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Abstract. We present an algorithm to extract flow graphs from Java
bytecode, focusing on exceptional control flows. We prove its correctness,
meaning that the behaviour of the extracted control-flow graph is an
over-approximation of the behaviour of the original program. Thus any
safety property that holds for the extracted control-flow graph also holds
for the original program. This makes control-flow graphs suitable for
performing different static analyses.
For precision and efficiency, the extraction is performed in two phases.
In the first phase the program is transformed into a BIR program, where
BIR is a stack-less intermediate representation of Java bytecode; in the
second phase the control-flow graph is extracted from the BIR repre-
sentation. To prove the correctness of the two-phase extraction, we also
define a direct extraction algorithm, whose correctness can be proven
immediately. Then we show that the behaviour of the control-flow graph
extracted via the intermediate representation is an over-approximation
of the behaviour of the directly extracted graphs, and thus of the original
program.

Keywords: Software Verification, Static Analysis, Program Models

1 Introduction

Over the last decade software has become omnipresent, and in parallel, the de-
mand for software quality and reliability has been steadily increasing. Different
formal techniques are used to reach this goal, e.g., static analysis, model check-
ing and (automated) theorem proving. A major remaining problem is that the
state space of software is enormous (and often even infinite). Thus, appropriate
abstractions make the formal analysis tractable. It is important for such abstrac-
tions that they are sound w.r.t. the original program: if a property holds over
the abstract model, it should also be a property of the original program.

A common abstraction is to extract a program model from code, only pre-
serving information that is relevant for the property at hand. In particular,
control-flow graphs (CFGs) [4] are a widely used abstraction, where only the
flow information is kept, and all program data is abstracted away. Concretely,
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in a control-flow graph, the nodes represent the control points of a method, and
the edges represent the instructions that make the transitions between control
points. Usually, CFG is not a suitable abstraction for verifications that need
data.

The literature contains several approaches to extract control-flow graphs au-
tomatically from program code. However, typically no formal argument is given
why the extraction is property-preserving. This paper fills this gap: it defines a
flow graph extraction algorithm for Java bytecode (JBC) and it proves that the
extraction algorithm is sound w.r.t program behaviour. The extraction algorithm
considers all the typical intricacies of Java, e.g., virtual method call resolution,
the differences between dynamic and static object types, and exception handling.

The analysis of exceptional flows is a major complication to extract control-
flow graphs of Java bytecode for two distinct reasons. First, the stack-based
nature of the Java Virtual Machine (JVM) makes it hard to determine the type
of explicitly thrown exceptions, thus making it difficult to determine to which
(exceptional) control point the program will flow. Second, the JVM can raise
(implicit) run-time exceptions, such as NullPointerException and IndexOutOf-
BoundsException; to keep track of where such exceptions can be raised requires
much information. This paper covers the explicitly thrown instructions, and a
significative subset of run-time exceptions.

Two different extraction algorithms are presented. The first extraction algo-
rithm (in Section 3) creates flow graphs directly from Java bytecode. Its cor-
rectness proof is quite direct, but the resulting control-flow graph is large: in
bytecode, all operands are on the stack, thus many instructions for stack manipu-
lation are necessary, which all give rise to an internal transfer edge in the control-
flow graph. Moreover, because the operands of a throw instruction are also on
the stack, the exceptional control-flow is significantly over-approximated. This
algorithm produces a complete map from the JBC instructions to the control-
flow of the program, however, it is not so efficient for control-flow safety verifiers
(e.g. to verify whether a sequence of method calls is correct).

As an alternative, we also present a two-phase extraction algorithm using
the bytecode Intermediate Representation (BIR) language [5]. BIR is a stack-
less representation of JBC. Thus all instructions (including the explicit throw)
are directly connected with their operands and this simplifies the analysis of
explicitly thrown exceptions. Moreover the representation of a program in BIR
is smaller, because operations are not stack-based, but represented as expres-
sion trees. As a result, the CFGs are efficient. BIR has been developed by De-
mange et al. as a module of SAWJA [8], a library for static analysis of Java
bytecode. Demange et al. have proven that their translation from bytecode to
BIR is semantics-preserving with respect to observable events, such as throwing
exceptions and sequences of method invocations. Advantages of using the trans-
formation into BIR are that (1) it is proven correct, and (2) it generates special
assertions that indicate whether the next instruction could potentially throw a
run-time exception. Our indirect extraction algorithm first generates BIR from
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JBC (using the transformation of Demange et al.), and then our own algorithm
to extract control-flow graphs from BIR.

There is no behavior definition for BIR. Therefore, to prove the correctness
of the indirect extraction, we connect the BIR CFGs to the CFGs produced by
the direct algorithm. We show that every BIR CFG structurally simulates the
JBC CFG. This allows us to exploit an existing result that structural simulation
induces behavioural simulation. Further, we prove that the CFG produced by
the direct algorithm behaviourally simulates the original Java bytecode program,
and from this we can conclude that the behaviours of the CFG generated by the
indirect algorithm (BIR) also are a sound over-approximation of the original
program behaviour. Thus, the control-flow graph extraction algorithm is sound.

Organization The remainder of this paper is organized as follows. First, Sec-
tion 2 provides the necessary background definitions for the algorithm and its
correctness proof. Then, Section 3 discusses the direct extraction rules for control
flow graphs from Java bytecode, while Section 4 discusses the indirect extraction
rules via BIR and proves its correctness. Finally Sections 5 and 6 present related
work and conclude.

2 Preliminaries

2.1 Java bytecode and the Java Virtual Machine

The Java compiler translates a Java source code program into a sequence of
bytecode instructions. Each instruction consists of an operation code, possibly
using operands on the stack. The Java Virtual Machine (JVM) is a stack-based
interpreter that executes such a Java bytecode program.

Any execution error of a Java program is reported by the JVM as an ex-
ception. Exceptions also can be thrown explicitly by instruction athrow. Each
method can define exception handlers. If no appropriate handler can be found
in the currently executing method, its execution is completed abruptly and the
JVM continues looking for an appropriate handler in the caller context. This pro-
cess continues until a correct handler is found or no calling context is available
anymore. In the latter case, the execution terminates exceptionally.

Freund and Mitchell propose a formal framework for Java bytecode [6]. A
JBC program is modeled as an environment Γ , which is a partial map from class
names, interface names and method signatures to their respective definitions.
Subtyping in an environment is indicated by Γ � τ1 <: τ2, meaning τ1 is a
subtype of τ2 in environment Γ . Let Meth be a set of method signatures. A
method m ∈ Meth in an environment Γ is represented as Γ [m] = �P,H�, where
P denotes the body and H the exception handler table of method m. Let Addr
be the set of all valid instruction addresses in Γ . Then Dom(P ) ⊂ Addr is the
set of valid program addresses for method m and P [k] denotes the instruction at
position k ∈ Dom(P ) in the method’s body. For convenience, m[k] = i denotes
instruction i ∈ Dom(P ) at location k of method m.
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In this formal model, a JVM execution state is a configuration C = A;h,
where A denotes the sequence of activation records and h is the heap. Each
activation record is created by a method invocation. Formally the sequence is
defined as follows:

A ::= A� | �x�exc.A� ; A� ::= �m, pc, f, s, z�.A� | �

Here, m is the method signature of the active method, pc is the program
counter, f is a map from local variables to values, s is the operand stack, and
z is initialization information for the object being initialized in a constructor.
Finally, �x�exc is an exception handling record, where x ∈ Excp denotes the
exception: in case of an exception, the JVM pushes such a record on the stack.

To handle exceptions, the JVM searches the exception table declared in the
current method to find a corresponding set of instructions. The method’s excep-
tion table H is a partial map which has the form �b, e, t, ��, where b, e, t ∈ Addr
and � ∈ Excp. If an exception of subtype � in environment Γ is thrown by
an instruction with index i ∈ [b, e) then m[t] will be the first instruction of the
corresponding handler. Thus, the instructions between b and e model the try
block, while the instructions starting at tmodel the catch block that handles the
exception. In order to manage finally blocks, a special type of exception called
Any is defined. The instructions in a finally block always have to be executed
by the JVM, therefore all exceptions are defined as a subtype of Any.

2.2 Program Model

Control-flow graphs present an abstract model of a program. To define the struc-
ture and behavior of a control-flow graph we follow Gurov et al. and use the
general notion of model [7, 9].

Definition 1 (Model, Initialized Model). A model is a (Kripke) structure
M = (S,L,→, A, λ) where S is a set of states, L a set of labels, → ⊆ L×S×L
a labeled transition relation, A a set of atomic propositions, and λ : S → P(A) a
valuation, assigning to each state s ∈ S the set of atomic propositions that hold
in s. An initialized model S is a pair (M,E) with M a model and E ⊆ S a set
of entry states.

Method specifications are the basic building blocks of flow graphs. To model
sequential programs with procedures and exceptions, method specifications are
defined as an instantiation of initialized models as follows.

Definition 2 (Method Specification). A flow graph with exceptions for m ∈
Meth over sets M ⊆ Meth and E ⊆ Excp is a finite model Mm = (Vm, Lm,→m

, Am, λm) with Vm the set of control nodes of m, Lm the set of the labels which
can be any instantiation to indicate the labels, Am = {m, r} ∪ E, m ∈ λm(v)
for all v ∈ Vm, and for all x, x� ∈ E, if {x, x�} ⊆ λm(v) then x = x�, i.e., each
control node is tagged with the method signature it belongs to and at most one
exception. Em ⊆ VM is a non-empty set of entry control point(s) of m.
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A node v ∈ Vm is marked with atomic proposition r to indicate that it is
a return node of the method. The labeling set Lm is not specified intentionally
to accept any instantiation. For example, figure 1 shows a sample program with
corresponding CFG in which on the contrary to internal transitions, method
calls are important. So Lm is instantiated as Lm = M ∪ {ε}.
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Fig. 1. Method specifications of methods even and odd

Every flow graph comes with an interface that defines which methods are
provided to and required from the environment.

Definition 3 (Flow Graph Interface). A flow graph interface is a triple I =
(I+, I−, E,Me), where I+, I− ⊆ Meth are finite sets of provided and required
method signatures, and E ⊆ Excp is a finite set of exceptions and Me ⊆ Meth is
the set of entry methods (starting points of the program), respectively. If I− ⊆ I+

then I is closed.

A flow graph of a program is the disjoint union of the flow graphs of all the
methods defined in the program.

Definition 4 (Flow Graph Structure). Flow graph G with interface I, writ-
ten G : I is inductively defined by:

– (Mm,Em) : ({m},M, E) if (Mm,Em) is a method specification for m over
M and E,

– G1 � G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

Definition 5 (Weak Simulation over Models). Let a =⇒ b be a sequence

of silent transitions (possible zero) from a to b, and a
β

=⇒ b a sequence contain-
ing a single visible transition β, and zero to many silent transitions. A weak sim-
ulation over a model (S,L,→, A, λ) is a binary relation Rw over S (Rw ⊆ S×S)
such that ∀p, q ∈ S, if (p, q) ∈ Rw then λ(p) = λ(q) and ∀β ∈ L, ∀p� ∈ S, if

p
β

=⇒ p� implies that there is a q� ∈ S such that q
β

=⇒ q� and (p�, q�) ∈ Rw.

A. Amighi, P. Gomes, M. Huisman

35 Technical Report, KIT, 2011-26



We use the following proposition to prove the weak simulation relation. The
proof is trivial and we omit it.

Proposition 1. Rw is a weak simulation if and only if ∀(p, q) ∈ Rw

if p → p� then exists q� ∈ S such that q =⇒ q� ∧ (p�, q�) ∈ Rw.

if p
β→ p� then exists q� ∈ S such that q

β
=⇒ q� ∧ (p�, q�) ∈ Rw.

3 Extracting Control-Flow graphs from bytecode

CFG construction rules use bytecode instructions to build the graph. Depending
on the instruction at a given address, edges between the current control node
and the possible next control nodes are constructed.

For convenience, we group the different JBC instructions into disjoint sets:
RetInst is the set of normal return instructions (e.g. return); CmpInst is the
set of simple computational instructions (e.g. push v, pop); CndInst is the set
of conditional instructions (e.g. ifeq q); JmpInst is the set of jump instruc-
tions (e.g. goto q); XmpInst is the set of instructions that potentially can raise
an exception (e.g. div, getfield f); InvInst is the set of method invocation
instructions (e.g. invokevirtual (o,m)); and ThrInst = {throw X}, where
instruction throw X is the result of a stack analysis of the JBC. In JBC, athrow
does not accept any argument and the type of the exception is determined at
run-time (as the top of the stack). Stack analysis of the JBC can generate an
exception variable to be thrown at run-time. We over-approximate the type of
the exception using a set X that contains the static type of the variable, which
is the result of the stack analysis and all its subtypes.

We define a JBC method body as a sequence of address and instruction pairs:

S ::= � : inst ; S | � � ∈ Addr, inst ∈ Inst

The nodes in a method CFG, define a map of the method’s execution state,
covering all possible JVM configurations. All nodes are tagged with pairs of an
address and a method signature. The set of the addresses is extended by adding
symbol � to denote the abort state3 of a program. Based on Definition 2, to
construct the nodes we have to specify Vm, Am and λm. For a node v ∈ Vm

indicating control point � ∈ Addr� of method m, we define v = (m, �). The
labeling function λm specifies Am for a given v ∈ Vm. If m[�] ∈ RetInst then
the node is tagged with r. If the node is an exceptional node (an exception is
raised) then it is marked with the exception type x ∈ E. The corresponding
method signature is the default tag for all the method’s control nodes. If � = 0
then the node will be a member of Em.

Two nodes are equal if they specify the same control address of the same
method with equal atomic proposition sets. We use the following notation: v � x

3 The JVM’s attempt to find a proper handler for an exception is unsuccessful and
the program terminates abnormally.
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mG(S1;S2, H) = mG(S1, H) ∪ mG(S2, H)
mG((p, i), H) = {(◦pm, ig, ◦

succ p

m )} if i ∈ CmpInst
mG((p, i), H) = {(◦pm, ig, ◦

q

m)} if i ∈ JmpInst
mG((p, i), H) = {(◦pm, ig, ◦

succ p

m ), (◦pm, ig, ◦
q

m)} if i ∈ CndInst
mG((p, i), H) =

˘
{(◦pm, ig, •

p,x

m )} ∪ H
x

p | x ∈ X
¯

if i = throw X

mG((p, i), H) = {(◦pm, ig, ◦
succ p

m )} ∪ E
i

p if i ∈ XmpInst
E
i

p =
˘
{(◦pm, ig, •

p,x

m )} ∪ H
x

p | x ∈ X (i)
¯

mG((p, i), H) = {(◦pm, ig, •
p,�N
m )} ∪ R

i

p ∪ H
�N
p ∪ N

x

p if i ∈ InvInst
R

i

p = {(◦pm, call (τ, n), ◦succ p

m ) | τ ∈ RecΓ (i)}
N

x

p =
˘
{(◦pm, handlen, •

p,x

m )} ∪ H
x

p | •
q,x,r

n ∈ mG(n), n ∈ res
α

Γ (o, n)
¯

( Γ � x <: y ) =⇒ H
x

p =

8
<

:

{(•p,xm , handle, ◦
t

m)} �Γ [m](p, y) = t �= 0
{(•p,xm , handle, •

p,x,r

m )} �Γ [m](p, y) = 0 ∧ m /∈ Me

{(•p,xm , handle, •
�,x,r

m )} �Γ [m](p, y) = 0 ∧ m ∈ Me

Fig. 2. CFG Construction Rules

means that node v is tagged with exception x; •�,xm indicates an exceptional
control node and ◦�m denotes a normal control node.

The CFG extraction rules for method m in environment Γ use the imple-
mentation of the method, Γ [m] = �P,H�. For each instruction in Γ [m], the rules
build a set of labeled edges connecting control nodes.

Definition 6 (Method Control-Flow Graph Extraction). Let V be the set
of nodes and Ig = Instg ∪ {handle}, where Instg is any mapping from Inst to
the corresponding instruction. Let Π be a set of environments. Then the control-
flow graph extraction of method m is mG : Π×Meth → P(V × Ig ×V ), defined
in Figure 2 (where succ denotes the next instruction address function).

The construction rules are defined purely syntactically, based on the method’s
instructions. However, intuitively they justify the instruction’s operational se-
mantics. The first rule decomposes a sequence of instructions into individual
instructions. For each individual instruction, a set of edges is computed.

For simple computational instructions, a direct edge to the next control ad-
dress is produced. For jump instructions, an edge to the jump address (q, spec-
ified in the instruction) is generated. For conditional instructions two edges are
generated: to the next control address and to the address specified for the jump
(q). For instructions in XmpInst edges for all possible flows are added: successful
execution, and exceptional execution, with edges for successful and failed excep-
tion handling, as defined by function Hx

p . This function constructs the outgoing
edges of the exceptional nodes by searching the exception table for a suitable
handler of exception type x at position p. If there is such a handler, it returns
a transition edge from an exceptional node to a normal node. Otherwise it pro-
duces a transition to an exceptional return node. Function � seeks the proper
handler in the exception handling table; it returns 0 if there is no entry for the
exception at the specified control point. The function X : XmpInst → P(Excp)
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is to determine possible exceptions of a given instruction. The throw instruction
is handled similarly, where X is the set of possible exceptions, identified by the
transformation algorithm.

To extract edges for method invocations, function RecΓ (i) determines the
set of possible receivers of a method call in environment Γ . For invokevirtual,
the receiver is determined by late binding, and the virtual method call (VMC)
resolution function resαΓ will be used, where α is a standard static analysis
technique to resolve VMC.

RecΓ (i) =

�
{staticT (o)} if i ∈{invokespecial (o,n), invokestatic (o,n)}
resαΓ (o, n) if i = invokevirtual (o,n)

Suppose that VMC resolution uses the RTA algorithm, i.e., α = RTA, then the
result of the resolution for object o and method n in environment Γ will be:

resαΓ (o, n) = {τ | τ ∈ ICΓ ∧ Γ � τ <: staticT (o) ∧ n = lookup(n, τ)}
where ICΓ is the set of instantiated classes in environment Γ , staticT (o) gives
the static type of object o and lookup(n, τ) corresponds to the signature of n,
i.e., τ is a subtype of o’s static type and method n is defined in class τ .

Given the set of possible receivers, calls are generated for each possible re-
ceiver. For each call, if the method’s execution terminates normally, control will
be given back to the next instruction of the caller. If the method terminates
with an uncaught exception, the caller has to handle this propagated exception.
If the current method is an entry method, me, then the program will terminate
abnormally. The CFG extraction rules for method invocations produce edges for
both �N=NullPointerException and for all propagated exceptions.

Ri
p is the set of the edges for normal terminating calls, H�N

p is the set of
edges to handle �N , and N x

p defines the set of edges to handle all uncaught
exceptions from all possible callees. We put the callees signature as an index of
the handle label to differentiate between propagated exceptions from method
calls and exceptions raised in the current method. Similar to generating outgoing
edges for exceptional control points, Hx

p generates edges for successful/failed
handlers for all exceptional nodes in CFGn which is the CFG of method n ∈
resαΓ (o, n).

The CFG of a Java class C, denoted cG(C) : Class → P(V × Instg × V ), is
defined as the disjoint union of the CFGs of the methods in C. The CFG of a
program P , denoted G(P ) : Π → P(V × Instg × V ), is the disjoint union of all
CFGs of the classes in P .

3.1 CFG Correctness

In order to prove the soundness of the extracted flow graph we need to define
the behavior of the flow graph. The following extends the behavior definition of
flow graphs from [9], based on our extraction rules.

Definition 7 (CFG Behavior). Let G = (M,E) : I be a closed flow graph
with exceptions such that M = (V, L,→, A, λ). The behavior of G is described
by the specification b(G), where Mg = (Sg, Lg,→g, Ag, λg) such that:

Provably Correct Control-Flow Graphs from Java Programs with Exceptions

Technical Report, KIT, 2011-26 38



– Sg ∈ V × (V )∗, i.e., states are pairs of control nodes and stacks of control
nodes,

– Lg = {τ} ∪ LC
g ∪ LX

g where LC
g = {m1 l m2 | l ∈ {call, ret, xret},m1,m2 ∈

I+} (the set of call and return labels) and LX
g = {l x | l ∈ {throw, catch}, x ∈

Excp} (the set of exceptional transition labels).
– Ag = A and λg((v, σ)) = λ(v)
– →g ⊂ Sg × Sg is the set of transitions in CFGm with the following rules:

[call] (v1, σ)
m1 call m2
−−−−−−−−→g (v2, v1.σ) if m1,m2 ∈ I

+
, v1

call m2
−−−−−→m1 v

�
1,

v
�
1 ∈ next(v1), v1 � Excp
v2 � m2, v2 ∈ E, v1 � ¬r

[return] (v2, v1.σ)
m2 ret m1
−−−−−−−→g (v�1, σ) if m1,m2 ∈ I

+
, v2 � m2 ∧ r

v1 � m1, v
�
1 � Excp, v

�
1 ∈ next(v1)

[xreturn] (v2, v1.σ)
m2 xret m1
−−−−−−−−→g (v�1, σ) if m1,m2 ∈ I

+
, v2 � m2, v1 � m1

v2
handle

−−−−→m2 v
�
2, v1

handle

−−−−→m1 v
�
1

v2 � x, v
�
2 � x ∧ r, v1 � x, v

�
1 � x, x ∈ Excp

[transfer] (v, σ)
τ

−→g (v�, σ) if m ∈ I
+
, v

ig
−→m v

�
, v � ¬r, v � Excp, v

� � Excp

[throw] (v, σ)
throw x

−−−−−→g (v�, σ) if m ∈ I
+
, v

ig
−→m v

�
, v � ¬r, v

� � Excp

[catch] (v, σ)
catch x

−−−−−→g (v�, σ) if m ∈ I
+
, v

handle

−−−−→m v
�
, v � ¬r ∧ Excp, v� � r, v

� � Excp

Consider again the flow graph in Figure 1. One example run through its
(branching, infinite-state) behavior, from an initial to a final configuration, is:

(v0, ε)
τ

−→ (v1, ε)
τ

−→ (v2, ε)
even call odd

−−−−−−−−−→ (v5, v3)
τ

−→ (v6, v3)
τ

−→ (v8, v3)
odd ret even

−−−−−−−−→ (v3, ε)

To show the correctness of the extraction algorithm, we show that the ex-
tracted CFG of method m can match all possible moves during execution of m.
In order to do this, we first define a mapping θ that abstracts JVM configura-
tions to CFG behavioural configurations. Using θ, we can then prove that the
behaviour of a CFG simulates the behaviour of the corresponding method in
JBC.

Definition 8 (Abstraction Function for VM States). Let Vmc be the set
of JVM execution configurations and Sg the set of states in mG. Then θ : Vmc →
Sg is defined inductively as follows:

θ(�m, p, f, s, z�.A;h) = �◦pm, θ(A;h)�
θ(�m, p, f, s, z�.�;h) = �◦pm, ��

θ(�x�exc.�;h) = �•�,x,rm , ��
θ(�x�exc.�m, p, f, s, z�.A;h) = �•p,xm , θ(A;h)�

Now we can prove correctness of the CFG construction. Function θ specifies
the corresponding JVM state in the extracted CFG. In order to match relating
transitions we use simulation modulo relabeling: we map JVM transition labels
Inst ∪ {�} to the CFG transition labels in CFG Instg ∪ {handle}. Transition
� in the JVM labeling set denotes silent transitions: transitions of the JVM to
handle raised exceptions.
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expr ::= c | null (constants)
| expr ⊕ expr (arithmetic)
| tvar | lvar (variables)
| expr.f (field access)

lvar ::= l | l1 | l2 | . . . (local var.)
this

tvar ::= t | t1 | t2 | . . . (temp. var.)

target ::= lvar
| tvar
| expr.f

Assignment ::= lvar := expr | expr.f :=expr
TempAssign ::= tvar := expr

Return ::= vreturn expr | return
MethodCall ::= expr.m(expr,..., expr)

| target := expr.m(expr,...,expr)
NewObject ::= target := new C(expr,...,expr)
Assertion ::= notnull expr | notzero expr

instr ::= nop | if expr pc | goto pc
| throw expr | mayinit C
| Assignment | TempAssign
| Return | MethodCall
| NewObject | Assertion

Fig. 3. Expressions and Instructions of BIR

Theorem 1 (CFG Simulation). For a closed program P and corresponding
flow graph G, the behavior of G simulates the execution of P .

Proof. For every possible JVM configuration c and instruction i, we establish
the possible transitions to a set of configurations C based on the operational
semantics. We apply θ to all elements in C, denoted Θ(C), to determine the
abstract CFG configurations. Then we use the CFG construction algorithm to
determine which edges are established for instruction i. These edges determine
the possible transitions paths from θ(c) to the next CFG states S, and we show
that the set S corresponds to the configurations Θ(C). To show that this indeed
holds, we use a case analysis on Vmc. For more details we refer to Amighi’s
Master thesis [2]. �

4 Extracting Control-Flow Graphs from BIR

This section presents the two-phase transformation from Java bytecode into
control-flow graphs using BIR as intermediate representation. First we briefly
present BIR and the transformation from JBC into BIR. Then, we present the
transformation from BIR into control-flow graphs and prove its correctness.

4.1 The BIR language

The BIR language is an intermediate representation of Java bytecode. The main
difference with standard JBC is that BIR instructions are stack-less, i.e., they
have explicit operators and do not operate over values stored in the operand
stack. This subsection gives a brief overview of BIR, for a full account we refer
to [5].

Syntax and Expression trees Figure 3 summarizes the BIR syntax. Its instruc-
tions operate over expression trees, i.e., arithmetic expressions composed of con-
stants, operations, variables, and fields of other expressions (expr.f). BIR does
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not have operations over strings and booleans,these are transformed into meth-
ods calls by the BC2BIR transformation. The transformation algorithm discussed
below reconstructs expression trees, i.e., it collapses one-to-many stack-based
operations into a single expression. As a result, a program represented in BIR
typically has fewer instructions than the original JBC program.

There are two kinds of variables in BIR: var and tvar. The first are identi-
fiers that are also present in the original bytecode; the latter are new variables
introduced by the transformation. Both variables and object fields can be target
of an assignment.

Many of the BIR instructions have an equivalent JBC counterpart, e.g., nop,
goto and if. A vreturn expr ends the execution of a method with return value
expr, while return ends a void method. The throw instruction explicitly trans-
fers control flow to the exception handling mechanism. Method call instructions
are represented by the method signature. For non-void methods, the instruction
assigns the result value to a variable.

In contrast to JBC, object allocation and initialization happen in a single
step, during the execution of the new instruction. However, Java also has class
initialization, i.e., the one-time initialization of a class’s static fields. To pre-
serve this class initialization order, BIR contains a special mayinit instruction.
This behaves exactly as a nop, but indicates that at that point a class may be
initialized for the first time.

Assertions The support for run-time exceptions in BIR is implemented in the
form of special instructions called assertions. These instructions are inserted
during the transformation of bytecode instructions that can potentially raise
exceptions, as defined in the Java Virtual Machine specification.

We define RE as the set of supported run-time exceptions in BIR (follow-
ing [3]). Figure 4 shows this set, and the function χ̄ : Assertion → RE that maps
the assertion to the run-time exception it guards. Along the text we exemplify
the use of assertions using [notnull] and [notzero] only, and its corresponding
exceptions.

Assertion RE Assertion RE

[notnull] NullPointerException [notzero] ArithmeticException
[checkbound] IndexOutOfBoundsException [checkcast] ClassCastException

[notneg] NegativeArraySizeException [checkstore] ArrayStoreException

Fig. 4. χ̄: Mapping of Assertions and Runtime Exceptions

The [notzero] expr assertion is placed before all instructions containing an
expression with division operation. It checks whether the divisor expr evaluates
to zero, thus potentially raising an ArithmeticException. The [notnull] expr
assertion is placed before any access to a reference and checks whether expr
evaluates to a dereferenced object, thus raising a NullPointerException. In cases
the assertion is successful, it behaves as a [nop], and control-flow passes to
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the next instruction. In case of a failure, control is transferred to the exception
handling mechanism, just like for a [throw] instruction. If a suitable exception
handler is found, control is moved to the first instruction of this handler.

BIR Programs A BIR program is organized exactly the same way as a Java
bytecode program. A program is a set of classes, ordered by an inheritance
hierarchy. Every class consists of a name, methods and fields. A method’s code
is stored in an instruction array. However, in contrast to JBC, in BIR the indexes
in the instruction array are sequential, starting with 0 for the entry control point.

4.2 Transformation from Java bytecode into BIR

Next we give a short overview of the BC2BIR transformation. In some points,
the algorithm is quite complex, because it has to maintain consistency between
object references and BIR variables. However, since the flow-graph extraction
abstracts away from all data, these complex points are not relevant and we do
not discuss them here. Instead we focus on the transformation of instructions,
i.e., the BC2BIRinstr function. For the complete algorithm, we refer to [5].

The transformation BC2BIR transforms a complete JBC program into BIR by
symbolically executing the bytecode using an abstract stack. This stack is used
to reconstruct expression trees. Moreover, it also stores references to uninitial-
ized objects, used to correctly match them with the corresponding initialization
instruction, and differentiate the to constructor of the super class.

Definition 9 (Abstract Stack). Let UR = {URCpc|C ∈ C, pc ∈ N} be the set of
references to uninitialized objects with static type C, allocated at program counter
pc. Let Expr be the set of expression trees in the BIR language. Then the abstract
stack is defined as

AbsStack = (Expr ∪ UR)∗

The symbolic execution of the individual instructions is defined by a function
BC2BIRinstr that given a program counter, a JBC instruction and an abstract
stack, outputs a set of BIR instructions and a modified abstract stack. In case
there is no match for a pair of bytecode instruction and stack, the transforma-
tion function returns the Fail element, and the BC2BIR algorithm aborts. The
function BC2BIRinstr is defined as follows.

Definition 10 (BIR Transformation Function). The rules defining the in-
struction-wise transformation BC2BIRinstr : N× instr ×AbsStack → (instrBIR ∗
×AbsStack) ∪ Fail from Java bytecode into BIR are given in Figure 5.

As a remark, JBC instructions with similar semantics, but working on dif-
ferent types of operands (e.g., adiv and fdiv) are grouped as single instructions
(e.g., div). As a convention, we use brackets to distinguish BIR instructions from
their JBC counterpart. At several places, the transformation function introduces
new variables ti

pc
that maintain consistency between values on the stack and the

value that it represents.
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Input Output
Instr Stack Instrs Stack
nop as ∅ as
pop e:as ∅ as
push c as ∅ c:as
dup e:as ∅ e:e:as
load x as ∅ x:as
add e1:e2:as ∅ e1+e2:as
div e1:e2:as [notzero e2] e1/e2::as

Input Output
Instr Stack Instrs Stack
if pc’ e:as [if e pc’] as
goto pc’ as [goto pc’] as
return as [return] as
vreturn e:as [return e] as
athrow e:as [throw e] as
new C as [mayinit C] UR C

pc:as
getfield f e:as [notnull e] e:f:as

Input Output Condition
Instr Stack Instrs Stack
store x e:as [x:=e] as x /∈ as

[t0pc:=x;x:=e] as[t0pc/x] x ∈ as
putfield f e�:e:as [notnull e;FSave(pc,f,as);e.f:=e� ] as[tipc/ei]
invokevirtual m e�1...e

�
n:e:as [notnull e;Hsave(pc,as)]

[e.m(e�1...e
�
n)] as[tjpc/ej] m is void

[t0pc:=e.m(e
�
1...e

�
n)] t0pc:as[t

j

pc/ej] m not void
invokespecial m e�1...e

�
n:e:as [Hsave(pc,as);t0pc:=new C(e�1...e

�
n)] as[tjpc/ej] e = UR C

pc

[notnull e;Hsave(pc,as);e.m(e�1...e
�
n)] as[tjpc/ej] otherwise

Fig. 5. Rules for BC2BIRinstr

JBC instructions if, goto, return and vreturn are transformed into cor-
responding BIR instructions (using the top of the stack as condition argument
for the if instruction). The new instruction adds an unallocated object on the
stack, and produces a mayinit instruction. The getfield f instruction reads
a field from the object reference at the top of the stack. This might produce a
NullPointerException, thus the transformation produces a notnull instruction.

For the store x instruction there are two cases. If the variable x is not yet
on the stack, the assignment of the expression on the top of the stack to x is
returned. Otherwise, first the current value of x is assigned to a newly created
variable t0

pc
, and all occurrences of x on the stack are replaced by this new

variable (denoted as[t0
pc
/x]).

The putfield f outputs a set of BIR instructions: first, a notnull assertion,
to check if the accessed reference is made to a valid object. Then the auxiliary
function FSave introduces a set of Assignment instructions to temporary vari-
ables, for all occurrences of f on the stack; finally it creates the assignment
instruction to the field (e.f).

The rule for virtual method calls (invokevirtual) generates a sequence of
instructions. First there is a [notnull] assertion. Then any reference to objects
on the stack that access the heap must be stored into newly introduced variables
to remember its value, because objects on the heap can be altered during the
method invocation. This is defined as function Hsave. Finally, there is the call
instruction itself. If the method returns a value, a new variable is introduced to
store the return value, and this is added to the abstract stack.

The transformation of invokespecial searches for an uninitialized reference
on the stack after the method arguments to check if such call targets an object
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constructor. If such reference is not found , the transformation acts similarly to
the case of virtual method calls. However if an uninitialized reference is found,
it replaces the UR C

pc
reference to the uninitialized object – added by the trans-

formation of the new instruction – with a new variable tjpc.
Figure 6 shows the JBC and BIR representations for the method even, pre-

sented in Figure 1. The example contains both a local variable ($bcvar1) and
a new variable introduced by the transformation ($irvar1). We can observe re-
constructed expression trees as the argument to the method invocation, and as
the operand to the [if] instruction. The [notnull this] instruction is trivial,
since it checks if the reference to the current object is valid, but it illustrates
how assertions are placed before instructions that can raise exceptions.

Java bytecode BIR
public boolean even(int); public bool even(int)
0: iload 1 0: if ($bcvar1 != 0) goto 2
1: ifne 6 1: vreturn 1
4: iconst 1 2: notnull this
5: ireturn 3: $irvar1 := this.odd($bcvar1-1)
6: aload 0 4: vreturn $irvar1
7: iload 1
8: iconst 1
9: isub

10: invokevirtual boolean odd(int)
13: ireturn

Fig. 6. Comparison of method in JBC and BIR

4.3 Transformation from BIR into Control-Flow Graphs

The setup of the extraction algorithm is similar to that of BC2BIR. It iterates
over the instructions of a method, using the transformation function bG. Each
iteration outputs a set of triples of the form V × Instr × V . The extraction
algorithm bG takes as input a program counter and an instruction array for a
BIR method. It outputs a set of edges. The set of edges can then be directly
transformed in a control-flow graph as defined in Definition 6.

To define bG, we introduce auxiliary functions and definitions similar to the
ones introduced in the direct extraction (in Section 3). H̄ is the exceptions table
from a given method. It contains the same entries as the JBC table, but has its
control points translated to the BIR. The function �H̄(pc, x) searches for the first
handler for the exception x (or a subtype) at position pc. The function resαb (o, n)
returns all possible receivers for a method call, given the object reference and
the method signature. The function H̄pc

x returns an edge after querying � for
exception handlers. Also, N̄ pc

n returns edges to exceptional flows for the method
invocations that can terminate due to an uncaught exception, and consequently
propagate it.
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H̄
pc

x =


(•pc,xm , handle, ◦tm) �H̄ = t �= 0
(•pc,xm , handle, •pc,x,rm ) �H̄ = 0

N̄
pc

n = {(◦pcm, handlen, •
pc,x

m ), H̄pc

x |•
pc,x,r

n ∈ bG(n), n ∈ res
α

b (o, n)}
bG((pc, i), H̄) = ∅ if i ∈ TempAssign
bG((pc, i), H̄) = {(◦pcm, ib, ◦

pc+1

m )} if i ∈ {[nop],[mayinit]}

bG((pc, i), H̄) = {(◦pcm, ib, ◦
pc+1

m )} if i ∈ Assignment
bG((pc, i), H̄) = {(◦pcm, ib, ◦

pc+1

m ), ◦pcm, ib, ◦
pc’

m )} if i = [if expr pc’]

bG((pc, i), H̄) = {(◦pcm, ib, ◦
pc’

m )} if i = [goto pc’]
bG((pc, i), H̄) = {(◦pcm, ib, ◦

pc,r

m )} if i ∈ Return
bG((pc, i), H̄) = {(◦pcm, call(τ, n), ◦pc+1m ), (◦pcm, ib, •

pc,�N

m )} ∪ if i ∈ NewObject
{H̄

pc

�N
} ∪ N̄

n

pc

bG((pc, i), H̄) = {(◦pcm, call(τ, n), ◦pc+1m ) | ∀τ ∈ res
α

b } ∪ N̄
n

pc if i ∈ MethodCall
bG((pc, i), H̄) = {(◦pcm, ib, •

pc,x

m ), H̄pc

x | x ∈ X} if i = [throw X]

bG((pc, i), H̄) = {(◦pcm, ib, ◦
pc+1

m ), (◦pcm, ib, •
pc,χ̄(i)
m ), H̄pc

χ̄(i)} if i ∈ Assertion

Fig. 7. Extraction rules for Control-flow graphs from BIR

Definition 11 (Control Flow Graph Extraction). The control-flow graph
extraction function bG : (N× Instr)× H̄ → P((V, Ib, V )) is defined by the rules
in Figure 7, where Ib = Instr ∪ {handle}.

The control-flow graph for a method m is defined as bG(m) =�
∀ipc∈instrm

bG(pc, ipc, H̄m), where instrm is the instruction array for method
m, and ipc is the instruction with array index pc. The control-flow graph for a
closed program p is defined as bG(p) =

�
∀m∈pc bG(m).

The extraction rules work as follows. Assignments to a newly introduced
temporary variables, denoted by the TempAssign set, do not produce edges. Such
instructions are produced by the BIR transformation to keep data consistent,
but they do not have a correspondent edge on the direct extraction, thus we can
ignore them. For the instructions in Assignment set, [nop] and [mayinit] a
normal transition to the next control node is generated. The conditional jump
[if expr pc’] produces a branch in the CFG: control can go either to the
next control point, or to the branch point pc’. The unconditional jump goto
pc’ adds a single transition to control point pc’. The [return] and [vreturn
expr] instructions generate an internal transition to a return node, i.e., a node
with the atomic proposition r. Notice that, although both nodes are tagged
with the same pc, they are different, because their sets of atomic propositions
are different.

The extraction rule for calls to constructors ([new C]) produces a single nor-
mal edge, since there is only one possible receiver for the call. Also, we produce
a pair of edges relatives to NullPointerException. The BIR transformation does
not produce a correspondent [notnull] instruction for such case, and at first we
should not support such exceptional flows. However the direct algorithm con-
templates such case, thus we produce these two exceptional edges for the sake
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of soundness. Moreover, N̄ pc
n returns transitions to exceptional nodes due to un-

caught exceptions, together with the appropriate exception handling transitions.
The extraction rule for method calls is similar to that of the direct extraction

(in Section 3). Again, we assume that an appropriate virtual method calls res-
olution is used. We add a normal edge for each possible receiver returned from
resαb . Again, N̄ pc

n returns a pair of transitions for uncaught exceptions.
The [throw x] instruction, similarly to virtual method call resolution, de-

pends on some kind of static analysis to find out the possible exceptions that
can be thrown. The BIR transformation only provides the static type of the
exception x . We define X as the set containing the static type of x and its
subtypes. Thus we add one exceptional edge for each element of X, together
with its correspondent edge after querying the exception table.

Finally, we cite the rule for assertion instructions. In this case, we create a
normal edge, indicating that the execution was successful, one exceptional edge
to mark the raise of an exception, a third edge, which shows if the instruction
has an associated entry in the exceptions table.

4.4 CFG Extraction Correctness Proof

We now enunciate the correctness proof theorem for control-flow graphs ex-
tracted from the composition of BC2BIR and bG algorithms. We prove that given
the same JBC program, the control-flow graph generated with the composition
of algorithms simulates structurally the control-flow graph generated using the
mG direct algorithm.

Theorem 2 (Structural Simulation of Control-Flow Graphs). Let P be
an arbitrary Java bytecode closed program. Then bG◦BC2BIR(P ) weakly simulates
mG(P ), considering the set RE.

The proof is stated using case analysis over the Java bytecode instructions
set, and is available on-line 4. Based on the previous proof that structural simu-
lation implies behavioral simulation [9], we can conclude that the correctness of
structural simulation ofmG(P ) by the control-flow graph produced in BC2BIR(P )
implies also behavioural simulation.

5 Related Work

Sinha et. al. [13, 14] propose criteria for testing exception handling constructs in
Java programs (Java source code). They consider the effect of exception prop-
agation and exceptions type conversion. The proposed algorithm for CFG con-
struction traverses the (Abstract Syntax Tree) AST of the program and then
inter-procedural CFG (ICFG) is established. Normal CFG is constructed using
algorithms proposed in [1].

4 Available at http://www.csc.kth.se/~pedrodcg/files/foveoos11-proof.pdf
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In a similar work Jiang [11] propose an algorithm to extract exceptional
control-flow graph (ECFG) of C++ programs. In the proposed model of the pro-
grams implicit control-flow of exceptions and exceptions propagation is repre-
sented. Based on the inter-procedural ECFG (ICFG) they described techniques
for path testing and definition-use testing of C++ programs.

Jo and Chang [12] propose a method to construct CFG by computing sep-
arately normal flow and exception flow of Java programs (Java source code).
Using a set-constraints of exceptions and iterative fix-point method they com-
pute exception propagation paths. They show that CFG of a program can be
constructed by merging an exception flow graph onto a normal flow graph.

Our CFG extraction rules use the results of inter-procedural analysis and
exception propagation from above mentioned work, however, none gives formal
extraction rule and correctness proof.

6 Conclusion

This paper presents an efficient and precise control-flow graph extraction al-
gorithm, and shows the proof outline of its correctness. To the best of our
knowledge, this is the first control-flow graph extraction algorithm that has been
proven correct. The proof is presented in pencil-and-paper style, but paves the
ground for a second version using automated reasoning.

The algorithm is efficient and precise, because it uses an intermediate stack-
less representation. This allows to generate precise information about exceptional
control-flow, and it keeps the generated control-flow graphs relatively small.

To prove correctness of the algorithm, i.e., to show that any behaviour of
the extracted control-flow graph is an over-approximation of the program’s be-
haviour, a second extraction algorithm is used that works directly on the byte-
code. It is easy to prove correctness of this direct algorithm. To prove correct-
ness of the indirect algorithm we show that the flow graphs it generates simulate
structurally the flow graphs generated by the direct algorithm. Since structural
simulation implies behavioural simulation, this gives us the desired result.

As future work, we are studying how the extraction algorithm could be
adapted to a modular setting. Currently, only flow-graphs for complete programs
can be extracted. However, our intention is to use the extracted flow-graphs as
input for CVPP [10], a tool set for compositional verification of control-flow
safety properties. In this setting, one often wishes to generate a flow-graph from
an incomplete program. In addition, we are also studying how the techniques
used in this paper can be used to prove correctness of an extraction algorithm
that preserves some data of the original program, and how to use it for programs
with multiple threads of execution.
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