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Piezoelectric actuators are widely used in smart materials for vibration and noise control, precision actuators, 

etc. [1]. These actuators are largely capacitive and the reactive power applied on them can go to several tens 

of Watts. High-voltage, high-power class-D amplifiers [2-5] are ideal drivers for such loads, because of their 

high power efficiency. Preferably, efficiency should be high both at maximum power and at average output 

power. Obtaining high power efficiency over the full output power range of a class D amplifier is the main focus 

of this work.  

Fig. 1 shows a typical high-voltage class-D power stage, where two identical NDMOS FETs are used as both 

high-side (HS) and low-side (LS) power switches with their gate-driver supply voltage VDD being much lower 

than VDDP [2-5]. The three main dissipation sources in the power stage are then: 1) Conduction loss Pcon 

caused by the output current Iout due to ron switch resistance, 2) Ripple loss PIrip caused by the inductor ripple 

current Irip due to ron and magnetic core loss of Lout. 3) Switching loss Psw at the Vpwm node caused by MHS/MLS 

having to charge/discharge Cp in Fig. 1. This can be significant for high VDDP, since the energy stored in Cp is 

proportional to 2
DDPV . 

There are two scenarios for Psw, depending on Irip and Iout. In the first case, for low Iout, the inductor ripple 

current Irip is large enough for the total inductor current L rip outI =I +I
 
to be bidirectional. Then, when 

, IL can fully charge and discharge Cp during the dead time td without resorting to MHS/MLS. 

This is the soft switching case where Psw is eliminated. PIrip is now the main dissipation source, and fsw should 

be high to reduce Irip and thus PIrip. In the second case, when out ripI >I , IL is unidirectional and one of the Vpwm 

switching transitions has to be finished by MHS/MLS. This is the hard switching case where Pcon and Psw are 

dominant. Then, the power MOSFET sizing for balanced Pcon and Psw plays a role, which benefits from 

 rip out p DDP dI I C V t



choosing a low fsw to reduce Psw. We see that the two cases above have contradicting demands on fsw. 

Common practice is to set fsw in between as a compromise [3], but this is not optimal. 

Varying fsw can achieve higher efficiency over a larger output power range as in [6] and [7], but both 

techniques choose fsw based on output current only. This is suboptimal since the dissipation is highly 

dependent on both Irip and Iout, and there are numerous factors causing Irip variation. Apart from external factors 

like VDDP and Lout value, this is especially the case for class-D designs where Irip changes a factor >5 in the 

0.05-0.95 duty cycle (D) range.  

We propose to regulate the Irip amplitude such that both Psw and PIrip are minimized by changing fsw based on 

the Vpwm level at the turn-on transition of the power switches. This information is directly related to the 

dissipation sources and is inherent for getting to the optimal fsw, independent of circuit operating conditions 

affecting Irip. The result is a class-D amplifier with its fsw adapted to achieve minimal dissipation from idle to 

maximum output power.  

Fig. 2 shows the working principle. On the left are the soft switching waveforms, with Irip larger than necessary 

for eliminating Psw. Both Vpwm transitions finish within the dead time td and are already at the other supply rail 

when MHS/MLS turns on. This means Irip (and consequently PIrip) could be smaller by increasing fsw. In the right 

part of Fig. 2, IL is too small to charge CP during td, and the remaining Vpwm rising transition is provided by MHS. 

Vpwm is not yet at VDDP when MHS turns on, indicating the existence of Psw and fsw should decrease. By 

adapting fsw such that either one of the Vpwm switching is at the boundary of being lossless while the other is 

fully lossless, minimization of both Psw and PIrip is achieved. By setting an fsw lower limit, the system naturally 

shifts to hard switching at high output power, with minimized Psw. 

The implementation of the amplifier is shown in Fig. 3. In this realization, the amplifier is based on a 1st-order 

hysteretic self-oscillating loop. Alternative implementations can also use carrier-based topologies [2], by 

changing fsw of the triangle carrier, either continuously or through a frequency plan to control the spectral 

content. An fsw regulation loop is added to the basic amplifier structure by tuning the hysteretic window voltage 

Vtune, which is generated by a charge pump/loop filter (CP/LF) that receives UP/DN 1 shots depending on the 

timing between the Vpwm level and the VHS/VLS rising edges. 



The output stage works with 80V VDDP, an on-chip regulated 3.3V driver supply and has a 2-step level shifter 

that can handle supply bounce higher than the internal supply [8]. Fig. 4 (upper part) shows the Vpwm level 

detection circuit. At the beginning of a transition, when Vpwm is far (up to 80V) from the supply rail, MLSC/MHSC 

shield the clamps MLSD/MHSD from Vpwm. When Vpwm is close to the supply rail, MLSC/MHSC are in the linear 

region, such that M1/M4 can detect if Vpwm is less than a VTH from the supply rail, which is close enough not to 

cause significant Psw. Control signals VLS_detect/VHS_detect are generated in the output stage with time shift 

compared to VLS/VHS such that they only activate MLSC/MHSC for half the switching cycle to prevent cross 

current flow from the supply. M4 level shifts to logic levels referred to VSSD. M1-M3 level shift in 2 steps to deal 

with the large (> 3.3V) on-chip PGND bounce. The lower part of Fig. 4 shows the UP/DN decision logic. The 

Vpwm status is sampled at the rising edge of VHS/VLS. The 1 shot for an fsw increase is activated if both Vpwm 

transitions are finished in time while the 1 shot for an fsw decrease is activated if either transition is not. Since 

Vtune is at 2× the signal frequency fsig (when Iout increases in either direction), Vtune generation is fully differential 

for minimal 2nd-order distortion. 

The amplifier is implemented in a 0.14µm SOI BCD process. For power efficiency measurements, a series-

connected 23µF + 1.6Ω is used to model the piezo-actuator [1]. Because this load is mostly capacitive at fsig, 

efficiency is defined here as Pout/(Pout+Pd), where Pout is the apparent output power Vout, rms*Iout,rms (VA) 

processed by the amplifier and Pd is the total amplifier dissipation. Fig. 5 shows the measured efficiency of the 

amplifier for a 500Hz sine wave for three fixed Vtune settings and one with fsw-regulation enabled.  Fig. 5 clearly 

shows that the amplifier can adjust its fsw for best efficiency across the whole output power range. Idle power 

consumption is 360mW while for the two lower fsw cases it is 440mW and 690mW, achieving a reduction of 18% 

and 48%. The peak efficiency of the amplifier is 93% while for the two higher fsw cases it is 91% and 89%, 

achieving a power loss reduction of 19% and 31%. In idle, the adaptive fsw is 500kHz while for 45VA output 

power, the adaptive fsw is from 200kHz at D=0.5 to 100kHz at D=0.05 or 0.95. 

A comparison with other high-voltage, high-power class-D designs is shown in Fig. 6. For better comparison, 

efficiency with a non-capacitive load (12Ω resistor) is also measured. The Vpwm-level-based fsw-regulation 

technique enables this design to achieve best-in-class peak efficiency while significantly outperforming the 



other amplifiers at lower output powers. THD+N is 0.015% @ 100Hz, 9VA and 0.94% @ 500Hz, 45VA. For 

applications that require lower distortion, a higher-order feedback loop can be used. The chip photograph is 

shown in Fig. 7, with the die measuring 3.4mm×2.5mm. To conclude, this amplifier offers the high peak 

efficiency of existing class-D designs, keeping heat sinks small, while offering significant energy savings at 

lower, much more prevalent, output powers.  
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Fig. 1. Basic class-D power output stage topology  
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Fig. 2. Vpwm level for excessive Irip (left) and inadequate Irip (right). Vpwm and td are not to scale. 
  

VDDP

PGND

Inadequate Irip
0
IoutL

0
IoutL

td

Excessive Irip

VLS

VHS

Vpwm

td td

VLS

VHS

Vpwm

td
Already at the supply rail

VDDP

PGND

Not yet at the supply rail



 
Fig. 3. Implementation of the class-D power amplifier with fsw regulation 
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Fig. 4. Schematic of the Vpwm level detector, control signal VHS_detect is referred to Vpwm with level shifting 
(Upper); schematic of the UP/DN decision logic with 1-shot output. 
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Fig. 5. Efficiency and dissipation measurements for fsw regulation enabled and for fixed Vtune settings. 
For the fixed Vtune cases, fsw is measured in idle. 
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Parameters This work [2] [3] [4] [5] 
Type Piezo Driver Audio Amp. Audio Amp. Audio Amp. Audio Amp. 
VDDP 80V 60V 20V 50V 18V 

Pout,max/Channel 45VA(1) 45W(2) 100W 20W 240W 13W 
Efficiency 
@ Pout,max 

93% 91% >90% 89% N/A 88% 

Efficiency 
@ 0.1* Pout,max 

80% 84% N/A <75% N/A <70% 

Efficiency 
@ 0.01* Pout,max 

49% 51% N/A <30% N/A <30% 

Idle Loss/Channel  
(w. output filter) 

0.36W 1.6W 0.5W 2.1W N/A 

THD+N 

0.015% (@9VA, 
fsig=100Hz) 

0.94% (@45VA, 
fsig=500Hz) 

0.017% 
(@1W, 

fsig=1kHz) 

0.01% 
(@10W, 

fsig=1kHz) 
<0.1% 

0.7%  
(@13W, 

fsig=1kHz) 

(1) Load = 23F+1.6 in series 
(2) Load = 12 
 

Fig. 6.  Comparison with other high-voltage, high-power class-D power amplifiers.  



Fig. 7. C
 

Chip photograaph of the claass-D amplifieer, the die meeasures 3.4mmm×2.5mm.  
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