Verifying Parallel Loops with Separation Logic*

Stefan Blom Saeed Darabi Marieke Huisman

University of Twente
Enschede, The Netherlands

s.c.c.blom,s.darabi,m.huisman@utwente.nl

This paper proposes a technique to specify and verify whetheop can be parallelised. Our ap-
proach can be used as an additional step in a parallelisimgpiter to verify user annotations about
loop dependences. Essentially, our technique requirdsleap iteration to be specified with the
locations it will read and write. From the loop iteration sifieations, the loop (in)dependences can
be derived. Moreover, the loop iteration specifications aéveal where synchronisation is needed
in the parallelised program. The loop iteration specifaaican be verified using permission-based
separation logic.

1 Introduction

Parallelising compilers can detect loops that can be egddutparallel. However, this detection is not
perfect. Therefore developers can typically also use apaag declare that a loop is parallel. Any loop
annotated with such a pragma will be assumed to be parallldogompiler.

This paper addresses the problem of how to verify that loogisare declared parallel by a developer
can indeed safely be parallelised. The solution is to addifpations to the program that when verified
guarantee that the program can be parallelised withoutgth@rnts meaning. Our specifications stem
from permission-based separation logitl[4, 5], an extensfdHoare logic. This has the advantage that
we can easily combine the specifications related to paisatadn with functional correctness properties.

We illustrate our approach on the PENCIL programming laggUa]. This is a high-level program-
ming language to simplify using many-core processors, sucBPUSs, to accelerate computations. It
is currently under development as a part of the CARP p@)jdﬂbwever, our approach also applies to
other languages that use the concept of parallel loops, asicdpenMPL[6]. In order to simplify the
presentation in this paper, we limit ourselves to singlgp$oAt the end of this paper, we will briefly
discuss how to extend our approach to nested loops.

Below, we first present some background information, and the introduce the specification lan-
guage for parallel loops. Next, we sketch how we can impldéragtomated verification of the specifica-
tions. Finally, we conclude with future work.

2 Background

Parallel Hardware. Modern hardware offers many different ways of paralletiscode. Most main
processors nowadays are multi-core. Additionally, thegrohave a set of vector instructions that can
operate on small vectors instead of just a single value at¢.omdoreover, graphics processing units
(GPUs) nowadays also can be used for general-purpose progng. Writing and tuning software for
such accelerated hardware can be a very time-consuming task

*This work is supported by the EU FP7 STREP project CARP (ptaje 287767).
1Seénttp://www.carpproject .eu/|

Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proogsdi

of the 7th Workshop on Programming Language Approaches

to Concurrency and Communication-cEntric Software (PLAGD14)
EPTCS 155, 2014, pp. 47353, d0i:10.4204/EPTCS.155.7

© Blom, Darabi and Huisman
This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.155.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.carpproject.eu/

48 Verifying Parallel Loops with Separation Logic

The PENCIL Language. The PENCIL programming language is developed as a part o€&kieP
project. It is designed to be a high-level programming laggufor accelerator programming, providing
support for efficient compilation. Its core is a subset ofusgtial C, imposing strong limitations on
pointer-arithmetic. In addition to traditional C, it alleWwoops to be specified with two pragmasde-
pendeniandivdep indicating that a loop can be parallelised, because itdependent, or only contains
forward dependences, respectively.

Loop Dependences. Several kinds of loop dependences can be identified. Théstsedoop-carried
dependencé&om statemeng;. to statemeng;ik in the body of a loop if there exist two iterationand
j of that loop, such that:

- lterationi is before iteration, i.e, i < j.
- Statement§;,c on iterationi andS;ink on iterationj access the same memory location.
- At least one of these accesses is a write.

WhenS; syntactically appears befoink (or if they are the same) there idaward loop-carried de-
pendenceotherwise there is backward loop-carried dependencthe distance between two dependent
iterationsi and j is defined as thdistance of dependence

On the right, we show examples of first a forward and theqOr (int i=1;i<=N;i++){
a backward loop carried dependence. In both cases there is a S m _ cl i, ey
dependence betwe&h andS,. In the first loop, the read i, ' ’

cocli] = ali—-1]|+ 2;
reads the value written i in the previous iteration of the loop. } =2 |]
In the second loop, the read $ must be done before the value
is overwritten inS; during the next iteration. for (int i=0;i<N;i++){
The distinction between forward and backward depen- Si: &[il)z c[i] + 1;
dences is important. Independent parallel execution obplo $: c[i] = a + 2

with dependences is always unsafe, because it may change the

result. However, a loop with forward dependences can bd-para

lelised by inserting an appropriate synchronisation incbee, while loops with backward dependences
cannot be parallelised.

Separation Logic. Our approach to reason about loop (in)dependences usesgpmbased separa-
tion logic to specify which variables are read and writtenabipop iteration. Separation logicl[9] was
originally developed as an extension of Hoare logic to reasmout pointer programs, as it allows to
reason explicitly about the heap. This makes it also suitegason modularly about concurrent pro-
grams|[[8]: two threads that operate on disjoint parts of tregohdo not interfere, and thus can be verified
in isolation. The basis of our work is a separation logic fqdd], but extended with permissioris [5], to
denote either the right to read from or to write to a locatidhe set of permissions that a thread holds
are often known as iteesources We write access permissions @srm(e, 71), wheree is an expression
denoting a memory location arde (0, 1] is a fraction, where any value permits reading and 1 provides
write permission. The logic prevents the sum of permissions location over all threads to exceed
1, which prevents data races. In earlier work, we have shbamnthis logic is suitable to reason about
kernel programs |3].

Blom, Darabi and Huisman 49

for (1=0;i<N;i+=1)
/[+«@ requires perm(afi],1l) xx perm(c[i],1) *x perm(b[i],1/2);
ensures perm(afi],l) *xx perm(c[i],1) =*x perm(b[i],1/2); @x/
{ S1: ali] = b[i] + 1;
S2: c[i] = a[i] + 2; }
Listing 1. Specification of an Independent Loop

3 A Specification Language for Loop Dependence

The classical way to specify the effect of a loop is by meanarofnvariant that has to hold before
and after the execution of each iteration in the loop. Unfaately, this offers no insight into possible
parallel execution of the loop. Instead we will considerrgveeration of the loop in isolation. To be able
to handle dependences, we specify restrictions on how teudrn of the statements for each iteration
is scheduled. In particular, each iteration is specifiedtbyown contractj.e,, its iteration contract

In the iteration contract, the precondition specifies reseaithat a particular iteration requires and the
postcondition specifies the resources which are releasedthe execution of the iteration. In other
words, we treat each iteration as a specified block [7].

Listing[1 gives an example of andependent loopspecified by its iteration contract. The contract
requires that at the start of iteratigrpermission to write both c[i] and a[i] is available, as waslper-
mission to read b[i]. The contract also ensures that thesripsions are returned at the end of iteration
i. The iteration contract implicitly requires that the sejtegag conjunction of all iteration preconditions
holds before the first iteration of the loop, and that the s#pay conjunction of all iteration postcon-
ditions holds after the last iteration of the loop. In Ligtld, the loop iterates from 0 td — 1, so the
contract implies that before the loop, permission to wiite firstN elements of both a and ¢ must be
available, as well as permission to read the iNstlements of b. The same permissions are ensured to
be available after termination of the the loop.

To specifydependent loopsn addition we need the ability to specify what happens wihencom-
putations have to synchronise due to a dependence. Duritgassynchronisation, permissions should
be transferred from the iteration containing the source dépendence to the iteration containing the
sink of that dependence. To specifp@rmission transfewe introduce thesendkeyword:

//l@ send ¢ to L, d;

This specifies that the permissions and properties exptégsthe separation logic formutpare trans-
ferred to the statement labellédn the iteration 4 d, wherei is the current iteration andlis the distance
of dependence.

Below, we will give two examples that illustrate how loop® @pecified withsend clauses. The
sendclause alone completely specifies both how permissionsraseded and used by the iterations.
However, for readability, we also mark the place where thenpssion are used with a corresponding
receive statement as a comment. Listidg 2 gives a specified progrdmaviorward dependence, similar
to our earlier example, while Listirid 3 gives an example of@pam with a backward dependence.

We discuss the annotations of the first program in some delkh iteration starts with write
permission on a[i] and c[i]. The first statement is a write fo] awhich needs write permission. The
second statement reads afli], which is not allowed unless read permission is availabler the first
iteration, this read permission is available. For all sgbgsat iterations, permission must be transferred.
Hence asendannotation is specified after the first assignment thatfieesiga read permission on afi] to

50 Verifying Parallel Loops with Separation Logic

for (int i=1;i<=N;i++)
/[+@ requires i==1 ==> perm(al[i—-1],1/2);
requires perm(c[i],1) =+ perm(a[i],1);
ensures perm(c[i],1l) *x perm(ali],1/2) =% perm(ali—1],1/2);

ensures i==N ==> perm(al[i],1/2); @/
{
S1: af[i] = c[i]*CONST +a[i}(1—CONST);
//@ send perm(ali],1/2) to S2,1;
/[if (i>1) receive perm(ali—1],1/2);
S2: c[i] = min(ali],a[i—1]);
¥

Listing 2: Specification of a Forward Loop-Carried Dependence

for (i=0;i<N;i++)

[+@ requires i==0 ==> perm(ali],1/2);
requires perm(c[i],1) =x perm(al[i],1/2) xx perm(a[i+1],1/2);
ensures perm(c[i],1l) *x perm(ali],1l);
ensures i==N-1 == perm(a[i+1],1/2); @/

/[if (i>0) receive perm(ali],1/2);

S1: ali] c[i]*CONST + a[i}(1—CONST);
S2: c[i] = min(a[i+1],a[i]);

//@ send perm(a[i+1],1/2) to S1,1;

Listing 3: Specification of a Backward Loop-Carried Dependence

Blom, Darabi and Huisman 51

the next iteration (and in addition, keeps a read permidtseif). The postcondition of the iteration con-
tract reflects this: it ensures that the original permissioi|[i] is released, as well as the read permission
on a[i], which was not sent, and also the read permission or H[which was received. Finally, since
the last iteration cannot transfer a read permission on,dhd iteration contract’s postcondition also
specifies that the last iteration returns this non-transteread permission on a[i].

The specifications in both listings are valid. Hence evemcaiion order of the loop bodies that
respects the order implied by tkendannotations yields the same result as sequential execuitidhe
case of the forward dependence example, this can be actigvadtling appropriate synchronisation in
the parallelised code. All parallel iterations should ynise eaclsendannotation with the location
of the specified label to ensure proper permission transfarthe backward dependence example, only
sequential execution respects the ordering.

4 \Verifying Dependence Annotations

To verify an iteration contract, we encode it as a standarthaaecontract that can be verified using the
VerCors tool set [2]. Suppose we have a loop specified witlieaation contract as below:

Sore;

for (int i=0;i<N;i++)

/[+@ requires pre(i);

ensures post(i); @/
{ S}
Sost;
To prove that this program respects its annotations, th@faig proof obligations have to be discharged:
- afterSye, the separating conjunction of all of the iteration preatads holds;
- the loop bodySrespects the iteration contract; and
- the statementf,,sccan be proven correct, assuming that the separating cdigoraf the postcon-
ditions holds.

To generate these proof obligations, we encode the orignogiram by generating several annotated

procedures by the following steps:

1. We replace every loop in the program with a call to a prooedoop main, whose arguments
are the free variables occurring in the loop. The contrathigfprocedure requires the separating
conjunction of all preconditions and ensures the sepayatinjunction of all postconditions. After
this replacement, we can verify the program with existing/gdo discharge the first and the last
proof obligations.

2. Todischarge the remaining proof obligation, we genagt®cedure loafbody, whose arguments
are the loop variable plus the same arguments as lom@in. The contract of this procedure is
the iteration contract of the loop body, preceded by a requint that states that the value of the
iteration variable is within the bounds of the loop.

The result of this encoding is as follows:

void block (){

Sore;
loop_main (N,free(S));

Soost;

52 Verifying Parallel Loops with Separation Logic

/«@ requires (\forall = int i;0<=i & i <N; pre(i));
ensures (\forall = int i;0<=i & i <N; post(i)); @/
loop_main (int N,free(S)));

/«@ requires (0<=i & i <N) xx pre(i);
ensures post(i); @/
loop_body (int i,int N,free(§)){ S; }

Verification of thesendinstruction is done by replacing treendannotation with a procedure call
sendphi(i); and by inserting a procedure call repti (i); at the location of the labél. The contracts
of these methods encode the transfer of the resources spduyfip(i) from the sending iteration to the
receiving iteration, subject to two conditions:

1. Permissions can only be transferred to future iterat{dns 0).
2. Transfer only happens if both the sending and the reggitémations exist.

The existence of iterationis expressed by the predicate _itieration (i), whose definition is derived
from the loop bounds. For example, the ldiop (int i1=0;i <N;i++) gives rise to

boolean is_iteration (int i){return 0 <= i & i < N;}
Using this notation the generated (abstract) methods amitaats are:

/+@ requires is_iteration (+d) ==> ¢(i);
@x/
void sendphi(int i);

/+@ ensures is_iteration(i—-d) ==> @(i—d);
@/
void recv_phi(int 1i);

Note that instead of a constasitwe may use any invertible functiaiyi).

5 Conclusion and Future Work

This paper sketches how to verify parallel loops, even inpfesence of dependences from one loop
iteration to the next. The idea is to specify each iteratiba tmop with its own iteration contract and
to use thesend annotation to transfer permission between iteration ifde€e We conjecture that if
verification of a loop is possible without usirsgndthen it is correct to tag the loop as independent,
i.e., an iteration never reads a location that was written by ferdifit iteration. Moreover, ifendis
used with labels occurring after the statement then it isecdrto use PENCIL'svdep tag to indicate
parallelisability.

The method described is modular in the sense that it allowstnsat any parallel loop as a statement,
thus nested loops can be dealt with simply by giving thenr th&n iteration contract. Alternatively one
iteration contract can be used for several nested loops.

It is future work to provide a formal proof for our conjectuies well as to develop fully automated
tool support for discharging the proof obligations. We gtam to link our PENCIL specifications with
our kernel logic([3] and to define compilation of PENCIL sgiezitions.

Blom, Darabi and Huisman 53

Another possible direction for future work is to extend opp@ach to reason about the correctness
of OpenMP[[6] pragmas in parallel C programs. From the pdintew of verification, many concepts in
OpenMP and PENCIL are the same. For examplestimel pragma in OpenMP is used in the same way
as PENCIL usesvdep. In general, our method can be applied for verification of kigi-level parallel
programming language which uses compiler directives foalfgisation.

Finally, we will also investigate how the iteration contisafor the verifier and parallelisation pragmas
for the compiler can support each other. We believe this @iman work in both ways. First of all, the
parallelising compiler can use verified annotations to kratieut dependences without analysing the
code itself. In particular, the PENCIL language has a fegtoalledfunction summariesthat allows
the programmer to tell the compiler which memory locatiores \aritten and/or read by a function by
writing a fake function that assigns to the writable locasicand reads from the readable locations.
Such summaries are easily extracted from specificatiomsthars in this way specifications can help to
produce better code. Conversely, if the compiler performaralysis then it could emit its findings as a
specification template for the code, from which a completxgjgation can be derived.

References

[1] R.Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, Lign®d. Grosser, G. Kouveli, A. Kravets, A. Lokhmo-
tov, C. Nugteren, F. Waters & A. F. Donaldson (201BENCIL: Towards a Platform-Neutral Compute In-
termediate Language for DSLEoRRabs/1302.5586. Available attp://arxiv.org/abs/1302.5586.

[2] S. Blom & M. Huisman (2014): The VerCors Tool for Verification of Concurrent Programsin:
FM 2014: Formal Methods Lecture Notes in Computer Sciendt42, Springer, pp. 127-131,
doii10.1007/978-3-319-06410P

[3] S. Blom, M. Huisman & M. Mihel€i¢ (2013)Specification and verification of GPGPU prograntcience
of Computer Programmingoi{10.1016/j.scico.2014.03.013.

[4] R. Bornat, C. Calcagno, P.W. O’Hearn & M.J. ParkinsonQ&0 Permission accounting in separation logic
In: POPL, pp. 259-270, d0i:10.1145/1040305.1040327.

[5] J. Boyland (2003):Checking Interference with Fractional Permission: Static Analysis Symposium
LNCS2694, Springer, pp. 55-72, 00i:10.1007/3-540-44898-5

[6] L. Dagum & R. Menon (1998)OpenMP: an industry standard API for shared-memaory prograny. Com-
putational Science & Engineering, IEEEL), pp. 46-55, d0i:10.1109/99.660313.

[7] E.C.R. Hehner (2005)Specified Blocksin: VSTTE, pp. 384—-391, doi:10.1007/978-3-540-6914915

[8] P.W. O’Hearn (2007)Resources, concurrency and local reasoniflgeoretical Computer Scien8@&5(1-3),
pp. 271-307, ddi:10.1016/j.tcs.2006.12/035.

[9] J.C. Reynolds (20025eparation Logic: A Logic for Shared Mutable Data Structuta: Logic in Computer
SciencelEEE Computer Society, pp. 5574, d0i:10.1109/LICS.20029817.

[10] H. Tuch, G. Klein & M. Norrish (2007):Types, bytes, and separation logidn: POPL pp. 97-108,
doi{10.1145/1190216.1190234.

http://arxiv.org/abs/1302.5586
http://dx.doi.org/10.1007/978-3-319-06410-9_9
http://dx.doi.org/10.1016/j.scico.2014.03.013
http://dx.doi.org/10.1145/1040305.1040327
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1007/978-3-540-69149-5_41
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/1190216.1190234

	1 Introduction
	2 Background
	3 A Specification Language for Loop Dependence
	4 Verifying Dependence Annotations
	5 Conclusion and Future Work

