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Abstract—System lifetime is a major design constraint for
battery-powered mobile embedded systems. The increasing gap
between the energy demand of portable devices and their
battery capacities is further limiting durability of mobile devices.
Thus, the guarantees over Quality of Service (QoS) of battery-
constrained devices under strict battery capacities are of primary
interest for mobile embedded systems’ manufacturers and stake-
holders.

This paper presents a novel approach for deriving QoS of
applications modelled as synchronous dataflow (SDF) graphs.
We map these applications on heterogeneous multiprocessor plat-
forms that are partitioned into Voltage and Frequency Islands,
together with multiple kinetic battery models (KiBaMs). By
modelling the whole system as hybrid automata, and applying
model-checking, we evaluate, (1) system lifetime; and (2) mini-
mum required initial battery capacities to achieve the desired
application performance. We demonstrate that our approach
shows a significant improvement in terms of scalability, as
compared to a priced timed automata based KiBaM model. This
approach also allows early detection of design errors via model
checking.

I. INTRODUCTION

Mobile computing has experienced a major upswing over
the last two decades. As a result, applications with increasing
functionality and complexity are continuously implemented
on mobile embedded devices such as smart phones, allowing
these systems to operate independently. However, this trend
has increased the energy consumption of mobile devices
manifold. On the other hand, battery energy densities have
not grown at the same rate over the years, thus leading to
system lifetime as a major design constraint. In this paper, we
define the lifetime as the time one can use the battery before
it is empty.

Mobile embedded systems are often powered only by batter-
ies that may or may not be recharged regularly by an external
power source. For example, in a military Software Defined
Radio that is being operated in a desert or on a mountain
where energy supplies are unreliable, the primary Quality of
Service (QoS) concern is to determine the system lifetime.
Similarly, a geostationary satellite with solar panels to charge
on-board batteries, is recharged at a regular intervals of 12
hours when facing the sun. However, the satellites have strict
limitations regarding mass and volume. In this case, the main
QoS interest is to assess the battery sizes and weight that
yield the performance criteria. In these cases, the evaluation of
the QoS of battery-constrained mobile embedded systems has
emerged as one of the most critical, challenging and essential

concern for manufacturers, investors and users.
One can identify three QoS factors, and their relation with

three different design choices, as given in Table I. First, the
throughput of a system, defined as a measure of how many
units of information a system can process in a given amount
of time, has a direct impact on energy consumption which in
turn influences the system lifetime. Secondly, the number of
processors affects both the system lifetime, and manufacturing
cost of the overall system. Lastly, the number of batteries
relates not only to system lifetime and cost, but also to the
mass and volume of a system. Therefore, this paper takes in
account aforementioned design alternatives, with respect to
system lifetime and minimum battery capacities.

This paper considers a very intuitive battery model termed
Kinetic Battery Model (KiBaM) [16] as a representation of
dynamic behaviour of a conventional rechargeable battery,
see Figure 1. A KiBaM models the total charge in a battery
as two separate tanks. One tank holds the charge which is
immediately available to be consumed by the load. The other
tank holds the charge which is chemically bound. It is because
a chemical kinetics process is used as its basis, that the model
is termed kinetic. Experimental studies show that the KiBaM
provides a good approximation of the system lifetime across
various battery types [13].

To reduce the power consumption, different system-level
power management methods like Dynamic Power Manage-
ment (switching to low power state) (DPM) [7] and Dy-
namic Voltage and Frequency Scaling (throttling processor
frequency) (DVFS) [19] has gained significant value and
success. The concept of voltage-frequency islands (VFIs) [11]
further allows us to cluster a group of processors in such a
way that each VFI runs on a common clock frequency/voltage.
This achieves fine-grained system-level power management. In
CMOS based processors, voltage/frequency scaling by a factor
of s causes the battery current to scale by s3 [8]. Thus, the
system lifetime depends hugely on the battery capacity and
the level of the load current applied to it.

If we have multiple batteries in the system, another
important factor contributing to overall lifetime is the usage
pattern of the batteries, i.e., how batteries are scheduled. This
leads to an important research problem of devising a battery-
aware scheduling mechanism, where given a set of tasks, a
set of resources to execute the tasks, and a given number of
batteries, we are able to derive a battery-optimal schedule of
tasks.



Design
Choices

QoS
Factors System

Lifetime
Cost

Volume
and Mass

Required Throughput 3

Number of Processors 3 3

Number of Batteries 3 3 3

TABLE I: Relation between Design Choices and QoS factors

The charge stored in a battery is represented by a finite set
of continuous variables in the KiBaM, making the behaviour
of KiBaM hybrid. Synthesising optimal battery schedules
for multiple batteries using existing analysis techniques for
hybrid systems, is very expensive. Therefore, the state-of-the-
art method in [14] discretises the KiBaM, and models it as
priced timed automata (PTA) [6]. Furthermore, for a fixed
load, this approach deploys the model-checker UPPAAL Cora
to search the whole state-space, and generating the optimal
battery schedule. However, this method also does not solve the
scalability problem. As increasing the initial battery capacities
leads to searching the bigger state-space, this approach only
allows to model limited battery capacities. Furthermore, this
approach discretises the temporal dimension, which limits its
accuracy.

We propose an alternative, novel approach based on Hybrid
Automata (HA) [10]. These extend timed automata [4] (for
the modelling of time-critical systems and time constraints)
by continuous variables. HA can be analysed using UPPAAL
[5], that supports both model-checking and highly scalable
Monte Carlo simulations. In contrast to discretisation, as done
in [14], we take into account the continuous variables of
the KiBaM by modelling it as a hybrid automaton, which
obviously makes it a more accurate model than PTA-based
KiBaM. This approach enables us to utilise UPPAAL to employ
highly scalable technique of Monte Carlo simulations to assess
various QoS parameters, such as, system lifetime and adequate
battery capacities. In this paper, we show that our approach
scales better than the one presented in [14]. Furthermore, we
also utilise UPPAAL for applying model checking to verify
various user-defined properties. Thus, as opposed to other
simulation based tools for hybrid systems, modelling as HA
and using UPPAAL provides an additional benefit of model
checking against state-based properties.

We use Synchronous Dataflow (SDF) [15] as a computa-
tional model. SDF provides a natural representation of real-
time streaming and digital signal processing applications.
In this paper, SDF graphs are used to represent software
applications which are partitioned into tasks, with inter-task
dependencies and their synchronisation properties.

Our approach takes four ingredients: (1) a platform model
that describes the specifics of the hardware, such as, VFI
partitions, frequency levels and power usage per processor;
(2) an SDF graph scheduler that maps the application tasks
on the platform model in a static-order manner; (3) given
number of batteries; and (4) a battery scheduler that defines the
scheduling scheme of batteries. For given battery capacities

and timing constraints, we compute system lifetime (SDF
graph iterations). Similarly, for given application performance
criteria, we determine the adequate battery capacities. This
method facilitates system designers to evaluate aforementioned
QoS factors for different design choices, such as, varying
number of VFIs, processors, and batteries. Furthermore, this
method also allows system designers to detect subtle battery
design errors in early phases via model checking.

In particular, our main contributions are as follows. (1)
We utilise hybrid automata to model check and assess QoS
of multiple KiBaMs for different design alternatives, without
discretising time. (2) We consider realistic hardware platforms
equipped with the novel energy management techniques, com-
pared to the state-of-the-art [20]; (3) We analyse SDF graphs
as input which are more versatile and allow more realistic
data-dependencies than acyclic applications [9] [14] [20]; (4)
We show that our approach allows better scalability than PTA-
based discretised KiBaM [14]; (5) Our approach allows early
detection of design errors via model checking.

Paper organisation. Section II reviews related work. Sec-
tion III formalises the problem, and translation to HA using
UPPAAL is illustrated in Section IV. Section V experimen-
tally evaluates the QoS analysis. Finally, Section VII draws
conclusions and outlines possible future research.

II. RELATED WORK

An extensive survey paper [13] outlines the broad research
work on various battery models. The work in [3] applies the
combination of DVFS and DPM, on VFI-partitioned heteroge-
neous processors. However, this paper assumes energy source
to be ideal. We solve this limitation by considering a realistic
model of batteries.

The state-of-the-art methods in the realm of battery-aware
scheduling for multiple batteries, are presented in [14] and [9].
The approach in [14], in comparison to ours, discretises time.
This approach helps to find optimal battery schedules, but do
not scale well because of the discretisation. The technique in
[9] models KiBaMs as hybrid like us, and discretises time
to search the state-space, leading to the better results than
the work in [14]. But, due to the fact that the state-space
grows larger with the number of batteries, the scalability of this
approach also suffers. We, on the other hand, run Monte Carlo
simulations, that allows us to avoid the state-space explosion.
The analysis shows that the scalability of our approach is better
than the technique in [14].

A more advanced technique that also utilises hybrid au-
tomata like us and [9], is presented in [20]. In this paper,
the KiBaM provides energy to an uniprocessor. Unlike our
method, this approach discusses a single battery case only.
Another novel work in [12] extends KiBaMs with random
initial SoC and load, without discretising time. In this way,
probabilistic guarantees about the system lifetime can be
provided. In comparison to our work, this technique is also
confined to a single KiBaM only. Table II summarises different
aforementioned KiBaM analysis methods.

To the best of our knowledge, there are no papers that



Method
Without

Discretisation
Multiple
KiBaMs

[9] [14] 7 3

[20] 3 7

[12] 3 7

Our Method 3 3

TABLE II: Comparison among different battery analysis methods
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Fig. 1: Model of a KiBaM

analyse multiple KiBaMs without discretising time.

III. SYSTEM MODEL DEFINITION

We formalise battery model, SDF graphs, and hardware plat-
form model in subsection III-A, III-B and III-C respectively.

A. Kinetic Battery Model

The kinetic battery model (KiBaM) [16] is a mathematical
characterisation of state of charge of a battery. Key feature
is that not all energy stored in a battery can be utilised
at all times. To model this phenomenon, the total charge
stored in a battery is divided into two “tanks”, the available
charge and the bound charge , see Figure 1. Only the available
charge can be consumed immediately by a load at the time-
dependent rate i , and thereby behaves similar to an ideal
energy source. The bound charge is converted to available
charge at a rate proportional to the height difference with the
proportionality factor being the rate constant k , and is available
to be consumed. Thus, bound charge replenishes available
charge, and this effect is termed recovery effect .

If the widths of the available and bound charge tanks are
c and 1 − c respectively, then the tanks are filled to heights
ha and hb , and the charges in both tanks are a = cha and b =
(1 − c)hb respectively. Formally, the KiBaM is characterised
by the following system of differential equations.

ȧ(t) = −i(t) + k(hb − ha) (1)

ḃ(t) = −k(hb − ha) (2)

The system starts in equilibrium, i.e. ha = hb. With an initial
capacity of C , the initial conditions are a(0) = cC and b(0) =
(1 − c)C . The battery is considered empty when a = ha = 0,
as it cannot supply charge any more at the given moment even
though it may still contain bound charge. The system lifetime
ends when all batteries are emptied.

Definition 1. A KiBaM system KS = (B,Cap) consists of a
finite set of KiBaMs B = {bat1, . . . , batm}, and a function
Cap : B → R≥0 denoting the initial capacity of each bat ∈ B.

In our case-studies, we consider batteries having the ca-
pacity of 1300 mAh, as used in the Samsung Galaxy Fame
smartphones [1].

B. SDF Graphs

Typically, real-time streaming applications execute a set of
periodic tasks, which consume and produce a fixed amount
of data. Such applications are naturally modelled as SDF
graphs [15]: a directed, connected graph in which tasks are
represented by actors. Actors communicate with each other via
streams of data elements, represented by tokens . The tokens
are transported between the actors via edges . The execution
of an actor is known as an (actor ) firing .
Definition 2. An SDF graph is a tuple G = (A,D,Tok0, τ)
where: A is a finite set of actors, D ⊆ A2 × N2 is a finite
set of dependency edges, Tok0 : D → N denotes distribution
of initial tokens in each edge, and the execution time of each
actor is given by τ : A→ N≥1.
Definition 3. Given an SDF graph G = (A,D,Tok0, τ), the
sets of input and output edges of an actor a ∈ A are defined
respectively as In(a) = {(a′, a, p, q) ∈ D|a′ ∈ A, p, q ∈ N}
and Out(a) = {(a, b, p, q) ∈ D|b ∈ A, p, q ∈ N}. The con-
sumption and production rate of an edge e = (a, b, p, q) ∈ D
are defined respectively as CR(e) = q and PR(e) = p.

Informally, actor a can fire if each input edge (a′, a, p, q) ∈
In(a) of a contains at least q tokens; firing actor a removes
q tokens from the input edge (a′, a, p, q). Firing lasts for τ(a)
time units and ends by producing p′ tokens on each output
edges (a, b, p′, q′) ∈ Out(a).
Example 1. Figure 2 shows the SDF graph of an MPEG-
4 decoder [18]. The SDF graph contains five actors
A={FD, VLD, IDC, RC, MC}, representing the tasks per-
formed in MPEG-4 decoding. For example, the frame detector
(FD) determines the number of macro blocks to decode. To
decode a single frame, FD must process between 0 and 99
macroblocks, i.e., x ∈ {0, 1, . . . , 99} in Figure 2.

Arrows between the actors depict the edges which hold
tokens (dots) representing macroblocks. The execution time
(ms) of the actors is represented by a number inside the actor
nodes. The numbers near the source and destination of each
edge are the production and consumption rates respectively.

To avoid unbounded accumulation of tokens in a certain
edge, we require SDF graphs to be consistent .
Definition 4. A repetition vector of an SDF graph G =
(A,D,Tok0, τ) is a function γ : A → N0 such that for
every edge (a, b, p, q) ∈ D from a ∈ A to b ∈ A, the
relation p.γ(a) = q.γ(b) exists. An SDF graph is consistent
iff γ(a) > 0 for all a ∈ A.
Definition 5. Let us consider an SDF graph G =
(A,D,Tok0, τ) with a repetition vector γ. An iteration of G
is defined as a set of actor firings such that for each a ∈ A, the
set contains exactly γ(a) firings of actor a. Thus, each actor
fires according to γ in an iteration.
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Fig. 2: SDF Graph of an MPEG-4 Decoder

C. Platform Application Model

A Platform Application Model (PAM) models a multi-
processor platform where the application, modelled as SDF
graph, is mapped on. Our PAM models supports several
features, including (1) heterogeneity, i.e., actors can run on
certain type of processors only; (2) a partitioning of the proces-
sors in voltage and frequency islands; (3) different frequency
levels each processor can run on; (4) power consumed by a
processor in a certain frequency, both when in use and when
idle; (5) power and time-overhead required to switch between
frequency levels.
Definition 6. A platform application model (PAM) is a tuple
P = (Π, ζ, F, Iocc , Iidle , Itr ,Ttr , τact) consisting of

• a finite set of processors Π assuming that
Π = {π1, . . . , πn} is partitioned into disjoint blocks
Π1, . . . ,Πk of voltage/frequency islands (VFIs),

• a function ζ : Π → 2A indicating which processors can
handle which actors,

• a finite set of discrete frequency levels available to all
processors denoted by F = {f1, . . . , fm},

• a function Iocc : Π×F → N denoting the operating load
current, if the processor π ∈ Π is running at a certain
frequency level f ∈ F in the working state,

• a function Iidle : Π × F → N denoting the idle load
current, if the processor π ∈ Π is running at a certain
frequency level f ∈ F in the idle state,

• a function Itr : Π × F 2 → N expressing the transition
load current, if processor π ∈ Π switches the running
frequency from f ∈ F to another frequency f ∈ F ,

• a function Ttr : Π × F 2 → N expressing the time
overhead of switching from one frequency level f ∈ F
to another f ∈ F for each processor π ∈ Π, and

• the valuation τact : A×F → N≥1 defining the execution
time τact of each actor a ∈ A mapped on a processor at
a certain frequency level f ∈ F .

Example 2. Exynos 4210 is a state-of-the-art processor used
in high-end platforms such as Samsung Galaxy Note, SII etc,
and has 5 DVFS levels [17]. Later in Section V, we consider
Exynos 4210 as an use-case for experimental evaluation.
Definition 7. Given an SDF graph G = (A,D,Tok0, τ), a
static-order (SO) schedule is a function σ : Π × R → (A ×
F )∪ (⊥ ×F ) that assigns to each processor π ∈ Π over time,
an ordered list of actors or idle slots to be executed at some
frequency, where ⊥ represents the idle slots.

Definition 8. The throughput for a static-order schedule of
an SDF graph G = (A,D,Tok0, τ) is the average number of
graph iterations that are executed per time unit, measured over
a sufficiently long period.

As discussed earlier, in case of more than one battery in the
system, the batteries are chosen according to some schedule
or scheduling policy. In most systems, the batteries are used
sequentially, i.e., only when one battery is empty, the other is
used [14]. However, as shown in [14], a specific scheduling
scheme termed best-of -all achieves better system lifetime
than other schemes. For the same reason, we consider best-
of-all in this paper. In this scheduling scheme, after an SDF
graph iteration finishes, (i.e., not during the execution of the
iteration) the battery having the highest available charge is
selected to provide energy for the next iteration.

IV. TRANSLATION TO HYBRID AUTOMATA

A. Hybrid Automata

Timed automata are a popular and powerful formalism
to model and analyse real-time systems [4]. TA are state-
transition diagrams augmented with real-valued clocks, which
can be used in enabling conditions for transitions and in state
invariants that enforce deadlines.

Hybrid automata extend timed automata by continuous
variables, which we use to model hybrid behaviour of the
batteries. Let X be a finite set of continuous variables. A
variable valuation over X is a mapping υ : X → R, where R
is the set of reals. We write RX for the set of valuations over
X . Valuations over X evolve over time according to delay
functions F : R≥0 × RX → RX , where for a delay d and
valuation υ, F (d, υ) provides the new valuation after a delay
of d.
Definition 9. A hybrid automaton H is a tuple
(L,Act , X,E, F, Inv , l0), where L is a finite set of locations;
Act is a finite set of actions, co-actions and internal λ-actions;
X is a finite set of continuous variables; E is a finite set of
edges of the form (l, g, a, ϕ, l′), where l and l′ are locations,
g is a predicate on RX , action label a ∈ Act and ϕ is a binary
relation on RX ; Inv assigns an invariant predicate Inv(l)
to any location l; for each location l ∈ L, F (l) is a delay
function; and l0 ∈ L is the initial location.

In particular, HA can be analysed by the tool UPPAAL,
where each component of the system is described by an
automaton whose clocks can evolve with various rates. These
rates can be specified with, e.g., ODEs. We utilise UPPAAL
engine to perform Monte Carlo simulations to estimate QoS,
and to perform model checking.

B. Translation to Hybrid Automata

Our framework consists of separate models of KiBaMs, a
KiBaM scheduler, an SDF graph scheduler, and the processor
application model. In this way, we divide the problem of
evaluating the QoS in terms of power source, tasks and
resources. In this section, we describe the translation of an
SDF graph scheduler along with a processor application model
and KiBaMs to HA using UPPAAL.
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Given an SDF graph G = (A,D,Tok0, τ) mapped on a
processor application model (Π, ζ, F,Ttr , τact) powered by a
KiBaM system KS = (B,Cap, Iocc , Iidle , Itr ), we generate a
parallel composition of HA:

Ksched‖K1‖,...,‖Km‖Kobs‖G sched1‖,...,‖G schedn‖
Processor1‖,...,‖Processorn‖Gobs

Here, the automaton Ksched models the scheduling scheme
of batteries. This paper considers the best-of-all scheduling
scheme, i.e, after every iteration, the battery with the highest
available charge is chosen to serve for the next iteration. The
HA K1, . . . ,Km model the batteries B = {bat1, . . . , batm}.
The automaton Kobs keeps account of the end of system life-
time by counting the empty batteries. Similarly, the automaton
G sched implements the static-order firing of SDF actors on
the processors. The HA Processor1, . . . ,Processorn model
the processors Π = {π1, . . . , πn} The SDF graph observer
Gobs counts if each processor has fired all its mapped actors,
according to its static-order schedule. Hence, this automaton
determines when an iteration is finished. Note that the resulting
hybrid automata is trivially extensible in the number of proces-
sors and batteries. Thus, the translation is, at least, composable
with regards to the KiBaM system and PAM.

Figure 3 shows the interactions between the HA of different
components. The interested readers can see some of the
UPPAAL models in Appendix. Due to lack of space, we refer
to [2] for more details on translation and UPPAAL models.

V. EXPERIMENTAL EVALUATION VIA MPEG-4 DECODER

We evaluate QoS factors by means of an example of the
MPEG-4 decoder in Figure 2. We assume that MPEG-4
decoder is mapped on Exynos 4210 processors. The processors
are provided energy by Samsung batteries. In our experiments,
we use c = 1/6 and k = 2.2324 × 10−4s−1, as in [14].
The processors are available with two frequency levels (MHz)
f2 = 1400 and f1 = 1032.7 [17]. Table III shows the idle and
operating load currents of all processors at both frequencies.
We evaluate the system lifetime in terms of completed number
of video frames, with respect to various design choices dis-
cussed earlier, i.e., varying (1) frames per second (throughput);
(2) number of processors; and (3) batteries. For these choices,
we assess adequate battery capacities. Due to space limitation,
we present adequate battery capacities only for one battery.
The SO schedules considered in this section are given in [2].

A. Varying Frames per Second

Let us consider that we have 6 Exynos 4120 processors
Π = {π1, . . . , π6} served by two batteries B = {bat1, bat2}.
We consider different SO schedules with varying frames per

Voltage(V) Frequency(MHz) Iidle(mA) Iocc(mA)

1.2 1400 20 500
1.00 1032.7 8 190

1.2 1400 20 500
1.00 1032.7 8 190

1.2 1400 20 500
1.00 1032.7 8 190

1.2 1400 20 500
1.00 1032.7 8 190

TABLE III: Description of Exynos 4210 Processors
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second (fps) constraints. For those SO schedules, Figure 4
shows the total number of video frames per second completed.
As we can see from Figure 4, at tighter performance con-
straints (throughput) when the idle time of processors is not
sufficient to move to low power state, the batteries are drained
more rapidly. Thus, we achieve fewer iterations. If we require
fewer frames per second from an MPEG-4 decoder, then more
iterations are acquired.

For the same SO schedules considered earlier, we com-
pute the minimum battery capacities to complete 1000 video
frames. The minimum required initial capacity Cap(bat1 ) for
the battery bat1 ∈ B is shown in Figure 5. It can be seen from
Figure 5 that if we relax the frames per second constraint, the
minimum required capacity also decreases.

Nevertheless, if the video quality is enhanced from 125
to 200 fps, then the increase in required battery capacity is
relatively small, equal to 84 mAh. However, the improvement
in the video quality is considerable. Thus, higher performance
can also be achieved at the expense of a small increase in the
battery capacities, leading to high-performance systems with
less mass and volume. Hence, this method allows us to obtain
a Pareto front by sweeping throughput constraints, for a fixed
number of processors and batteries.

B. Varying Number of Processors

In this case, we consider two batteries, and different SO
schedules all of which yield 71 fps. Figure 6 shows the
total number of video frames completed for varying number
of processors. As we can see from Figure 6, for the same
battery capacities, more processors achieve more or equal
number of frames. The reason is that, if we reduce the number
of processors, the same amount of work is done on fewer
processors to attain same throughput, resulting in running on
higher frequencies most of the time. Therefore, battery charge
is consumed more rapidly, if the number of processors are
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reduced.
For the same SO schedules, Figure 7 shows the minimum

required capacity Cap(bat1 ) to complete 1000 video frames.
The results reiterate the earlier conclusions in Figure 6 that,
to achieve the same throughput, fewer processors carrying out
the work of same magnitude requires larger battery capacities.

Hence, using this method, a system designer can estimate
QoS for different design alternatives. For instance, in our
running example, one can clearly see that we can achieve
same throughput for 4 processors, as 5, without requiring extra
capacities for batteries. Therefore, we may not need more
processors in our platform, and reach a certain throughput
with fewer number of processors, and same battery capacities,
contributing to low-cost embedded systems with reduced mass
and volume.

C. Varying Number of Batteries

Let us assume that we have 6 Exynos 4120 processors. We
further consider a SO schedule producing 71 fps. For varying
batteries, Figure 8 and 9 shows the total number of video
frames completed, and minimum required initial capacity for
bat1 ∈ B to complete 1000 video frames respectively. As it
can be seen from Figure 8, increasing the number of batteries
improves the attainable number of frames linearly.

However, if we analyse the Figure 9, we can see that
increasing the number of batteries does not reduce the battery
capacities at a linear rate. Therefore, we can conclude that,
having fewer batteries with larger capacities is more beneficial
than higher number of batteries with smaller capacities. This
achieves low-cost and high-performance systems.

Cap(bat1 ) Cap(bat2 ) S1 (computation time) S2 (computation time) S3 (computation time)
PTA-KiBaM HA-KiBaM PTA-KiBaM HA-KiBaM PTA-KiBaM HA-KiBaM

1.25×10−4 1.25×10−4 0 (520) 0 (28) 0 (200) 0 (46) 0 (2130) 0 (51.4)

2.5×10−4 2.5×10−4 0 (510) 0 (55) 1 (41060) 0 (48) Out of Memory 0 (52.7)

3.75×10−4 3.75×10−4 Out of Memory 2 (62) 1 (14810) 0 (49) Out of Memory 2 (52.8)

5×10−4 5×10−4 Out of Memory 4 (64) Out of Memory 2 (49) Out of Memory 4 (54.1)

TABLE IV: Comparison of two approaches wrt varying battery capacities.
Batteries HA-KiBaM PTA-KiBaM

1 1 N/A
2 4 Out of Memory

3 6 Out of Memory

4 8 Out of Memory

5 9 Out of Memory

6 12 Out of Memory

7 14 Out of Memory

8 16 Out of Memory

9 17 Out of Memory

10 20 Out of Memory

TABLE V: Comparison of two approaches wrt number of batteries.

D. Comparison with PTA-KiBaM

In this subsection, we compare the approach presented
in this paper (HA-KiBaM) with the PTA-based approach
(PTA-KiBaM) [14]. Let us take the example of an MPEG-
4 decoder in Figure 2. We assume that there are two batteries
B = {bat1, bat2} in the system. We consider three arbitrary
SO schedules. i.e., S1, S2 and S3. It is worth mentioning
that the work in [14] evaluates the completed number of
tasks, instead of iterations. However, as iterations are a key
metric in SDF graphs, we compare both techniques in terms
of completed number of iterations (video frames per second).

Columns 3-8 in Table IV show the completed number
of iterations and computation time (ms), calculated using
both methods, against different battery capacities (mAh) in
Columns 1-2. The experiments were run on a dual-core 2.8
GHz machine with 8 GB RAM. Table IV shows that HA-
KiBaM achieves the same results as PTA-KiBaM except S2.
The reason of not producing the same results in S2 is that
PTA-KiBaM allows to change the active battery during the
iteration. Whereas, we consider a specific scheduling scheme,
where we change the battery after an iteration is finished.

However, the biggest advantage of HA-KiBaM is the scale
of capacities it can handle. As Table IV shows, PTA-KiBaM
can only handle very small battery capacities that are able
to finish not more than one video frame. This makes PTA-
KiBaM impracticable for modern-day systems, as opposed to
our method that scales to much larger capacities (see Section
V). Furthermore, PTA-KiBaM requires considerably longer
computation time than HA-KiBaM. Please note that zero in
Table IV means that the battery capacities are not enough,
even to finish one iteration (frame per second).

In addition to the battery capacities, our method also scales
better to the number of batteries. Table V compares the
iterations completed for varying number of batteries for both
methods. For this experiment, we consider SO schedule S3,
and Cap(bat) = 5×10−4 mAh for all bat ∈ B.

VI. MODEL CHECKING VIA MPEG-4 DECODER

In this section, we demonstrate the analysis of functional
and temporal properties, using the UPPAAL model checker and



its query language. We consider the case-study of an MPEG-4
decoder mapped on Exynos 4210 processors, and powered by
a KiBaM system.

Deadlock

Checking deadlock freedom is achieved via the UPPAAL
query (A[] not deadlock). This query allows us to check if a
certain static-order schedule is deadlock free or not.

Parallel firings of actors

We can check whether any actors can fire in paral-
lel. For example, actors p and q mapped on the pro-
cessors π0 and π1 respectively, can fire in parallel if
the query E <> SDFScheduler0.activeActor == p and

SDFScheduler1.activeActor == q evaluates to true. In our
experiment, p = MC and q = RC . As these two actors cannot
fire in parallel, the answer to this query turns out to be false.

Same running frequency in a VFI

We can also check safety properties such as, at a
given time, all processors belonging to the same VFI
should not run at the different frequency. For this pur-
pose, we create a variable named “curr freq”available to
all processors, that keeps account of current running fre-
quency of each processor. If we have two processors
π0 and π1 in a same VFI, then we check the query
A[]Processor0.curr freq == Processor1.curr freq to
verify this property.

In the same way, functional correctness of properties related
to KiBaMs can also be verified. However, to verify hybrid
properties, UPPAAL offers statistical model checking instead
of classical model checking, even though we do not have
stochastic properties in our system. In the following, we
demonstrate model checking of functional requirements of
KiBaMs.

Fair Scheduling

We can also verify if only the best battery out
of all batteries is selected after each iteration. Let us
assume that we have two batteries, and an integer
empty count to count empty number of batteries. We run
the query Pr[<= 1500](<> bound 1− bound 0 > n and

empty count < 2) that determines if difference between the
bound charge of two batteries does not exceed more than a
certain amount, and each battery gets a fair chance to recover
its bound charge. UPPAAL answers that the probability for this
query to hold is [0,0.0973938] with 0.95 confidence, which
means that this property is not satisfied. In our experiments,
n is 4.

Active Number of Batteries

Similarly, we can also check that no more than one bat-
tery should be active at any given time. Let us assume
that we have two batteries, and boolean variables b0 active
and b1 active is assigned to each battery respectively, to
check if that battery is active. To verify this property, we
use the query Pr[<= 1500](<> b0 active == true and

b1 active == true). The probability for this property to
hold is [0,0.0973938] with 0.95 confidence, which means that
this property is not satisfied.

VII. CONCLUSIONS

With the growing gap between the energy demand and bat-
tery densities, yet compact methods for guaranteeing QoS of
multiple KiBaMs are needed. We have presented a novel tech-
nique to predict system lifetime for SDF-modelled streaming
applications, mapped on the processors equipped with energy
reduction techniques and powered by multiple batteries. This
provides us with a best trade-off between the throughput, the
number of processors and batteries. The batteries are modelled
as a hybrid system, which has the advantage of being accurate.

Future research direction is to explore the possibilities of
battery-aware scheduling. We also plan to analyse preemptive
scheduling, by having an observer automaton to record the
elapsed execution time during the execution of an actor.
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APPENDIX

Here we show the HA models with respect to the MPEG-4
decoder example in Figure 2 that is mapped on Exynos 4210
processors and powered by KiBaMs, in Figure 10.

a) Hybrid Automaton Ksched.: The hybrid automaton
Ksched models the best-of-all scheduling scheme for KiBaMs,
as shown in Figure 10a.

The automaton Ksched is defined as, Ksched =
(L,Act , X,E, F, Inv , l0). For each battery baty ∈ B, we
include a location L = {avail baty} to indicate which the
battery is currently active. For B = {bat1, bat2, . . . , batm},
the initial location is, l0 = avail bat1, indicating that the bat-
tery bat1 serves first. We do not have any clocks and invariants
in Ksched. The HA Ksched has one urgent broadcast action,
i.e., Act = {startNextIter?} to synchronise with Gobs when
the current iteration finishes, so that Ksched can choose the
best battery for the next iteration. There is no delay function in
Ksched. The HA Ksched contains one continuous variable X =
{avail y} to denote the available in each baty ∈ B, respec-
tively. Ksched has a variable: active KiBaM id that determines
the currently active battery. For B = {bat1, bat2, . . . , batm},
the initial value of active KiBaM id=1, indicating that the
battery bat1 is the first to serve. For each battery bat i ∈ B
and batk ∈ B, the transition set E have following transitions.

• avail bati
avail k>=avail i, startNextIter?,

active KiBaM id:=k−−−−−−−−−−−−−−−−−−→ avail batk
• avail bati

avail i>avail k, startNextIter?,∅−−−−−−−−−−−−−−−−−−−−−−−→ avail bati

• avail batk
a bati>=a batk, startNextIter?,

active KiBaM id:=i−−−−−−−−−−−−−−−−−−→ avail bati
• avail batk

avail k>avail i, startNextIter?,∅−−−−−−−−−−−−−−−−−−−−−−−→ avail batk

After each iteration finishes, the action StartNextIter syn-
chronises with Gobs to start the new iteration. But, before
the new iteration starts, the battery baty ∈ B with the highest
available charge is determined using the guard conditions. This
symbolises that only the battery having highest charge is going
to serve for the next iteration, and all other batteries are going
to stay idle. For the battery bat i ∈ B and batk ∈ B, the
guard condition avail k >= avail i on the first transition is
checking if the available charge of batk ∈ B is greater than
or equal to bat i ∈ B. If the guard condition turns out to be
true, then batk ∈ B provides energy for the next iteration.
Otherwise, the guard condition on the second transition, i.e.,
avail i > avail k is satisfied, and bat i ∈ B stays as the
active battery.

b) Hybrid Automata Ky .: The HA K1, . . . ,Km model
the batteries B = {bat1, . . . , batm}, according to the de-
scription in Section III-A. The model of baty ∈ B is shown

in Figure 10b. This automaton informs Kobs, when the battery
baty gets empty.

For each baty ∈ B, the HA Ky is defined as,
Ky = (Ly,Acty, Xy, Ey, Fy, Invy, l

0
y) where Ly =

{Initial,Emptied}, and l0y = {Initial}. The automaton Ky con-
tains two continuous variables X = {avail baty, bound baty}
to denote the available and bound charge in baty ∈ B,
respectively. There is an urgent broadcast action in Ky , i.e,
Acty = {emptied!} to synchronise with Kobs. The automaton
Ky contains number of variables: a boolean variable on y to
determine if the battery has available charge left or whether
it has run out of it; and a variable i y to annotate the load
current being consumed from baty ∈ B. Initially, we have
on y = true and i y = 0. The transition set Ey has only
transition, given as follows.

• Initial
on y∧avail y==0, emptied!, on y:=false−−−−−−−−−−−−−−−−−−−−−−−−→ Emptied

The above transition synchronises with Kobs over the urgent
channel emptied!, and is taken if the available charge avail y
reaches or falls below zero, emphasising that the battery
baty ∈ B is empty. As a result of this action, the value of
on y changes to false.

The initial location l0y uses equations (1) and (2) as a delay
function. This represents that, as long as baty ∈ B is non-
empty, the available and bound charge of Ky evolves according
to equations (1) and (2) respectively.

c) Hybrid Automata G schedj .: The HA G sched j
implement the static-order firing of SDF actors on the pro-
cessors. For this purpose, after Gobs informs G sched j that
an iterations has started, G sched j map actors on Processor j
according to the SO schedule of that processor. When all
actors are fired according to the SO schedule on Processor j ,
G sched j inform Gobs back, indicating the end of current
iteration. For a πj ∈ Π, Figure 10c presents the automaton
G sched j , with respect to our running example.

For each πj ∈ Π, G schedj is defined as,
G schedj = (Lj ,Actj , Xj , Ej , Inv j , l

0
j ). where

Lj = {Start,FireActor,EndFiring, totalFirings,Off}, and
l0j = {Start}. The HA G schedj contain three broadcast
actions, i.e., Actj = {fire!, end?, startNextIter?}. The actions
fire and end are parametrised with processor and action ids,
and are used to synchronise with Processor j . The action
StartNextIter synchronises with Gobs. The actions fire and
StartNextIter are the urgent actions. There are no clocks and
invariants in G schedj . There are no delay functions and
continuous variables in G schedj . The HA G schedj have
a number of local variables: activeActor j that determines
the active actor currently mapped on the processor πj ; and
s j that determines the index of the active actor in the
static-ordered list. Initially, activeActor j = 0, and s j = 0.
The HA G schedj also contain a parametrised variable
totalFirePerProc j, that defines the total number of tasks in
the SO schedule of the processor πj . Since these variables
are local, we can abbreviate them by activeActor , s and
totalFirePerProc respectively. The transition set Ej has
following transitions.



(a) Ksched modelling battery scheduler (b) Ky modelling baty (c) G schedj modelling scheduler for processor πj

(d) Processorj showing processor model wrt FD (e) Gobs modelling battery observer

Fig. 10: HA models for KiBaM, KiBaM Scheduler, SDF Scheduler, Processor, and KiBaM Observer

• The following transition fetches the active actor
according to the SO schedule for each processor πj ,
using the function getReadyActor(j ). As a result of this
transition, the value of s is incremented by 1, which
means that the next actor in the SO schedule is fetched
next time.

Start
∅,∅, activeActor:=getReadyActor(j)∧s++−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ fireActor

• The following transition maps the fetched (active) actor,
on the processor automaton Processorj , using the
urgent channel fire!.

fireActor
∅, fire[j][activeActor]!,∅−−−−−−−−−−−−−−−−−→ endFiring

• In the following transition, the urgent action end?
synchronises with the processor automaton Processorj .
As a result, the processor automaton Processorj informs
the automaton G schedj that the firing of the active
actor has finished.

endFiring
∅, end[j][activeActor]?,∅−−−−−−−−−−−−−−−−−→ totalFirings

• The following transition checks if the SO schedule of
a processor πj is not fully executed, using the guard
condition s < totalF irePerProc. If this is the case,
the following transition is taken, leading to the Start
location where the next actor in the SO schedule is

fetched.

totalFirings
s<totalFirePerProc,∅,∅−−−−−−−−−−−−−−−−−→ Start

• If all actors in the SO schedule of a processor πj
are executed as checked by the guard condition
s == totalfirePerProc on the following transition,
the urgent channel FiringFinished! synchronises with the
observer automaton Gobs. In this way, G schedj informs
Gobs that the processor πj has executed all of the mapped
actors in the current iteration. The variable s is also reset.

totalFirings

s==totalfirePerProc,
firingFinished!, s:=0−−−−−−−−−−−−→ allFired

• The following transition synchronises with the observer
automaton Gobs on the urgent channel StartNextIter?
to start executing the static-order schedule of the next
iteration.

allFired
∅, startNextIter?,∅−−−−−−−−−−−−−−→ Start

d) Hybrid Automata Processor j .: Likewise, the HA
Processor1, . . . ,Processorn model the processors Π =
{π1, . . . , πn}, as shown in Figure 10d. For better visibility,
Figure 10d shows the HA of Processor j , with respect to one
actor only, i.e., FD ∈ A.

For each πj ∈ Π, we define HA Processor j =



(Lj ,Actj , Xj , Ej , Fj , Inv j , l
0
j ). The initial location is defined

as l0j = {Initial}. For each frequency level fi ∈ F , we include
both an idle state and an active state running on that frequency
level. For each a ∈ ζ(πj) and F = {f1, . . . , fm} such that
f1 < f2 < . . . < fl, let Lmapping = {Idle f1, . . . , Idle fl,
InUse a f1, . . . , InUse a fl} indicating that the processor
πj ∈ Π is currently used by the actor a ∈ A in the
frequency level fi ∈ F , either in idle or running state.
Furthermore, for F = {f1, . . . , fm} such that f1 < f2 <
. . . < fl < fm, we have an location which defines the
overhead of switching between the frequencies, such that
Loverhead = {Tr f1 f2,Tr f2 f1, . . . ,Tr fl fm,Tr fm fl}.
Thus, Lj = Lmapping ∪ Loverhead. Moreover, for each actor
a ∈ ζ(π) and frequency level fi ∈ F , Invj(Idle fi) ≤ 1,
and Invj(InUse a fi) ≤ τact(a, fi) enforcing the system to
stay in InUse a fi for at most the execution time τact(a, fi).
A processor is in the occupied state only for the time period,
when an actor is mapped on it. However, the idle time spent by
a processor πj ∈ Π is not a fixed time interval, and a processor
πj ∈ Π can stay idle for any finite period of time. Therefore,
we divide the idle time spent by a processor πj ∈ Π into slots
of one time unit, by annotating Invj(Idle fi) ≤ 1, Similarly,
for F = {f1, f2, . . . , fm} such that f1 < f2 < . . . < fm, and
Invj(Tr f2 f1) ≤ Ttr (π, f1, f2). Please note that Processor j
contains exactly one clock xj ; since clocks in UPPAAL are
local, we can abbreviate xj by x. A separate clock variable
global observes the overall time progress.

The action set Actj = {fire?, end!} contains two broadcast
actions fire?, end!. The actions fire? and end! in Actj are
parametrised with the processor and action ids, and synchro-
nise with Gsched.

For each π ∈ Π, a ∈ ζ(π) and fi ∈ F , the transition set
Ej contains two transitions such that:

• Initial
∅, fire[π][a]?, {x:=0}∧selectBatteryInUseFire fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

InUse a fi, and

• InUse a fi

x=τact (a,fi), end[π][a]!,
selectBatteryInUseEnd fi()−−−−−−−−−−−−−−−→ Initial.

The action fire[π][a] is enabled in the initial state Initial and
leads to the location InUse a fi. Thus, the action fire[π][a] is
taken, if the actor a ∈ A is supposed to “claim” the processor
π ∈ Π at frequency level fi ∈ F in the static-order sched-
ule. The function selectBatteryInUseFire fi() consumes the
charge from the active battery, i.e., Iocc(π, fi). As each
location InUse a fi has an invariant Inv j(InUse a fi) ≤
τact(a, fi), the automaton can stay in InUse a fi for at most
the execution time of actor a ∈ A at frequency level fi ∈ F ,
i.e., τact(a, fi). If x = τact(a, fi), the system has to leave
InUse a fi at exactly the execution time of actor a ∈ A at
frequency level fi ∈ F , by taking the end[π][a] action. For
each π ∈ Π, and fi ∈ F , the transition set E contains two
transitions for handling broadcast such that:

• Initial
∅, fire[π][idle fi]?, {x:=0}∧selectBatteryIdleFire fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Idle fi, and
• Idle fi

x=1, end[π][idle fi]!, selectBatteryIdleEnd fi()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Initial.

The action fire[π][idle fi] is enabled in the initial state Initial
and leads to the location Idle fi. Thus, fire[π][idle fi] causes
the processor π ∈ Π to go to Idle fi at frequency level
fi ∈ F , whenever the processor π ∈ Π is supposed to
stay idle at fi ∈ F in the static-order schedule. As the
idle slots are divided into time slots of one time unit, each
location InUse a fi has an invariant Inv j(InUse a fi) ≤ 1,
the automaton can stay in InUse a fi for at most 1 time unit.
The function selectBatteryIdleFire fi() consumes the charge
from the active battery, i.e., Iidle(π, fi). If x = 1, the system
has to leave Idle fi at exactly one time unit, by taking the
end[π][idle fi] action.

For F = {f1, . . . , fl, fm} such that f1 < f2 < . . . < fl <
fm, and πj ∈ Π, the transition set Ej has following transitions
such that:
• Initial

∅, fire[π][f1 f2]?, {x:=0}∧selectBatteryTrFire f1 f2()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tr f1 f2,

• Tr f1 f2

x=Ttr (π,f1,f2), end[π][f1 f2]!,
selectBatteryTrEnd f1 f2()−−−−−−−−−−−−−−−−−→ Initial,

• Initial
∅, fire[π][f2 f1]?, {x:=0}∧selectBatteryTrFire f2 f1()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tr f2 f1,

• Tr f2 f1

x=Ttr (π,f2,f1), end[π][f2 f1]!,
selectBatteryTrEnd f2 f1()−−−−−−−−−−−−−−−−−→ Initial,

...

• Initial
∅, fire[π][fl fm]?, {x:=0}∧selectBatteryTrFire fl fm()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tr fl fm,

• Tr fl fm

x=Ttr (π,fl,fm), end[π][fl fm]!,
selectBatteryTrEnd fl fm()−−−−−−−−−−−−−−−−−→ Initial,

• Initial
∅, fire[π][fm fl]?, {x:=0}∧selectBatteryTrFire fm fl()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tr fm fl,

• Tr fm fl

x=Ttr (π,fm,fl), end[π][fm fl]!,
selectBatteryTrEnd fm fl()−−−−−−−−−−−−−−−−−→ Initial

The action fire[π][fl fm] causes the processor π ∈ Π
to incur the transition overhead, whenever the processor
π ∈ Π is supposed to change the frequency fl ∈ F to
fm ∈ F in the static-order schedule, using the function
selectBatteryTrFire fl fm(), and so on.

e) Hybrid Automaton Gobs.: The automaton of SDF
graph observer Gobs counts if each processor has fired its
all mapped actors in an static-order schedule, observing the
number of iterations finished. Figure 10e shows the HA
model of Gobs. The automaton Gobs has an integer variable
Tot Iter to count the number of finished iterations. Initially,
Tot Iter = 0.

After modelling the whole system, we run the following
query, where bound is the time bound on running the simula-
tion, and Tot Iter is the variable representing the completed
number of iterations. As a result, we get a plot, by which
we determine the total number of iterations completed within
bound time units. We use the same models and query to
determine the adequate batteries’ capacities.

simulate 1[<= bound]{Tot Iter}


