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Abstract. Effective risk management is a key to ensure that our nuclear
power plants, medical equipment, and power grids are dependable; and
it is often required by law. Fault Tree Analysis (FTA) is a widely used
methodology here, computing important dependability measures like sys-
tem reliability. This paper presents DFTCALC, a powerful tool for FTA,
providing (1) efficient fault tree modelling via compact representations;
(2) effective analysis, allowing a wide range of dependability properties
to be analysed (3) efficient analysis, via state-of-the-art stochastic tech-
niques; and (4) a flexible and extensible framework, where gates can eas-
ily be changed or added. Technically, DETCALC is realised via stochastic
model checking, an innovative technique offering a wide plethora of pow-
erful analysis techniques, including aggressive compression techniques to
keep the underlying state space small.

1 Introduction

Risk analysis is a key feature in reliability engineering: in order to design and
build medical devices, smart grids, and internet shops that meet the required
dependability standards, we need to assess at design time how dependable these
systems are, and take appropriate measures if they are not dependable enough.

Fault Trees. Fault tree analysis (FTA) [19] is a graphical technique that is often
used in industry. Fault trees (FTs) model how component failures lead to system
failures: the leaves of a FT are basic events (BEs) that represent component
failures; the other nodes express how failures propagate through the system via
AND and OR gates. Discrete time FTs equip each BE with a probability p,
representing the probability that the component fails within a certain discrete
time interval. We consider continuous FTs. Here, each BE is equipped with a
probability distribution f showing how the failure behaviour evolves over time,
i.e. F(t) represents the probability that the BE is still running at time point ¢.
The root of the tree, called the top-level event, represents a system failure. FTA
typically computes for a given F'T the system reliability, i.e. the probability that
the system has not failed within a given mission time T', the mean time to failure
(MTTF), i.e. the expected time of a failure to occur, and the availability, i.e. the
time that the system is up in the long run.
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Dynamic Fault Trees (DFTs) extend standard (or static) fault trees with a
number of intuitive gates. These gates facilitate the modelling of often recurring
concepts in reliability engineering: spare management, functional dependencies,
and order-dependent behaviour.

DFTCalc. DFTCALC is a powerful tool for modelling and analysis of DFTs.
It can efficiently model DFTs and provides means to compute various depend-
ability metrics, given BEs whose failure probabilities are given by exponential
and phase type distributions. The major innovation of DFTCALC is the deploy-
ment of stochastic model checking (SMC) techniques [4]: SMC is an innovative
technique to systematically explore the state space of a stochastic system. SMC
provides a wide plethora of powerful analysis techniques, with fully-fledged tool
support. By deploying SMC, DFTCALC can handle DFTs with BEs that are
statistically dependent; in fact, the FDEP gate has specifically been designed to
model interdependent events. Repairs, however, have not yet been included.

The main problem in time-dependent reliability analysis is its complexity:
The state space of models of real systems can grow arbitrarily large [I5] and,
thus, highly efficient techniques are required to yield results in a feasible time.
Furthermore, an accurate modelling of all dependencies in these inherently com-
plex systems requires an ever growing diversity of new gates. DFTCALC consti-
tutes an architectural framework that addresses both challenges.

Related work. A wide range of FTA methods exists: Classically, one obtains the
minimal cut sets in the FT [5]. This enables to order components based on their
structural importance. Further, with additional information one can compute the
system reliability. A popular technique is to exploit Bayesian networks, which are
useful both in discrete time [9] and in continuous time [§]. Our approach focuses
on continuous timed systems, with currently no maintenance. Therefore, we will
translate DFTs into continuous time Markov chains (CTMCs) and use state of
the art techniques as described in [2I3]. This allows us to compute reliability
measures by use of efficient techniques for transient analysis of CTMCs.

A wide number of commercial and academic tools for static fault tree analysis
are available. Some are merely drawing tools, while others provide probabilistic
analysis, like the popular FaultTree+ package from Isograph [14]. Dynamic FTA
is supported by tools like Windchill [I8], NASA’s Galileo/ASSAP software [I1],
and the simulation tool DFTSim [I0]. A first implementation of DFT analysis
using I/O-IMCs was realized in Coral [7], the predecessor of DFTCALC.

Organisation of the paper. Section 2 presents DFTCALC’s modelling and
analysis capabilities and Section 3 the architecture and internal structure. In
Section 4 we provide experimental results and Section 5 concludes the paper.
Due to space constraints, we refer to [I] for more details of our main results and
case studies.
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Fig. 1. Dynamic fault tree gates.

2 DFTCALC: modelling and analysis

DFT modelling. Dynamic fault trees (DFTs) model the failure propagation in
complex systems. The leaves of a DFT are labeled with basic events and the
non-leaves with gates. The root is called top-level event.

Basic events. A basic event (BE) represents the failure behaviour of a basic
system component, and can be in three different modes: dormant, active and
failed. The component is in dormant mode, if it is not in use. In this mode, the
failure rate of a BE is decreased by a dormancy factor o € [0,1]. In case a = 0
the BE cannot fail (cold BE) and in case a = 1 the failure rate is the same as
in active mode (warm BE). The component is in active mode, when it is in use.
If the component breaks down, it is in failed mode.

Gates. A gate expresses how component failures induce a system failure. Gates
consist of one or more inputs, and one output. Fig. [I] depicts the DFT gates.

) The OR gate fails when at least one input fails.

) The AND gate fails when all of its inputs fail.

) The VOTING gate fails when at least k out of n inputs fail.

) The PAND gate fails when all of its inputs fail from left to right.

) The SPARE gate consists of a primary input and one or more spare inputs.
At system start, the primary is active and the spares are in dormant mode.
When the primary input fails, one of the spare inputs is activated and re-
places the primary. If no more spares are available, the SPARE gate fails.
Note that a spare component can be shared among several spare gates.

(f) The FDEP (functional dependency) gate consists of one trigger event and

several dependent events. When the trigger event occurs, all dependent events

fail. The FDEP has a ”dummy” output, which is represented by a dotted line
and ignored in calculations.

(a
(b
(c
(d
(

e

Ezample 1. Fig.[2|depicts a DFT representing a cardiac assist system (CAS) [9]
consisting of three subsystems: the CPU, the motor and pump units. If either
one of these subsystems fails, then the entire CAS fails, as modelled by the top
level OR gate. The CPU unit consists of a primary (P) and a backup (B) CPU,
as indicated by the SPARE gate. The primary and backup CPU are subject to
a common cause failure, modelled by the CPU FDEP gate: if either the crossbar
switch (CS) or the system supervisor (SS) fails, the primary and backup CPU
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Fig. 2. The cardiac assist system DFT.

become unavailable. The motor unit consists of a primary (MA) and a backup
(MB) motor. If the primary fails, the motor switching component (MS) will turn
on the backup motor. Because of the PAND gate the failure of the switching
component can then be ignored. Finally, the pump unit consists of two pumps
(PA and PB), which share a common cold spare (PS).

DFT analysis. DFTCALC can compute a number of different reliability met-
rics, namely all metrics that can be expressed as reachability properties in the
logic CSL. This includes properties such as: (1) Timed-Reliability: the probabil-
ity that the system fails until a given time point T or in a given interval [T, T"];
(2) Mean time to failure: the expected time to a system failure; (3) Reliability:
the probability that the system fails in the long-run. In case of non-determinism,
we calculate the minimum and maximum values for the above metrics. Each of
these properties can either be evaluated from the initial state (i.e. the system
is fully functional), or by setting evidence (i.e certain components have failed
already).

DFTCALC fruitfully exploits the technique of compositional aggregation, see
Fig. [6] Whereas traditional FTA methods translate a DFT into a large and
monolithic CTMC, we do this in a stepwise fashion: First, DFTCALC translates
each element (i.e., gate or BE) into an input-output interactive Markov chain
(I/O-IMC), implementing the methodology from [6l7]. Then, we obtain the un-
derlying CTMC by composing all I/O-IMCs. We compose these I/O-IMCs one-
by-one, and employ aggressive state space compression technique in each step,
to keep the state space minimal. This compositional approach has four major
advantages:

— Increased modelling power. Compared to earlier DFT tools, DFTCALC’s
input language is more powerful and imposes fewer syntactic restrictions:
DFTCaALc allows any DFT to be a spare component or a trigger, and not
only a BE, as in [16]. This is a big advantage in practice, since spare com-
ponents and triggers are often complete subsystems.

— Increased analytical power. SMC enables DFTCALC to analyse a wide range
of dependability metrics, namely those expressed in a large subset of the logic
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Fig. 3. DFTCALC web-tool interface.

CSL. Also, as argued in [6], certain DFTs give rise to non-determinism. If so,
the I/O-IMC leads to a continuous time Markov decision process (CTMDP).
— Efficiency. The compositional aggregation technique leads to significant speed
ups of several orders of magnitude.
— Flexibility. The compositional aggregation approach makes the framework
very extendable. In order to change the behaviour of a gate or even add new
gate types, we only need to provide the underlying I/O-IMC model.

Web Interface. DFTCALC can be used by downloading a stand-alone version,
and via a web interface. Both are accessible at http://fmt.cs.utwente.nl/
tools/dftcalc/. DFTCALC is open source, but requires a license for CADP,
which is free for academic institutions. The web interface extends the download-
able version with a GUI as well as the plot function and is shown in Fig. |3 It
allows the user to (1) input DFT models via a text screen, the topmost box in
Fig. |3} (2) select the dependability metrics. This can be (a) the reliability for
one or more mission times x, or (b) the probability on a system failure during an
interval [T'1,72], or (c) the mean time to failure; (3) set various options: which
model checker to use; the error bound, the level of verbosity, and whether to
color output. The results can be given either by numbers, via the button show
result, or as a plot, via the button plot result. The input and configuration of the
web interface can be saved via the button permalink.

DFTCALC

MRMC

Reliability

dft2lntc

Fig. 4. The DFTCALC tool-chain.
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Fig. 5. Graphical overview of the processing steps in DFTCALC.
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Fig. 6. Graphical overview of the compositional aggregation of DFT models.

3 DFTCALC’s internal structure

Architecture. DFTCALC combines dedicated code and state-of-the-art model
checkers. The architecture is displayed in Fig.[d]and the processing steps in Fig. 5}
First, dft21ntc translates a DFT in Galileo format into .1nt format, a process
calculus enriched with data that is input to CADP. Technically, this step trans-
forms each DFT element into an I/O-IMC representing the element’s behaviour.
Additionally, a .exp file is generated that defines the interaction between compo-
nents. The clear distinction between local component and global system informa-
tion together with the compositional semantics of I/O-IMCs makes DFTCALC
highly flexible: New components can be added or existing components adapted
by specifying their behaviour in .1lnt format and adding them to the tool’s
library. In the next step, the CADP tool set [12] uses the compositional aggre-
gation method to generate the state space of the system, which is a I/O-IMC
representation of the whole DFT. The output of CADP is a .bcg file. This for-
mat is translated either into a . ctmdpi file, which is input to the Markov Reward
Model Checker MRMC [15], or into an .ma file, which is the input of the Inter-
active Markov Chain Analyzer IMCA [13]. Finally, the requested dependability
metrics are computed.

Compositional aggregation. Compositional aggregation of I/O-IMCs lies at
the heart of DFTCALC. As depicted in Fig. [6] after transforming each DFT
element into an I/O-IMC, we iteratively compose the obtained I/O-IMCs: We
take two I/O-IMCs, compose them, hide all action labels that are no longer
needed for synchronisation, and then minimise the composition via bisimulation
minimisation. This process continues until a single I/O-IMC remains. The order
of the aggregation process heavily influences the number of states in the obtained
I/O-IMC, and is determined by a smart heuristic. Compositional aggregation
yields reductions up to several orders of magnitude [7].



DFTCALC: A Tool for Efficient Fault Tree Analysis 7

4 Case Studies

We show the applicability of DEFTCALC by three case studies: a multiprocessor
computing system (MCS) [I77] which consists of two computing modules (CMs),
a bus, a power supply and a spare memory module; the cardiac assist system
(CAS) [918] from Fig. |2} and a fault-tolerant parallel processor (FTPP) [7] of a
redundant computer system consisting of four groups of n processors. The MCS
and CAS models were originally developed for discrete time models [T79], but
were analyzed, as we do, for continuous time models in [7I8].

All our experiments were conducted on a single core of a 2.7 GHz Intel
Core2Duo processor with 2GB RAM running on Linux. Fig. [7] presents the in-
creasing failure probability over time as well as the expected failure time. Table 1
shows the scalability. We compare Coral and DFTCALC: Since DFTCALC is up
to three times faster than Coral it also outperforms earlier tools like Galileo [7].

5 Conclusion

We have presented an efficient tool chain which allows to model and analyse
DFTs with a number of prominent dependability metrics. The flexible architec-
ture of DFTCALC exploits state-of-the-art techniques to compose, compress and
analyse DFTs, and is easily extendable. We have conducted several case studies
demonstrating DFTCALC’s high performance in the analysis of DFTs.

/ —  20Ms ' JAS |
[ —  40Ms [ —— CAS with failed MS
/ I — <~ expected-time Lo —«-  expected-time
b
. . n T i n T
0 2 4 6 B 10 0 1 2 3 4
Mission time (in 10000h) Mission time (in 10000h)

(a) Failure probability of the MCS over time. (b) Failure probability of the CAS over time.

Fig. 7. Reliability plots for the case studies.

Model ‘Tool ‘Time (s)‘P(fail) ‘States‘Transitions‘Speedup
MCS 2CMs, t=10000|Coral 131.492 {0.998963 18 55 1
DFTCaALc| 55.395 |0.998963 | 18 55 2.37371
MCS 4CMs, t=10000|Coral 339.752 10.997927 | 151 992 1
DFTCaLc| 201.461 [0.997927 | 151 992 1.68644
CAS, t=10000 Coral 135.155 |0.0460314| 16 50 1
DFTCaALc| 51.267 |0.0460314| 16 50 2.64794
FTPP-4 | t=1 Coral 491.114 |10.0192186| 142 923 1
DFTCALC| 234.905 |0.0192186| 72 386 2.09069
FTPP-5, t=1 Coral 730.761 [0.0030616| 2167 27438 1
DFTCaLc| 603.630 |0.0030616| 400 3369 1.21061

Table 1. Results of the case studies.



Arnold, Belinfante, Berg, Guck, Stoelinga

As future work, we aim to include cost structures and repairable basic events.

Moreover, we will use DEFTCALC’s flexible architecture to implement additional
gates to broaden DFTCALC to other formalisms like attack trees.
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