
Alastair F. Donaldson, Vasco Vasconcelos (Eds.): Proceedings
of the 7th Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software (PLACES 2014)
EPTCS 155, 2014, pp. 47–53, doi:10.4204/EPTCS.155.7

c© Blom, Darabi and Huisman
This work is licensed under the
Creative Commons Attribution License.

Verifying Parallel Loops with Separation Logic∗

Stefan Blom Saeed Darabi Marieke Huisman
University of Twente

Enschede, The Netherlands

s.c.c.blom,s.darabi,m.huisman@utwente.nl

This paper proposes a technique to specify and verify whether a loop can be parallelised. Our ap-
proach can be used as an additional step in a parallelising compiler to verify user annotations about
loop dependences. Essentially, our technique requires each loop iteration to be specified with the
locations it will read and write. From the loop iteration specifications, the loop (in)dependences can
be derived. Moreover, the loop iteration specifications also reveal where synchronisation is needed
in the parallelised program. The loop iteration specifications can be verified using permission-based
separation logic.

1 Introduction

Parallelising compilers can detect loops that can be executed in parallel. However, this detection is not
perfect. Therefore developers can typically also use a pragma to declare that a loop is parallel. Any loop
annotated with such a pragma will be assumed to be parallel bythe compiler.

This paper addresses the problem of how to verify that loops that are declared parallel by a developer
can indeed safely be parallelised. The solution is to add specifications to the program that when verified
guarantee that the program can be parallelised without changing its meaning. Our specifications stem
from permission-based separation logic [4, 5], an extension of Hoare logic. This has the advantage that
we can easily combine the specifications related to parallelisation with functional correctness properties.

We illustrate our approach on the PENCIL programming language [1]. This is a high-level program-
ming language to simplify using many-core processors, suchas GPUs, to accelerate computations. It
is currently under development as a part of the CARP project1. However, our approach also applies to
other languages that use the concept of parallel loops, suchas OpenMP [6]. In order to simplify the
presentation in this paper, we limit ourselves to single loops. At the end of this paper, we will briefly
discuss how to extend our approach to nested loops.

Below, we first present some background information, and then we introduce the specification lan-
guage for parallel loops. Next, we sketch how we can implement automated verification of the specifica-
tions. Finally, we conclude with future work.

2 Background

Parallel Hardware. Modern hardware offers many different ways of parallelising code. Most main
processors nowadays are multi-core. Additionally, they often have a set of vector instructions that can
operate on small vectors instead of just a single value at once. Moreover, graphics processing units
(GPUs) nowadays also can be used for general-purpose programming. Writing and tuning software for
such accelerated hardware can be a very time-consuming task.

∗This work is supported by the EU FP7 STREP project CARP (project nr. 287767).
1Seehttp://www.carpproject.eu/.

http://dx.doi.org/10.4204/EPTCS.155.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.carpproject.eu/

48 Verifying Parallel Loops with Separation Logic

The PENCIL Language. The PENCIL programming language is developed as a part of theCARP
project. It is designed to be a high-level programming language for accelerator programming, providing
support for efficient compilation. Its core is a subset of sequential C, imposing strong limitations on
pointer-arithmetic. In addition to traditional C, it allows loops to be specified with two pragmas:inde-
pendentandivdep, indicating that a loop can be parallelised, because it is independent, or only contains
forward dependences, respectively.

Loop Dependences. Several kinds of loop dependences can be identified. There exists aloop-carried
dependencefrom statementSsrc to statementSsink in the body of a loop if there exist two iterationsi and
j of that loop, such that:

- Iterationi is before iterationj, i.e., i < j.
- StatementsSsrc on iterationi andSsink on iterationj access the same memory location.
- At least one of these accesses is a write.

WhenSsrc syntactically appears beforeSsink (or if they are the same) there is aforward loop-carried de-
pendence, otherwise there is abackward loop-carried dependence. The distance between two dependent
iterationsi and j is defined as thedistance of dependence.

f o r (i n t i =1; i <=N; i ++){
S1 : a [i] = c [i] + 1 ;
S2 : c [i] = a [i −1] + 2 ;

}

f o r (i n t i =0; i<N; i ++){
S1 : a [i] = c [i] + 1 ;
S2 : c [i] = a [i +1] + 2 ;

}

On the right, we show examples of first a forward and then
a backward loop carried dependence. In both cases there is a
dependence betweenS1 andS2. In the first loop, the read inS2

reads the value written inS1 in the previous iteration of the loop.
In the second loop, the read inS2 must be done before the value
is overwritten inS1 during the next iteration.

The distinction between forward and backward depen-
dences is important. Independent parallel execution of a loop
with dependences is always unsafe, because it may change the
result. However, a loop with forward dependences can be paral-
lelised by inserting an appropriate synchronisation in thecode, while loops with backward dependences
cannot be parallelised.

Separation Logic. Our approach to reason about loop (in)dependences uses permission-based separa-
tion logic to specify which variables are read and written bya loop iteration. Separation logic [9] was
originally developed as an extension of Hoare logic to reason about pointer programs, as it allows to
reason explicitly about the heap. This makes it also suited to reason modularly about concurrent pro-
grams [8]: two threads that operate on disjoint parts of the heap do not interfere, and thus can be verified
in isolation. The basis of our work is a separation logic for C[10], but extended with permissions [5], to
denote either the right to read from or to write to a location.The set of permissions that a thread holds
are often known as itsresources. We write access permissions asperm(e,π), wheree is an expression
denoting a memory location andπ ∈ (0,1] is a fraction, where any value permits reading and 1 provides
write permission. The logic prevents the sum of permissionsfor a location over all threads to exceed
1, which prevents data races. In earlier work, we have shown that this logic is suitable to reason about
kernel programs [3].

Blom, Darabi and Huisman 49

f o r (i =0; i<N; i +=1)
/∗@ r e q u i r e s perm (a [i] , 1) ∗∗ perm (c [i] , 1) ∗∗ perm (b [i] , 1 / 2) ;

ensures perm(a [i] , 1) ∗∗ perm (c [i] , 1) ∗∗ perm (b [i] , 1 / 2) ; @∗ /
{ S1 : a [i] = b [i] + 1 ;

S2 : c [i] = a [i] + 2 ; }

Listing 1: Specification of an Independent Loop

3 A Specification Language for Loop Dependence

The classical way to specify the effect of a loop is by means ofan invariant that has to hold before
and after the execution of each iteration in the loop. Unfortunately, this offers no insight into possible
parallel execution of the loop. Instead we will consider every iteration of the loop in isolation. To be able
to handle dependences, we specify restrictions on how the execution of the statements for each iteration
is scheduled. In particular, each iteration is specified by its own contract,i.e., its iteration contract.
In the iteration contract, the precondition specifies resources that a particular iteration requires and the
postcondition specifies the resources which are released after the execution of the iteration. In other
words, we treat each iteration as a specified block [7].

Listing 1 gives an example of anindependent loop, specified by its iteration contract. The contract
requires that at the start of iterationi, permission to write both c[i] and a[i] is available, as wellas per-
mission to read b[i]. The contract also ensures that these permissions are returned at the end of iteration
i. The iteration contract implicitly requires that the separating conjunction of all iteration preconditions
holds before the first iteration of the loop, and that the separating conjunction of all iteration postcon-
ditions holds after the last iteration of the loop. In Listing 1, the loop iterates from 0 toN− 1, so the
contract implies that before the loop, permission to write the firstN elements of both a and c must be
available, as well as permission to read the firstN elements of b. The same permissions are ensured to
be available after termination of the the loop.

To specifydependent loops, in addition we need the ability to specify what happens whenthe com-
putations have to synchronise due to a dependence. During such a synchronisation, permissions should
be transferred from the iteration containing the source of adependence to the iteration containing the
sink of that dependence. To specify apermission transferwe introduce thesendkeyword:

/ /@ send φ to L , d ;

This specifies that the permissions and properties expressed by the separation logic formulaφ are trans-
ferred to the statement labelledL in the iterationi+d, wherei is the current iteration andd is the distance
of dependence.

Below, we will give two examples that illustrate how loops are specified withsendclauses. The
sendclause alone completely specifies both how permissions are provided and used by the iterations.
However, for readability, we also mark the place where the permission are used with a corresponding
receivestatement as a comment. Listing 2 gives a specified program with a forward dependence, similar
to our earlier example, while Listing 3 gives an example of a program with a backward dependence.

We discuss the annotations of the first program in some detail. Each iterationi starts with write
permission on a[i] and c[i]. The first statement is a write to a[i], which needs write permission. The
second statement reads a[i−1], which is not allowed unless read permission is available. For the first
iteration, this read permission is available. For all subsequent iterations, permission must be transferred.
Hence asendannotation is specified after the first assignment that transfers a read permission on a[i] to

50 Verifying Parallel Loops with Separation Logic

f o r (i n t i =1; i <=N; i ++)
/∗@ r e q u i r e s i ==1 ==> perm (a [i −1] , 1 / 2) ;

r e q u i r e s perm (c [i] , 1) ∗∗ perm (a [i] , 1) ;
ensures perm(c [i] , 1) ∗∗ perm (a [i] , 1 / 2) ∗∗ perm (a [i −1] , 1 / 2) ;
ensures i ==N ==> perm (a [i] , 1 / 2) ; @∗ /

{
S1 : a [i] = c [i]∗CONST +a [i]∗(1−CONST) ;
/ /@ send perm(a [i] , 1 / 2) to S2 , 1 ;
// i f (i >1) r e c e i v e perm(a [i −1] , 1 / 2) ;
S2 : c [i] = min (a [i] , a [i −1]) ;

}

Listing 2: Specification of a Forward Loop-Carried Dependence

f o r (i =0; i<N; i ++)
/∗@ r e q u i r e s i ==0 ==> perm (a [i] , 1 / 2) ;

r e q u i r e s perm (c [i] , 1) ∗∗ perm (a [i] , 1 / 2) ∗∗ perm (a [i + 1] , 1 / 2) ;
ensures perm(c [i] , 1) ∗∗ perm (a [i] , 1) ;
ensures i ==N−1 ==> perm (a [i + 1] , 1 / 2) ; @∗ /

{
// i f (i >0) r e c e i v e perm(a [i] , 1 / 2) ;
S1 : a [i] = c [i]∗CONST + a [i]∗(1−CONST) ;
S2 : c [i] = min (a [i +1] , a [i]) ;
/ /@ send perm(a [i + 1] , 1 / 2) to S1 , 1 ;

}

Listing 3: Specification of a Backward Loop-Carried Dependence

Blom, Darabi and Huisman 51

the next iteration (and in addition, keeps a read permissionitself). The postcondition of the iteration con-
tract reflects this: it ensures that the original permissionon c[i] is released, as well as the read permission
on a[i], which was not sent, and also the read permission on a[i−1], which was received. Finally, since
the last iteration cannot transfer a read permission on a[i], the iteration contract’s postcondition also
specifies that the last iteration returns this non-transferred read permission on a[i].

The specifications in both listings are valid. Hence every execution order of the loop bodies that
respects the order implied by thesendannotations yields the same result as sequential execution. In the
case of the forward dependence example, this can be achievedby adding appropriate synchronisation in
the parallelised code. All parallel iterations should synchronise eachsendannotation with the location
of the specified label to ensure proper permission transfer.For the backward dependence example, only
sequential execution respects the ordering.

4 Verifying Dependence Annotations

To verify an iteration contract, we encode it as a standard method contract that can be verified using the
VerCors tool set [2]. Suppose we have a loop specified with an iteration contract as below:

Spre ;
f o r (i n t i =0; i<N; i ++)
/∗@ r e q u i r e s pre (i) ;

ensures pos t (i) ; @∗ /
{ S; }
Spost;

To prove that this program respects its annotations, the following proof obligations have to be discharged:
- afterSpre, the separating conjunction of all of the iteration preconditions holds;
- the loop bodySrespects the iteration contract; and
- the statementSpost can be proven correct, assuming that the separating conjunction of the postcon-

ditions holds.
To generate these proof obligations, we encode the originalprogram by generating several annotated

procedures by the following steps:

1. We replace every loop in the program with a call to a procedure loop main, whose arguments
are the free variables occurring in the loop. The contract ofthis procedure requires the separating
conjunction of all preconditions and ensures the separating conjunction of all postconditions. After
this replacement, we can verify the program with existing tools to discharge the first and the last
proof obligations.

2. To discharge the remaining proof obligation, we generatea procedure loopbody, whose arguments
are the loop variablei plus the same arguments as loopmain. The contract of this procedure is
the iteration contract of the loop body, preceded by a requirement that states that the value of the
iteration variable is within the bounds of the loop.

The result of this encoding is as follows:

void b lock (){
Spre ;
loop main (N,free(S)) ;
Spost;

}

52 Verifying Parallel Loops with Separation Logic

/∗@ r e q u i r e s (\ f o r a l l ∗ i n t i ;0<= i && i <N; pre (i)) ;
ensures (\ f o r a l l ∗ i n t i ;0<= i && i <N; pos t (i)) ; @∗ /

loop main (i n t N, free(S))) ;

/∗@ r e q u i r e s (0<= i && i <N) ∗∗ pre (i) ;
ensures pos t (i) ; @∗ /

loop body (i n t i , i n t N, free(S))) { S; }

Verification of thesend instruction is done by replacing thesendannotation with a procedure call
sendphi (i); and by inserting a procedure call recvphi (i); at the location of the labelL. The contracts
of these methods encode the transfer of the resources specified byφ(i) from the sending iteration to the
receiving iteration, subject to two conditions:

1. Permissions can only be transferred to future iterations(d > 0).
2. Transfer only happens if both the sending and the receiving iterations exist.

The existence of iterationi is expressed by the predicate isiteration (i), whose definition is derived
from the loop bounds. For example, the loopfor (int i=0; i<N;i++) gives rise to

boolean i s i t e r a t i o n (i n t i) { re tu rn 0 <= i && i < N;}

Using this notation the generated (abstract) methods and contracts are:

/∗@ r e q u i r e s i s i t e r a t i o n (i +d) ==> φ(i) ;
@∗ /

void s e nd ph i (i n t i) ;

/∗@ ensures i s i t e r a t i o n (i −d) ==> φ(i −d) ;
@∗ /
void r e c v p h i (i n t i) ;

Note that instead of a constantd, we may use any invertible functiond(i).

5 Conclusion and Future Work

This paper sketches how to verify parallel loops, even in thepresence of dependences from one loop
iteration to the next. The idea is to specify each iteration of a loop with its own iteration contract and
to use thesend annotation to transfer permission between iteration if needed. We conjecture that if
verification of a loop is possible without usingsend then it is correct to tag the loop as independent,
i.e., an iteration never reads a location that was written by a different iteration. Moreover, ifsend is
used with labels occurring after the statement then it is correct to use PENCIL’sivdep tag to indicate
parallelisability.

The method described is modular in the sense that it allows usto treat any parallel loop as a statement,
thus nested loops can be dealt with simply by giving them their own iteration contract. Alternatively one
iteration contract can be used for several nested loops.

It is future work to provide a formal proof for our conjecture, as well as to develop fully automated
tool support for discharging the proof obligations. We alsoplan to link our PENCIL specifications with
our kernel logic [3] and to define compilation of PENCIL specifications.

Blom, Darabi and Huisman 53

Another possible direction for future work is to extend our approach to reason about the correctness
of OpenMP [6] pragmas in parallel C programs. From the point of view of verification, many concepts in
OpenMP and PENCIL are the same. For example, thesimd pragma in OpenMP is used in the same way
as PENCIL usesivdep. In general, our method can be applied for verification of anyhigh-level parallel
programming language which uses compiler directives for parallelisation.

Finally, we will also investigate how the iteration contracts for the verifier and parallelisation pragmas
for the compiler can support each other. We believe this support can work in both ways. First of all, the
parallelising compiler can use verified annotations to knowabout dependences without analysing the
code itself. In particular, the PENCIL language has a feature, calledfunction summaries, that allows
the programmer to tell the compiler which memory locations are written and/or read by a function by
writing a fake function that assigns to the writable locations and reads from the readable locations.
Such summaries are easily extracted from specifications, and thus in this way specifications can help to
produce better code. Conversely, if the compiler performs an analysis then it could emit its findings as a
specification template for the code, from which a complete specification can be derived.

References

[1] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. Inoue, T. Grosser, G. Kouveli, A. Kravets, A. Lokhmo-
tov, C. Nugteren, F. Waters & A. F. Donaldson (2013):PENCIL: Towards a Platform-Neutral Compute In-
termediate Language for DSLs. CoRRabs/1302.5586. Available athttp://arxiv.org/abs/1302.5586.

[2] S. Blom & M. Huisman (2014): The VerCors Tool for Verification of Concurrent Programs. In:
FM 2014: Formal Methods, Lecture Notes in Computer Science8442, Springer, pp. 127–131,
doi:10.1007/978-3-319-06410-99.

[3] S. Blom, M. Huisman & M. Mihelčić (2013):Specification and verification of GPGPU programs. Science
of Computer Programming, doi:10.1016/j.scico.2014.03.013.

[4] R. Bornat, C. Calcagno, P.W. O’Hearn & M.J. Parkinson (2005): Permission accounting in separation logic.
In: POPL, pp. 259–270, doi:10.1145/1040305.1040327.

[5] J. Boyland (2003):Checking Interference with Fractional Permissions. In: Static Analysis Symposium,
LNCS 2694, Springer, pp. 55–72, doi:10.1007/3-540-44898-54.

[6] L. Dagum & R. Menon (1998):OpenMP: an industry standard API for shared-memory programming. Com-
putational Science & Engineering, IEEE5(1), pp. 46–55, doi:10.1109/99.660313.

[7] E.C.R. Hehner (2005):Specified Blocks. In: VSTTE, pp. 384–391, doi:10.1007/978-3-540-69149-541.

[8] P. W. O’Hearn (2007):Resources, concurrency and local reasoning. Theoretical Computer Science375(1–3),
pp. 271–307, doi:10.1016/j.tcs.2006.12.035.

[9] J.C. Reynolds (2002):Separation Logic: A Logic for Shared Mutable Data Structures. In: Logic in Computer
Science, IEEE Computer Society, pp. 55–74, doi:10.1109/LICS.2002.1029817.

[10] H. Tuch, G. Klein & M. Norrish (2007):Types, bytes, and separation logic. In: POPL, pp. 97–108,
doi:10.1145/1190216.1190234.

http://arxiv.org/abs/1302.5586
http://dx.doi.org/10.1007/978-3-319-06410-9_9
http://dx.doi.org/10.1016/j.scico.2014.03.013
http://dx.doi.org/10.1145/1040305.1040327
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1007/978-3-540-69149-5_41
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/1190216.1190234

	1 Introduction
	2 Background
	3 A Specification Language for Loop Dependence
	4 Verifying Dependence Annotations
	5 Conclusion and Future Work

