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Abstract. Prior text mining studies of corporate reputational sentiment based on newswires, blogs and Twit-

ter feeds have mostly captured reputation from the perspective of two groups of stakeholders – the media and 

consumers. In this study we examine the sentiment of a potentially overlooked stakeholder group, namely, the 

firm’s employees. First, we present a novel dataset that uses online employee reviews to capture employee 

satisfaction. We employ LDA to identify salient aspects in employees’ reviews, and manually infer one latent 

topic that appears to be associated with the firm’s outlook. Second, we create a composite document by ag-

gregating employee reviews for each firm and measure employee sentiment as the polarity of the composite 

document using the General Inquirer dictionary to count positive and negative terms. Finally, we define em-

ployee satisfaction as a weighted combination of the firm outlook topic cluster and employee sentiment. The 

results of our joint aspect-polarity model suggest that it may be beneficial for investors to incorporate a meas-

ure of employee satisfaction into their method for forecasting firm earnings. 

1 Introduction 

This study intends to contribute to the growing literature about applications of text mining within the field of 

finance. Our approach towards employees' sentiment analysis starts from the assumption that employees are 

organizational assets. Management studies [1] suggest that corporate culture influences organizational behavior, 

especially in the areas of corporate efficiency, effectiveness and employee commitment. Indeed, according to the 

former CEO of IBM, "culture is not just one aspect of the game, it is the game" [2].  

 

From an applications stance, our results may be of interest to investors seeking to predict firm earnings. Prior 

accounting research suggests that such information is not properly incorporated by the stock market due to its 

intangible nature, hindering the ability to measure the construct itself. To provide evidence in support of this 

Edmans [1] tracks the “100 Best Companies to Work for in America” published in Fortune magazine. The study 

posits a link between current employee satisfaction and future firm earnings that is not immediately visible to 

investors. We seek to complement Edmans’ work and find evidence to suggest that the forecasting power of our 

model is incremental to the Fortune study. We extend the regression-based approach adopted by [1] to denote the 

properties of an object that proxies firm outlook.  

 

The rest of this study is structured as follows: Section 2 provides an overview of the online employee reviews 

dataset and highlights its advantages over the Fortune dataset. Section 3 defines employee satisfaction by devel-

oping the concepts of polarity and aspect. Throughout this paper we use the term sentiment to denote the polarity 

of employees’ reviews and aspect to denote the properties of an object that are commented on by reviewers. We 

then describe our approach to determine the classification of employee satisfaction via its impact on future firm 

earnings. In Section 4 we develop a polarity-only and a joint polarity-aspect model to predict firm earnings. Sec-

tion 5 provides an empirical evaluation of the proposed model. We conclude in Section 6 and provide sugges-

tions for future research. 

2 The Dataset 

We collected employee reviews from the career community website Glassdoor.com. The platform covers more 

than 250,000 global companies and contains almost 3 million anonymous salaries and reviews from 2008 on-

wards [3]. Reviewers provide an Overall Score on a scale of 1-5 and rate companies across five dimensions: 



Culture & Values, Work/Life Balance, Senior Management, Comp & Benefits and Career Opportunities. Many 

of these ratings only begin in 2012. We extract employees’ full reviews, including their perceived pros and cons 

of the company [4] and their ‘Advice to Senior Management’. The opening sentence of reviewers’ text follows a 

structured format, identifying whether the reviewer is a current or former employee together with the number of 

years’ service. Comments are reviewed by website editors before publically posted. This prevents reviewers 

from posting defamatory attacks and from drifting off-topic that may otherwise hinder topic modelling and sen-

timent analysis [5] [6]. 

 

As a means to aide comparability to [1], we restrict our analysis to publically traded companies that are pub-

lished in Fortune magazine’s “100 Best Companies to Work for in America” list. Our corpus comprises 41,227 

individual reviews, two-thirds of which were written by current employees and the remainder by former employ-

ees. The median number of reviews per company is 340, with 84% of company reviews starting in 2008.   

 

Unlike the Fortune dataset which suffers both from untimely (annual) updates and limited data coverage, we 

believe that employee website comments mitigate such issues, provide a richer source of information and a novel 

way to look inside a company’s culture [3]. Our research employs sentiment analysis using a non-proprietary 

dataset that we make available in open access to encourage further research
1
. 

3 Classification of Employee Satisfaction 

The approach towards employees' sentiment analysis presented here starts from the assumption that employees 

are organizational assets and comprises of three steps. First, we employ Latent Dirichlet Allocation (LDA) to 

identify the aspects in employees’ reviews and manually infer one latent topic that appears to be associated with 

firm outlook. Second, we measure employee sentiment as the polarity of a composite document, defined by ag-

gregating employee reviews for each firm over each fiscal quarter. We use the General Inquirer dictionary to 

count positive and negative terms. In line with [9], our goal is not to show that a term counting method can per-

form as well as a Machine Learning method, but to provide a methodology to measure the impact of employee 

sentiment on firm earnings. Finally we define employee satisfaction as a weighted combination of firm outlook 

and employee sentiment. We develop a regression-based model [8][10] to forecast firm earnings by placing 

greater weight on documents that emphasize firm outlook.  

3.1 Document 

We start by defining a document as a single employee review. As the title of each document tends to summarize 

the review, the title and text are merged.  We apply a shallow pre-processing over the text, including removal of 

stopwords, high frequency terms, company names and company advertisements. We use this definition of a doc-

ument to train and extract the global aspects [11] of our corpus as described in Section 3.2. 

 

We then redefine the concept of a document by combining all employee reviews written about a company into a 

composite document. This is because our primary goal is to evaluate the impact of aggregated employee satisfac-

tion on firm earnings. As firms report earnings quarterly, we amalgamate
2
  employee reviews posted during the 

three months’ between successive quarterly earnings announcement dates. An analogous approach is adopted by 

[12].  

 

3.2 Aspect 

To infer salient aspects, we employ a standard implementation of LDA [13] using collapsed Gibbs sampling. 

Probabilistic topic models provide an unsupervised way to identify the hidden dimensions within a document 

and explain how much of a word in a document is related to each topic.  We implement standard settings for 

LDA hyperparameters, α = 50/K and β=.01 where K is the number of topics [14]. Table 1 presents the aspects 

inferred by the LDA model. 

                                                           
1  https://dl.dropboxusercontent.com/u/57143190/ECIR2014/employee_reviews.zip 
2  We require a minimum of 30 reviews [7] to form a document as a way to avoid making statistical inference on a small, 

potentially biased sample dataset [8]. 
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Table 1. Topic clusters and top words identified by LDA 

Representative words are the highest probability document terms for each topic cluster. The inferred aspect titles are manual annotations 

associated with the topic clusters. 

firm 

outlook

development 

opportunties

salaries skillset interview 

tips

outlook learn raise innovate interviews

recommend stretched professional individual employers

learning contribute implement specialization private

career ensure costsaving cosmetics reviews

future chances solutions skill instructions

opportunities career salaries peers sent  
 

Our interest lies in the first topic cluster, that we manually annotate as  firm outlook. 

3.3 Determining Sentiment 

Our main resource to identify polarity is the General Inquirer dictionary
3
 [27]. The General Inquirer classifies 

words according to multiple categories, including positive and negative. This dictionary contains 1,915 positive 

words and 2,291 negative words. We measure polarity by counting the number of positive (P) versus negative 

(N) terms of a firm’s composite document [12]: 

   

Polarity = (P − N)/(P + N) 

 

Since former/older employees may be perversely incentivized [16] to provide negative feedback, we first statisti-

cally test for differences across different cohorts in the dataset. We compare the sentiment scores across four 

groups of employee reviews, distinguishing between former and current employees, junior (<5 years work expe-

rience) and senior staff (5+ years) and conduct a multivariate t-test [8] on the average sentiment scores across the 

four groups. We do not find a statistically significant difference in mean sentiment scores. This provides comfort 

that all reviews can be amalgamated into a composite document without hindering statistical inference. 

3.4 Combined Approach 

We adopt a statistical regression-based technique by creating a multiplicative interaction term [17] that combines 

firm outlook with sentiment. Specifically, we define the variable: 

Outlook_sentimentit = firm outlookit  x Toneit 

 

The inclusion of Outlook_sentiment within a regression model provides a means to test that it is specifically 

employee sentiment related to the firm outlook topic cluster that is correlated to firm earnings. Our method is 

aligned with [18], treating positive and negative sentiment as additional topics within a LDA model. 

3.5 Measuring the impact of employee satisfaction on firm earnings 

Classification of employee satisfaction is challenging due to the lack of an obvious outcome to evaluate model 

performance [19][20][21]. The approach we take is to classify employee sentiment as positive/negative by meas-

uring its ex-post impact on firm earnings using the concept of earnings’ surprises adopted by the financial litera-

ture [1] [10]. We first define unexpected earnings [1] for firm i during the financial quarter t as the difference 

between realized firm earnings (EPSit) and the consensus broker estimate E(EPSit)  prior to the company’s earn-

ings announcement. These differences are then divided by the standard deviation of broker forecasts (σ
EPS

it), so 

that the resulting SUEit measure can be compared in the same units across all firms: 

  

                                     SUEit = 1/σ
EPS

it x [EPSit -  E(EPSit)]     

                                                           
3  http://www.wjh.harvard.edu/~inquirer/homecat.htm  

 



 

The Standardized Unexpected Earnings of a firm, SUEit, measures the number of standard deviations that real-

ized earnings are above or below the consensus estimate and can be viewed as an outcome of employee satisfac-

tion [1]. 

4 Model for Firm Earnings 

Our primary means to evaluate the impact of employee satisfaction on firm earnings is via an ordinary least 

squares regression [8]. This is the standard approach adopted in financial accounting research [1] [10] [22] as a 

means to isolate the impact of employee satisfaction after controlling for other firm attributes. We adopt this 

methodology rather than more sophisticated Machine Learning techniques to aide comparability to [1]. In con-

trast to SVMs and neural networks, the main appeal of a regression-based approach is that the incremental fore-

casting power of features can readily be determined. 

 

For a baseline, we create a naïve model that forecasts company i’s earnings surprise at time t+1 (the subsequent  

quarter) as a linear function of the company’s most recent earnings surprise at time t [22]: 

SUEit+1 = β0 + β1SUEit + εit 

Our polarity-only model incrementally adds Tone to the naïve model forecast: 

SUEit+1 = β0 + β1SUEit + β2Toneit + εit 

Finally, our joint polarity-aspect model combines both firm outlook and Tone via the multiplicative interaction 

term Outlook_sentiment. The identification of a statistically significant regression coefficient serves to test the 

hypothesis that a positive outlook is associated with higher than expected firm earnings over the subsequent 

quarter and that the feature adds incremental forecasting power to the information contained in Tone. 

SUEit+1 = β0 + β1SUEit + β2Toneit + β3Outlook_Sentimentit + εit 

 Table 2 documents the regression results over the full sample for each model.  

Table 2. Regression analysis of the models defining SUEit+1  as the forecast variable 

Model Intercept SUE it Tone it Outlook_Sentiment it

Naïve -1.393 0.230

(-1.59) (4.90)***

Polarity-only -3.338 0.225 4.672

(-2.44) (4.79)*** (-1.85)

Joint polarity-aspect -3.026 0.213 4.864 1.435

(-2.23)* (4.57)*** (-1.94) (3.00)***  
Numbers in brackets provide the test statistics. The asterisks provide the level of significance where * indicates the variable is statistically 

significant at the 5% level, ** at the 1% level and *** at the 0.1% level. All test statistics are based on robust standard errors [23].  

Following prior financial accounting studies [24] [25], we include control variables in the regression to account for known firm attributes that 

may otherwise influence earnings.  We include the log book-to-market ratio and the log market capitalization and the firm’s prior 12 month 

price return. For presentation purposes only, we omit the estimated coefficients from Table 2. 

 

The polarity-only model appears to be mildly incremental to the baseline, while the joint polarity-aspect model 

indicates that the interaction term is highly significant as a predictor of firm earnings. 
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5 Model Evaluation and Analysis 

For evaluation, we select the root-mean-square error (RMSE) as a measure of the difference between the predict-

ed model values (Ei) and the firm values actually observed (Oi): 
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Our choice is deemed appropriate since firm earnings are continuous rather than binary variables. We implement 

cross-validation using a Jack-knife approach [26] due to the limited size of our dataset (288 observations). We 

draw 1,000 bootstrapped samples (with replacement) using n-1 observations, and estimate the parameters for the 

regression models to predict the earnings surprise for the out-of-sample observation. The performance of the two 

sentiment systems are compared to the baseline. We separately identify the RMSE for positive and negative 

outcomes of earnings surprises. 

Table 3. Comparison of RMSE across models 

Model Positive earnings 

surprises

Negative earnings 

surprises

Naïve baseline 1.823 2.952

Polarity-only 1.820 2.910

Joint polarity-aspect 1.817 2.624  
 

The results in Table 3 show that the difference in RMSE for positive earnings surprises is negligible across the 

three forecast models, while RMSE for negative surprises monotonically decreases along each row and is con-

siderably lower for joint polarity-aspect model (-11% below the Naïve baseline model). One interpretation of 

this result is that employee sentiment has an asymmetric effect on firm earnings. Companies with poor sentiment 

see negative earnings surprises during the following quarter, while companies with high employee sentiment do 

not see a noticeable improvement.  

6 Conclusion and Future Research 

To our knowledge, previous studies have only measured the impact of corporate reputation from the perception 

of the media and consumers. In this study, we identify a potentially neglected yet primary stakeholder of the firm 

and suggest that automated sentiment analysis based on employee reviews can provide a novel insight into com-

pany culture. Our findings indicate that the interaction of employee sentiment with the firm outlook topic cluster 

contains predictive power for firm earnings. This effect appears to be asymmetric, adversely affecting those 

companies that do not exhibit positive sentiment related to firm outlook. 
 

In future work, we plan to extend our online corpus to include additional jobs and community websites and to 

extend coverage of companies globally. Interestingly, in an unreported principal components analysis we noticed 

that firm outlook appears to capture different dimensions to those scored by reviewers themselves. Identifying 

the reasons for this may be an interesting area for future classification research. 
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