the average size of the dis-
connection sets is smallest (2.4); whereas the linear
fragmentation algorithm does not take the size of the
disconnection set in account (13.3). We may also note
that the variation in size of the fragments is quite large
with the bond-energy and linear fragmentation algo-
rithms, whereas the center-based approach achieves
a better balance in size of the fragments. Also, the
number of fragments is predetermined with the center-
based approach, whereas there is a slight variation
in number of fragments possible with the other algo-
rithms.

From the experiments we concluded that the center-
based approach did not always give the expected re-
sults, in particular, it turned out that the disconnec-
tion sets were larger than expected and that there
was a considerable variation in the size of the frag-
ments. This was due to the way centers were selected;
sometimes the selected centers were quite close to each
other. As we had already assigned coordinates to each
node, we decided to use these coordinates as well in
selecting the centers. From now on, we did not se-
lect the centers at random from a group of possible
centers (remember that these were selected using a
weight-function, as explained in Sec. 3.1). Instead, we
used the coordinates assigned to the nodes to make
sure that the selected nodes would not be too close
toget her.

The results from this change in selecting the cen-
ters for the center-based algorithm, is shown in Ta-
ble 2. These results were obtained for a transporta-
tion graph of the same type as discussed before, but
this time with 150 nodes per fragment. The number of
edges of the graph was 3167. As can be seen from the
deviation of the average fragment size, and the average
size of the disconnection sets, using the coordinates in
selecting the centers gives indeed a considerable im-

454

Algorithm F
center-based 791.8
distributed centers 791.8

Table 2: Fragmentation characteristics with and with-
out distributed centers, 4 clusters of 150 nodes

DS AF ADS
69.5 636.3 13.8
4.3 12.4 2.9

cent er-based 1 77 1 18.1 1 40.2 1 8.8
distributed centers
bond-energy
linear

77 18.9 34.7 5.9
93.2 5.4 88.4 2.1
111.8 35.8 42.1 1.25

Table 3: Fragmentation characteristics for general
graphs, 1 cluster of 100 nodes

provement .

4.2.2 General graphs

Finally, we tested general graphs, without any super-
imposed structure as in transportation graphs. Al-
though we developed the algorithms especially with
transportation graphs in mind, it is interesting to
study their applicability in general.

In Table 3 the results are shown for tests on general
graphs existing of 100 nodes and an average number
of edges of 279.5. We may note that the algorithms
again conform to the idea that underlies them. The
bond-energy algorithm fragments a graph in such a
way that the disconnection sets are small (5.4), how-
ever, the variation in size of the fragments is consid-
erable. The linear fragmentation achieves an acyclic
fragmentation, but the size of the disconnection sets
is large (35.8). Finally, the center-based algorithms
favour an equally balanced workload over small dis-
connection sets. W.r.t. the center-based algorithms
we have to make an additional remark: in the tests
we have used the variant that takes the diameter of
a fragment as an indication for the workload, if we
would have taken the other variant that takes size of
a fragment as indication this would clearly have shown
in the results.

4.2.3 Conclusions on experimental results

The results of the experiments show that, both for
transportation graphs and for ‘ordinary’ graphs, the
algorithms indeed achieve a fragmentation with the in-
tended characteristics. The variant of the bond-energy

algorithm renders a fragmentation with small discon-
nection sets, at the price of having fragments whose
size may differ considerably. The linear fragmentation
algorithm renders a loosely connected fragmentation
(no cycles in the fragmentation graph), at the price
of having large disconnection sets. And the center-
based algorithm renders a fragmentation with frag-
ments that are balanced in size, with disconnection
sets that are in size somewhere in between the ones
resulting from the other algorithms.

From our current perspective, we believe that small
disconnection sets will be the main factor in achieving
a performance-wise good parallel evaluation of transi-
tive closure queries; therefore, we feel that the variant
of the bond-energy algorithm will be most effective
when fragmenting a relation. However, the result may
very well depend on both the type of graph considered,
and on the characteristics of the database system that
is being used.

5 Conclusions and future research

We investigated the topic of fragmenting data in such
a way that we can achieve a good parallel computa-
tion of transitive closure queries. In [lo, 111 we intro-
duced a strategy for parallel computation of transitive
closure queries, called the disconnection set approach,
but we did not yet discuss data fragmentation algo-
rithms. Here we developed and tested the latter.

We indicated the issues that are of main impor-
tance when fragmenting data for the disconnection
set approach. These issues are: small disconnection
sets, equally sized fragments, and an acyclic fragmen-
tation graph. We developed several algorithms, each
focusing on a particular characteristic. We focused on
a particular class of graphs, so-called transportation
graphs, but the algorithms also work in the general
case. We presented test results, showing that the re-
sults of applying the algorithms indeed conform to the
characteristics we required.

If the complexity of the fragmentation graph (de-
scribing the way fragments are connected) becomes
very high, finding the paths in it that connect the
fragment containing the start node with the fragment
containing the end node might become computation
intensive. In [12] we have described an extension of
the disconnection set, called parallel hierarchical eval-
uation, to cope with that problem. It introduces the
concept of a ‘high-speed network’; this is a separate
fragment that mandatorily has to be traversed when
going to a non-adjacent fragment.

455

Currently, we are undertaking experiments [141
on the PFUSMA multi-processor database machine
[4,20]. These experiments will show which of the char-
acteristics identified here, is of main importance when
striving for an optimal parallel evaluation of transitive
closure queries. This will show which of the algorithms
we developed is most useful, and why. It may well be
the case that the actual algorithm to be used for data
fragmentation depends on the type of graph that is
considered, and on the specific characteristics of the
underlying database system.

Acknowledgements

We thank Prof. Kees Hoede from the department of
Applied Mathematics for sharing with us his ideas on
graph-theoretical issues.

References

AGRAWAL, R. ‘Alpha: an extension of relational
algebra to express a class of recursive queries,’ in
IEEE %”actions on Software Engineering, Vol. 14,

AGRAWAL, R. AND JAGADISH, H.V. ‘Efficient search
in very large databases,’ in Proc. 14th Int. Conf. on
Very Large Databases, Los Angeles, 1988,
pp. 407-418.

AGRAWAL, R. AND JAGADISH, H.V. “Multiprocessor
transitive closure algorithms,” in Proc. Int. Symp.
on Databases in Parallel and Distributed Systems,
Austin, Texas, Dec. 5-7 1988, pp. 56-66.

AMERICA, P. (Ed.), Parallel Database Systems,
Proc. of the PRISMA Workshop, LNCS 503,
Springer-Verlag, 1991.

CERI, S., CACACE, F., A N D HOUTSMA, M.A.W.
LLAn overview of parallel strategies for transitive
closure on algebraic machines,” in [4].

CERI s., G. GOTTLOB AND L. TANCA Logic
Programming and Databases, Springer-Verlag, 1990.

W.T. MCCORMICK, P.J. SCHWEITZER, T. WHITE
“Problem decomposition and data reorganization by
a clustering technique,” in Oper. Res. 20, 5
(Sept.-Oct. 1972), pp. 993-1009.

GANGULY s., SILBERSCHATZ A., A N D TSUR s. “A
framework for the parallel processing of Datalog
queries,” Proc. ACM-Sigmod Conference, Atlantic
City, USA, May 1990.

C. HOEDE “A new status score for actors in a social
network,” Technical report MATH-243, University of
Twente, 1979.

NO. 7, July 1988, pp. 879-885.

[lo] HOUTSMA M.A.W., APERS P.M.G., AND CERI S.
“Distributed transitive closure computation: the
disconnection set approach,” Proc. 16th h t . Conf.
on Very Large Data Bases, Brisbane, Aug. 1990,

[ll] HOUTSMA, M.A.W., APERS, P.M.G., A N D CERI, S.
“Complex transitive closure queries on a fragmented
graph,” Proc. 3rd Int. Conf. on Database Theory,
Lecture Notes in Computer Science, Springer-Verlag,
Dec. 1990.

[12] HOUTSMA M.A.W., CACACE F., AND CERI S.
‘‘Parallel hierarchical evaluation of transitive closure
queries,” in Proc. 1st Int. Conf. on Parallel and
Distributed Information Systems, Miami Beach,
Dec. 1991, pp. 130-137.

“Algebraic optimization of recursive queries,” in
Data and Knowledge Engineering, 7(4), March 1992.

FLOKSTRA, J. “Implementation and performance
evaluation of a parallel transitive closure algorithm
on PRISMA/DB” , Technical report INF92-45,
University of Twente, June 1992.

[15] HUA, K.A. A N D HANNENHALLI, S.S. “Parallel
transitive closure computations using topological
sort,” in Proc. 1st Int. Conf. on Parallel and
Distributed Information Systems, Miami Beach,
Dec. 1991, pp. 122-129.

transitive closure algorithms,’ in Proc. 14th Int.
Conf. on Very Large Databases, Los Angeles, 1988,

[17] NAQVI, S. AND TSUR, s. A logic language for data

[18] SCHIPPER, G.L.V. “Fragmentation design for

pp. 335-346.

[13] HOUTSMA, M.A.W. A N D APERS, P.M.G.

[14] HOUTSMA, M.A.W., WILSCHUT, A.N., AND

[l6] IOANNIDIS, Y. A N D RAMAKRISHNAN, R. ‘Efficient

pp. 382-394.

and knowledge bases, CS Press, 1989.

parallel computation of the transitive closure,’’
M.Sc.-Thesis, University of Twente, Nov. 1991.

[19] VALDURIEZ P. AND s. KHOSHAFIAN “Parallel
Evaluation of the Transitive Closure of a Database
Relation,” in Int. Journal of Parallel Programming,
17:1, Feb. 1988.

[20] WILSCHUT, A., FLOKSTRA, J., A N D APERS,
P.M.G. “Parallelism in a main-memory DBMS: The
performance of PRISMA/DB,” in Proc. VLDB,
Aug. 1992.

[21] WOLFSON 0. “Sharing the load of logic program
evaluation,” Int. Symp. on Database in Parallel and
Distributed Systems, Dec. 1988, pp. 46-55.

[22] WOLFSON 0. AND A. OZERI, “A new Paradigm for
Parallel and Distributed Rule-processing”, in Proc.
ACM-SIGMOD 1990, pp. 133-142.

456

