An Integrated 80-V, 45-W Class-D Power Amplifier with Optimal-Efficiency-Tracking Switching

 Frequency RegulationHaifeng Ma, Ronan van der Zee and Bram Nauta

University of Twente, Enschede, The Netherlands

Piezoelectric actuators are widely used in smart materials for vibration and noise control, precision actuators, etc. [1]. These actuators are largely capacitive and the reactive power applied on them can go to several tens of Watts. High-voltage, high-power class-D amplifiers [2-5] are ideal drivers for such loads, because of their high power efficiency. Preferably, efficiency should be high both at maximum power and at average output power. Obtaining high power efficiency over the full output power range of a class D amplifier is the main focus of this work.

Fig. 1 shows a typical high-voltage class-D power stage, where two identical NDMOS FETs are used as both high-side (HS) and low-side (LS) power switches with their gate-driver supply voltage $V_{D D}$ being much lower than $V_{D D P}[2-5]$. The three main dissipation sources in the power stage are then: 1) Conduction loss $\mathrm{P}_{\mathrm{con}}$ caused by the output current lout due to ron switch resistance, 2) Ripple loss Plrip caused by the inductor ripple current $I_{\text {rip }}$ due to $\mathrm{r}_{\text {on }}$ and magnetic core loss of $\mathrm{L}_{\text {out }}$ 3) Switching loss P_{sw} at the $\mathrm{V}_{\text {pwm }}$ node caused by $\mathrm{MHs}^{\text {/ }} \mathrm{MLs}$ having to charge/discharge C_{p} in Fig. 1. This can be significant for high $V_{D D P}$, since the energy stored in C_{p} is proportional to $\mathrm{V}_{\text {DDP }}^{2}$.

There are two scenarios for $\mathrm{P}_{\text {sw }}$, depending on $\mathrm{I}_{\text {rip }}$ and $\mathrm{I}_{\text {out. }}$ In the first case, for low Iout, the inductor ripple current $l_{\text {rip }}$ is large enough for the total inductor current $I_{L}=I_{\text {rip }}+l_{\text {out }}$ to be bidirectional. Then, when $I_{\text {rip }}>\left|\left.\right|_{\text {out }}\right|+C_{p} V_{D D P} / t_{d}, I_{L}$ can fully charge and discharge C_{p} during the dead time t_{d} without resorting to MHS/MLs. This is the soft switching case where $P_{s w}$ is eliminated. $P_{\text {lrip }}$ is now the main dissipation source, and $f_{s w}$ should be high to reduce $I_{\text {rip }}$ and thus $P_{\text {Irip. }}$. In the second case, when $\left|\|_{\text {out }}\right|>\left.\right|_{\text {rip }}, I_{L}$ is unidirectional and one of the $V_{\text {pwm }}$ switching transitions has to be finished by $M_{\text {Hs }} / M_{\text {Ls }}$. This is the hard switching case where $\mathrm{P}_{\text {con }}$ and $\mathrm{P}_{\text {sw }}$ are dominant. Then, the power MOSFET sizing for balanced $\mathrm{P}_{\text {con }}$ and P_{sw} plays a role, which benefits from
choosing a low $f_{s w}$ to reduce $P_{\text {sw }}$. We see that the two cases above have contradicting demands on $f_{s w}$. Common practice is to set f_{sw} in between as a compromise [3], but this is not optimal.

Varying f_{sw} can achieve higher efficiency over a larger output power range as in [6] and [7], but both techniques choose f_{sw} based on output current only. This is suboptimal since the dissipation is highly dependent on both $I_{\text {rip }}$ and $l_{\text {out }}$, and there are numerous factors causing $I_{\text {rip }}$ variation. Apart from external factors like $V_{D D P}$ and $L_{\text {out }}$ value, this is especially the case for class- D designs where $I_{\text {rip }}$ changes a factor >5 in the $0.05-0.95$ duty cycle (D) range.

We propose to regulate the $I_{\text {rip }}$ amplitude such that both $P_{\text {sw }}$ and $P_{\text {lrip }}$ are minimized by changing $f_{s w}$ based on the $\mathrm{V}_{\mathrm{pwm}}$ level at the turn-on transition of the power switches. This information is directly related to the dissipation sources and is inherent for getting to the optimal f_{sw}, independent of circuit operating conditions affecting $\mathrm{I}_{\text {rip }}$. The result is a class-D amplifier with its $\mathrm{f}_{\text {sw }}$ adapted to achieve minimal dissipation from idle to maximum output power.

Fig. 2 shows the working principle. On the left are the soft switching waveforms, with $\mathrm{I}_{\text {rip }}$ larger than necessary for eliminating $\mathrm{P}_{\text {sww }}$. Both $\mathrm{V}_{\text {pwm }}$ transitions finish within the dead time t_{d} and are already at the other supply rail when Mhs/MLs turns on. This means Irip (and consequently $P_{\text {lrip }}$) could be smaller by increasing $f_{\text {sw. }}$. In the right part of Fig. 2, L_{L} is too small to charge C_{P} during t_{d}, and the remaining $V_{p w m}$ rising transition is provided by $M_{H s}$. $\mathrm{V}_{\text {pwm }}$ is not yet at $\mathrm{V}_{\text {DDP }}$ when MHs turns on, indicating the existence of P_{sw} and f_{sw} should decrease. By adapting $\mathrm{f}_{\text {sw }}$ such that either one of the $\mathrm{V}_{\text {pwm }}$ switching is at the boundary of being lossless while the other is fully lossless, minimization of both P_{sw} and $\mathrm{P}_{\text {lrip }}$ is achieved. By setting an $\mathrm{f}_{\text {sw }}$ lower limit, the system naturally shifts to hard switching at high output power, with minimized $\mathrm{P}_{\text {sw }}$.

The implementation of the amplifier is shown in Fig. 3. In this realization, the amplifier is based on a 1 st-order hysteretic self-oscillating loop. Alternative implementations can also use carrier-based topologies [2], by changing f_{sw} of the triangle carrier, either continuously or through a frequency plan to control the spectral content. An $f_{s w}$ regulation loop is added to the basic amplifier structure by tuning the hysteretic window voltage $V_{\text {tune }}$, which is generated by a charge pump/loop filter (CP/LF) that receives UP/DN 1 shots depending on the timing between the $\mathrm{V}_{\text {pwm }}$ level and the $\mathrm{V}_{\mathrm{HS}} / \mathrm{V}_{\mathrm{LS}}$ rising edges.

The output stage works with $80 \mathrm{~V} V_{\text {DDP }}$, an on-chip regulated 3.3 V driver supply and has a 2-step level shifter that can handle supply bounce higher than the internal supply [8]. Fig. 4 (upper part) shows the $\mathrm{V}_{\mathrm{pwm}}$ level detection circuit. At the beginning of a transition, when $\mathrm{V}_{\text {pwm }}$ is far (up to 80 V) from the supply rail, MLsc/MHsc shield the clamps $M_{L S D} / M_{H S D}$ from $V_{\text {pwm }}$. When $V_{\text {pwm }}$ is close to the supply rail, $M_{L S c} / M_{H S C}$ are in the linear region, such that $\mathrm{M}_{1} / \mathrm{M}_{4}$ can detect if $\mathrm{V}_{\text {pwm }}$ is less than a $\mathrm{V}_{T H}$ from the supply rail, which is close enough not to cause significant $\mathrm{P}_{\text {sw }}$. Control signals $\mathrm{V}_{\text {Ls_detect }} / \mathrm{V}_{\text {Hs_detect }}$ are generated in the output stage with time shift compared to $\mathrm{V}_{\mathrm{LS}} / V_{\text {Hs }}$ such that they only activate $\mathrm{M}_{\mathrm{Lsc}} / \mathrm{M}_{\text {Hsc }}$ for half the switching cycle to prevent cross current flow from the supply. M_{4} level shifts to logic levels referred to $V_{s s D}$. $M_{1}-M_{3}$ level shift in 2 steps to deal with the large (> 3.3 V) on-chip PGND bounce. The lower part of Fig. 4 shows the UP/DN decision logic. The $\mathrm{V}_{\text {pwm }}$ status is sampled at the rising edge of $\mathrm{V}_{\text {HS }} / V_{\text {Ls }}$. The 1 shot for an $\mathrm{f}_{\text {sw }}$ increase is activated if both $\mathrm{V}_{\text {pwm }}$ transitions are finished in time while the 1 shot for an $f_{s w}$ decrease is activated if either transition is not. Since $V_{\text {tune }}$ is at $2 \times$ the signal frequency $f_{\text {sig }}$ (when Iout increases in either direction), $V_{\text {tune }}$ generation is fully differential for minimal 2nd-order distortion.

The amplifier is implemented in a $0.14 \mu \mathrm{~m}$ SOI BCD process. For power efficiency measurements, a seriesconnected $23 \mu \mathrm{~F}+1.6 \Omega$ is used to model the piezo-actuator [1]. Because this load is mostly capacitive at $\mathrm{f}_{\text {sig }}$, efficiency is defined here as $\mathrm{P}_{\text {out }}\left(\mathrm{P}_{\text {out }}+\mathrm{P}_{\mathrm{d}}\right)$, where $\mathrm{P}_{\text {out }}$ is the apparent output power $\mathrm{V}_{\text {out, }}{ }^{*}{ }^{*}$ lout,ms (VA) processed by the amplifier and P_{d} is the total amplifier dissipation. Fig. 5 shows the measured efficiency of the amplifier for a 500 Hz sine wave for three fixed $\mathrm{V}_{\text {tune }}$ settings and one with $\mathrm{f}_{\text {sw }}$-regulation enabled. Fig. 5 clearly shows that the amplifier can adjust its f_{sw} for best efficiency across the whole output power range. Idle power consumption is 360 mW while for the two lower f_{sw} cases it is 440 mW and 690 mW , achieving a reduction of 18% and 48%. The peak efficiency of the amplifier is 93% while for the two higher $f_{\text {sw }}$ cases it is 91% and 89%, achieving a power loss reduction of 19% and 31%. In idle, the adaptive $f_{s w}$ is 500 kHz while for 45 VA output power, the adaptive $f_{s w}$ is from 200 kHz at $\mathrm{D}=0.5$ to 100 kHz at $\mathrm{D}=0.05$ or 0.95 .

A comparison with other high-voltage, high-power class-D designs is shown in Fig. 6. For better comparison, efficiency with a non-capacitive load (12Ω resistor) is also measured. The $V_{\text {pwm }}$-level-based f_{sw}-regulation technique enables this design to achieve best-in-class peak efficiency while significantly outperforming the
other amplifiers at lower output powers. THD+N is 0.015% @ $100 \mathrm{~Hz}, 9 \mathrm{VA}$ and 0.94% @ $500 \mathrm{~Hz}, 45 \mathrm{VA}$. For applications that require lower distortion, a higher-order feedback loop can be used. The chip photograph is shown in Fig. 7 , with the die measuring $3.4 \mathrm{~mm} \times 2.5 \mathrm{~mm}$. To conclude, this amplifier offers the high peak efficiency of existing class-D designs, keeping heat sinks small, while offering significant energy savings at lower, much more prevalent, output powers.

Acknowledgements:

We thank STW for project funding and NXP for silicon donation.

References:

[1] C. Wallenhauer, et al, "Efficiency-Improved High-Voltage Analog Power Amplifier for Driving Piezoelectric Actuators," IEEE Trans. Circuits Syst. I, , vol. 57, no. 1,pp. 291-298, Jan. 2010
[2] M. Berkhout, "An Integrated 200-W Class-D Audio Amplifier," IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1198-1206, Jul. 2003
[3] P. Morrow, E. Gaalaas, and O. McCarthy, "A 20-W Stereo class-D Audio Output Power Stage in $0.6-\mu \mathrm{m}$ BCDMOS Technology," IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1948-1958, Nov. 2004
[4] F. Nyboe, et al, "A 240W Monolithic Class-D Audio Amplifier Output Stage," in ISSCC Dig. Tech. Papers, pp.1346-1355, Feb., 2006
[5] J. Liu, et al, "A 100 W 5.1-Channel Digital Class-D Audio Amplifier With Single-Chip Design," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1344-1354, June. 2012
[6] T. Y. Man, P. K. T. Mok and M. Chan, "An Auto-Selectable-Frequency Pulse-Width Modulator for Buck Converters with Improved Light-Load Efficiency," ISSCC Dig. Tech. Papers, pp. 440-441, Feb., 2008
[7] S. Zhou and G.A. Rincón-Mora, "A High Efficiency, Soft Switching DC-DC Converter with Adaptive Current-Ripple Control for Portable Applications," IEEE Trans. Circuits Syst. II, vol. 53, no. 4, pp. 319-323, Apr. 2006.
[8] H. Ma, R. van der Zee, and B. Nauta, "An Integrated 80-V Class-D Power Output Stage with 94\% Efficiency in a $0.14 \mu \mathrm{~m}$ SOI BCD Process," Proc. ESSCIRC, Sept., 2013

Fig. 1. Basic class-D power output stage topology

Fig. 2. $V_{\text {pwm }}$ level for excessive $I_{\text {rip }}($ left $)$ and inadequate $I_{\text {rip }}$ (right). $V_{\text {pwm }}$ and t_{d} are not to scale.

Fig. 3. Implementation of the class-D power amplifier with f_{sw} regulation

Fig. 4. Schematic of the $\mathrm{V}_{\text {pwm }}$ level detector, control signal $\mathrm{V}_{\text {Hs_detect }}$ is referred to $\mathrm{V}_{\text {pwm }}$ with level shifting (Upper); schematic of the UP/DN decision logic with 1-shot output.

Fig. 5. Efficiency and dissipation measurements for $f_{\text {sw }}$ regulation enabled and for fixed $\bigvee_{\text {tune }}$ settings. For the fixed $\mathrm{V}_{\text {tune }}$ cases, f_{sw} is measured in idle.

Parameters	This work		[2]	[3]	[4]	[5]
Type	Piezo Driver		Audio Amp.	Audio Amp.	Audio Amp.	Audio Amp.
VDDP	80V		60 V	20 V	50 V	18V
Pout,max/Channel	$45 \mathrm{VA}{ }^{(1)}$	$45 \mathrm{~W}{ }^{(2)}$	100W	20W	240W	13W
Efficiency @ Pout,max	93\%	91\%	>90\%	89\%	N/A	88\%
Efficiency @ 0.1* Pout,max	80\%	84\%	N/A	<75\%	N/A	<70\%
Efficiency @ 0.01* Pout,max	49\%	51\%	N/A	<30\%	N/A	<30\%
Idle Loss/Channel (w. output filter)	0.36W		1.6W	0.5W	2.1W	N/A
THD+N	$\begin{gathered} 0.015 \%(@ 9 \mathrm{VA}, \\ \left.\mathrm{f}_{\mathrm{sig}}=100 \mathrm{~Hz}\right) \\ 0.94 \%(@ 45 \mathrm{VA}, \\ \left.\mathrm{f}_{\text {sig }}=500 \mathrm{~Hz}\right) \\ \hline \end{gathered}$		$\begin{gathered} 0.017 \% \\ (@ 1 W, \\ \left.\mathrm{f}_{\text {sig }}=1 \mathrm{kHz}\right) \end{gathered}$	$\begin{gathered} 0.01 \% \\ (@ 10 \mathrm{~W}, \\ \left.\mathrm{f}_{\mathrm{sig}=}=1 \mathrm{kHz}\right) \end{gathered}$	<0.1\%	$\begin{gathered} 0.7 \% \\ (@ 13 W, \\ \left.\mathrm{f}_{\mathrm{sig}}=1 \mathrm{kHz}\right) \end{gathered}$

(1) Load $=23 \mu \mathrm{~F}+1.6 \Omega$ in series
(2) $\operatorname{Load}=12 \Omega$

Fig. 6. Comparison with other high-voltage, high-power class-D power amplifiers.

Fig. 7. Chip photograph of the class-D amplifier, the die measures $3.4 \mathrm{~mm} \times 2.5 \mathrm{~mm}$.

