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Abstract. Since testing is inherently incomplete, test selection is of vi-
tal importance. Coverage measures evaluate the quality of a test suite
and help the tester select test cases with maximal impact at minimum
cost. Existing coverage criteria for test suites are usually defined in terms
of syntactic characteristics of the implementation under test or its speci-
fication. Typical black-box coverage metrics are state and transition cov-
erage of the specification. White-box testing often considers statement,
condition and path coverage. A disadvantage of this syntactic approach
is that different coverage figures are assigned to systems that are behav-
iorally equivalent, but syntactically different. Moreover, those coverage
metrics do not take into account that certain failures are more severe
than others, and that more testing effort should be devoted to uncover
the most important bugs, while less critical system parts can be tested
less thoroughly.

This paper introduces a semantic approach to test coverage. Our starting
point is a weighted fault model, which assigns a weight to each potential
error in an implementation. We define a framework to express coverage
measures that express how well a test suite covers such a specification,
taking into account the error weight. Since our notions are semantic,
they are insensitive to replacing a specification by one with equivalent
behaviour. We present several algorithms that, given a certain minimality
criterion, compute a minimal test suite with maximal coverage. These
algorithms work on a syntactic representation of weighted fault models
as fault automata. They are based on existing and novel optimization
problems. Finally, we illustrate our approach by analyzing and comparing
a number of test suites for a chat protocol.

1 Introduction

After years of limited attention, the theory of testing has now become a widely
studied, academically respectable subject of research. In particular, the applica-
tion of formal methods in the area of model-driven testing has led to a better
understanding of the notion of conformance an implementation to a specifica-
tion. Also, automated generation methods for test suites from specifications (e.g.
[12,15,13,4,10]) have been developed, which have lead to a new generation of



powerful test generation and execution tools, such as SpecExplorer[5], TorX|[2]
and TGV[7].

A clear advantage of a formal approach to testing is the provable soundness of
the generated test suites, i.e. the property that each generated test suite will only
reject implementations that do not conform to the given specification. In many
cases also a completeness or exhaustiveness result is obtained, i.e. the property
that for each non-conforming implementation a test case can be generated that
will expose its errors by rejecting it (cf. [12]).

In practical testing the above notion of exhaustiveness is usually problematic.
For realistic systems an exhaustive test suite will contain infinitely many tests.
This raises the question of test selection, i.e. the selection of well-chosen, finite
test suites that can be generated (and executed) within the available resources.
Test case selection is naturally related to a measure of coverage, indicating how
much of the required conformance is tested for by a given test selection. In this
way, coverage measures can assist the tester in choosing test cases with maximal
impact against some optimization criterion (i.e. number of tests, execution time,
cost).

Typical coverage measures used in black-box testing are the number of states
and/or transitions of the specification that would be visited by executing a
test suite against it [14]; white-box testing often considers the number of state-
ments, conditional branches, and paths through the implementation code that
are touched by the test suite execution [8,9]. Although these measures do in-
deed help with the selection of tests and the exposure of faults, they share two
shortcomings:

1. The approaches are based on syntactic model features, i.e. coverage figures
are based on constructs of the specific model or program that is used as a
reference. As a consequence, we may get different coverage results when we
replace the model in question with a behaviorally equivalent, but syntacti-
cally different one.

2. The approaches fail to account for the non-uniform gravity of failures, whereas
it would be natural to select test cases in such a way that the most critical
system parts are tested most thoroughly.

It is important to realize that the appreciation of the weight of a failure
cannot be extracted from a purely behavioral model, as it may depend in an
essential way on the particular application of the implementation under test
(IUT). The importance of the same bug may vary considerably between, say, its
occurrence as part of an electronic game, and that as part of the control of a
nuclear power plant.

Overview. This paper introduces a semantic approach for test coverage that
aims to overcome the two points mentioned above. Our point of departure is a
weighted fault model that assigns a weight to each potential error in an imple-
mentation and we define our coverage measures relative to these weighted fault
models.



Since our weighted fault models are infinite semantic objects, we need to
represent them finitely if we want to model them or use them in algorithms. We
provide such representations by fault automata (Section 4). Fault automata are
rooted in ioco test theory [12] (recapitulated in Section 3), but their principles
apply to a much wider setting.

We provide two ways of deriving weighted fault models from fault automata,
namely the finite depth model (Section 4.1) and the discounted fault model (Sec-
tion 4.2). The coverage measures obtained for these fault automata are invariant
under behavioral equivalence.

For both fault models, we provide algorithms that calculate and optimize
test coverage (Section 5). These can all be studied as optimization problems in
a linear algebraic setting. In particular, we compute the (total, absolute and
relative) coverage of a test suite w.r.t. a fault model. We apply our theory to
the analysis and the comparison of several test suites derived for a small chat
protocol (Section 6). We end by providing conclusions and suggestions for further
research (Section 7).

Due to space restrictions, we refer the reader to [3] for the proofs of the
results stated in this paper.

2 Coverage measures in weighted fault models

Preliminaries. Let L be any set. The L* denotes the set of all sequences over
L, which we also call traces over L. The empty sequence is denoted by € and |o|
denotes the length of a trace o € L*. We use L™ = L* \ {e¢}. For o, p € L*, we
say that o is a prefiz of p and write o C p, if p = oo’ for some o’ € L*.

We denote by P(L) the power set of L and for any function f: L — R, we
use the convention that >° _, f(z) =0 and [], ., f(z) = 1.

2.1 Weighted fault models

A weighted fault model specifies the desired behavior of a system by not only
providing the correct system traces, but also giving the severity of the erroneous
traces. Technically, a weighted fault model is a function f that assigns a non-
negative error weight to each trace o € L*, where L is a given action alphabet.
If f(o) =0, then o is correct behavior; if f(o) > 0, then o is incorrect and f(o)
denotes the severity of that error (i.e. the higher f(o), the worse the error). We
require the total error weight in f, i.e. > _ f(0), to be finite and non-zero, so
that we can measure coverage of a test suite relative to the total error weight.

Definition 1. A weighted fault model over an action alphabet L is a function
f:L* — R2Y such that 0 < Y. ;. f(0) < co. We sometimes refer to traces
o € L* with f(o) > 0 as error traces and traces with f(o) = 0 as correct traces.

2.2 Coverage measures

For the abstract set up in this section, we do not need to know what exactly a
test looks like. We just need that a test is some set of traces and a test suite is a



set of tests, i.e. some family of traces sets. Thus, our coverage measures can be
applied in a test context where every test cases can be characterized as a traces
set, viz. those traces that can occur when the tester executes the test. This is
the case e.g. in TTCNI6], ioco test theory[12] and FSM testing[14].

Definition 2. Let f : L* — R2° be a weighted fault model over L, let t C L*
be a trace set and let T C P(L*) be a collection of trace sets. We define

e abscou(t, f) = ¢, f(o) and abscov(T, f) = abscov(User t, f)
e totcov(f) = abscov(L*, f)

e relcov(t, f) = 7“?5{0(2;(&’;) and relcov(T, f) = 7“1’;;2;’5?}{)

The coverage of a test suite T', w.r.t. a weighted fault model f, measures the
total weight of the errors that can be detected by tests in T. The absolute cov-
erage abscov(T, f) simply accumulates the weights of all error traces in T'. Note
that each trace is counted only once, since one test case is enough to detect the
presence of an error trace in an IUT. The relative coverage relcov(T, f) yields
the error weight in T as a fraction of the weight of all traces in T'. Absolute (cov-
erage) numbers have meaning when they are put in perspective of a maximum,
or average. Then, we advocate that the relative coverage is a good measure of
the quality of a test suite. Note that the requirement 0 < ) ;. f(0) < oo is
needed to prevent division by 0 and division of co by oco.

Completeness of a test suite can easily be expressed in terms of coverage.

Definition 3. A test suite T C P(L*) is complete w.r.t. a weighted fault model
f:L* —R2% if cou(T, f) = 1.

The following proposition characterizes the complete test suites.

Proposition 1. Let f be a weighted fault model over L. Then a test suite T C
P(L*) is complete for [ if and only if for all o € L* with f(o) > 0, there exists
t € T such that o € t.

3 Labeled input-output transition systems

This section recalls some basic theory about test case derivation from labeled
input-output transition systems, following ioco testing theory [12]. It prepares for
the next section that treats an automaton-based formalism for specify weighted
fault models.

Definition 4. A labeled input-output transition system (LTS) A is a tuple
(V,L, A), where

o V is a finite set of states.

e L is a finite action signature. We assume that L = LT UL® is partitioned
into a set L' of input labels (also called input actions or inputs) and a set
L9 of output labels L (also called output actions or outputs). We denote
elements of LT by a? and elements of L° by a!.



e ACV x L xV is the transition relation. We require A to be deterministic,
ie. if (s,a,8),(s,a,8") € A, then s = s". The input successor transition
relation Al is the restriction of A to AT C V x L' x V and A© is the
restriction of A to A° CV x LO x V. We write A(s) = {(a,s') | (s,a,5") €
A} and similarly for Al(s) and A°(s). We denote by outdeg(s) = |A°(s)]
the outdegree of state s, i.e. the number of transitions leaving s.

We denote the components of A by Va, La, and Ay. We omit the subscript A
if it is clear from the context.

We have asked that A is deterministic only for technical simplicity. This is not
a real restriction, since we can always determinize A. We can also incorporate
quiescence, by adding a self loop s—s labeled with a special label § to each
quiescent state s, i.e. each s with A9 (s) = . Since quiescence is not preserved
under determinization, we must first determinize and then add quiescence.

We introduce the usual language theoretic concepts for LTSs.

Definition 5. Let A be a LTS, then

e A path in A is a finite sequence m = sg,a1,S1,..-Sn such that for all 1 <
1 < n, we have (s;—1,a;,s;) € A. We denote by paths(sg) the set of all paths
that start from the state so € V' and by last(w) = s, the last state of .

e The trace of m, trace(r), is the sequence ay,as...a, of actions occurring
in w. We denote by traces(s) the set of all traces that start from state s €
V' {trace(m)|m € paths(s)}, and by traces(A) the set of all traces of A :
Usev traces(s).

o We write s—2»5' if ' can be reached from s via the trace o, i.e. if there is a
path w € paths(s) such that trace(n) = o and last(t) = s'. We write s—— s’
if s-2»5' and |o| = k; s—ys' if s—ps' for some o; and s—s' if s—2=5'
for some o.

Test cases for LTSs are based on ioco test theory [12]. As in TTCN, ioco
test cases are adaptive. That is, the next action to be performed (observe the
IUT, stimulate the TUT or stop the test) may depend on the test history, that
is, the trace observed so far. If, after a trace o, the tester decides to stimulate
the IUT with an input a?, then the new test history becomes ca?; in case of
an observation, the test accounts for all possible continuations ob! with b! € LO
an output action. Ioco theory requires that tests are ”fail fast”, i.e. stop after
the discovery of the first failure, and never fail immediately after an input. If
o € traces(s), but oa? ¢ traces(s), then the behavior after ca? is not specified
in s, leaving room for implementation freedom. Formally, a test case consists of
the set of all possible test histories obtained in this way.

Definition 6. e A test case (or test) t for a LTS A at state s € V is a finite,
prefiz-closed subset of traces(s) such that
— ifoa? €t, then ob &t for any b € L with a? #b
— if oa! € t, then ob! €t for all b! € LO
— if f(o) > 0, then no proper suffix of o is contained in t



We denote the set of all tests for A by T(A).
e The length [t| of a test case t is the length of the longest trace in t. Thus,
|t| = max,es |o|. We denote by Ti,(A) the set of all test cases of length k.

Since a test is a set of traces, we can apply Definition 2 and speak of the (absolute,
total and relative) coverage of a test case or a test suite, relative to a weighted
fault model f. However, not all weighted fault models are consistent with the
interpretation that traces of f represent correct system behavior, and that tests
are fail fast and do not fail after an input.

Definition 7. A weighted fault model f : L* — RZ° is consistent with the LTS
A at state s € V4 if we have: L = L4, for all o € L% and a? € Lt

o Ifo € traces(s), then f(o) = 0.
o f(oa?) =0 (no failure occurs after an input).
e If f(0) >0 then f(op) =0 for all p € LY (failures are counted only once).

The following result states that the set containing all possible test cases has
complete coverage.

Theorem 1. The set of all test cases T (A) is complete for any weighted fault
model f consistent with A.

4 Fault automata

Weighted fault models are infinite, semantic objects. This section introduces
fault automata, which provide a syntactic format for specifying fault models.
A fault automaton is a LTS A augmented with a state weight function r. The
LTS A is the behavioral specification of the system, i.e. its traces represent the
correct system behaviors. Hence, these traces will be assigned error weight 0;
traces not in A are erroneous and get an error weight through r.

Definition 8. A fault automaton (FA) F is a pair (A, r), where A is a LTS and
r:V x LY — R2%. We require that, if r(s,a!) > 0, then there is no a!-successor
of s in F, i.e. there is no s' € V such that (s,a!,s’) € A. We define7: V — R20
as T(s) = X e n0(5) T(s,@). Thus, 7 accumulates the weight of all the erroneous
outputs in a state. We denote the components of F by Ax and rx and leave out
the subscripts F if it is clear from the context. We lift all concepts (e.g. traces,
paths,...) that have been defined for traces to FA.

We wish to construct a fault model f from and FA F, using r to assign weights
to traces not in F. If there is no outgoing b!-transition in s, then the idea is that,
for a trace o ending in s, the (incorrect) trace ob! gets weight r(s,b!). However,
doing so, the total error weight totcov(f) could be infinite.

We consider two solutions to this problem. First, finite depth fault models
(Section 4.1) consider, for a given k € N, only faults in traces of length k or
smaller. Second, discounted weighted fault models (Section 4.2) obtain finite
total coverage through discounting, while considering error weight in all traces.
The solution presented here are only two potential solutions, there are many
other ways to derive a weighted fault model from a fault automaton.



4.1 Finite depth weighted fault models

As said before, the finite depth model derives a weighted fault model from a
FA F, for a given k € N, by ignoring all traces of length larger than &, i.e. by
putting their error weight to 0. For all other traces, the weight is obtained via
the function 7. If ¢ is a trace of F ending in s, but ob! is not a trace in F, then
obl gets weight r(s, b!).

Definition 9. Given a FA F, a state s € V', and a number k € N, we define
the function f(r o x) : L — R by

r(s',a) if s—~sps' Aa € LO
[ran© =0 firamoa) = { (#0) ¢

0 otherwise

Note that this function is uniquely defined because F is deterministic, so
that there is at most one s with s——s’. Also, if f(F.sp)(oa) = r(s,a) > 0,
then o € traces(s), but oa ¢ traces(s).

Proposition 2. Let F be a FA, s € V and k € N and assume that there exists
a state s’ in F such that s— s’ and 7(s") > 0. Then fir ok is a fault model
that is consistent with F.

4.2 Discounted weighted fault models

While finite depth weighted fault models achieve finite total coverage by consid-
ering finitely many traces, discounted weighted fault models take into account
the error weight of all traces. To do so, only finitely many traces may have weight
greater than ¢, for any € > 0. One way to do this is by discounting: lowering the
weight of a trace proportional to its length. The rationale behind this is that
errors in the near future are worse than errors in the far future, and hence, the
latter should have a higher error weights.

In its basic form, this means that the weighted fault model f for an FA
F sets the weight of a trace ga! to al®lr(s,a!), for some discount factor a €
(0,1). If we take o small enough, to be precise, smaller than é, where d is the
branching degree of F (i.e. d = maxsey outdeg(s)), one can easily show that
> ger~ f(0) < oo. Indeed, since there are at most d* traces of length k in F,
and writing M = max, ,7(s,a) and assuming that ad < 1, it follows that

Z flo) = Z Z aFr(s,a) < Z Z oM < deakM: 1iwda

oceL* keNgeLk keNgeLk keN

To obtain more flexibility, we allow the discount to vary per transition. That
is, we work with a discount function o : V x L x V' — RZY, that assigns a positive
weight to each transition of F. Then we discount the trace aq,...,a, obtained
from the path sg,a1,$1,...8: by a(so,a1,s1)a(s1,as,82), + ,a(Sk—_1,ak, Sk)-
The requirement that « is small enough now becomes: > ., .oy a(s,a,s’) <1,
for each s. We can even be more flexible and in the sum above, we do not range



over states in which all paths are finite, because we obtain finite coverage in

these states anyway. Thus, if Infz is the set of all states in F with at least one
o . ] )

outgoing infinite path, we require for all states s: ZaeL,s’e]nf . a(s,a,s’) < 1.

Definition 10. Let F be a FA. Then a discount function for F is a function
a: Ve x Ly x Vg — R2Y such that

e Forall s,s' €V, and a € L we have a(s,a,s’) =0 iff (s,a,s') ¢ A.

e For all s € Vg, we have: 3 selnf a(s,a,s") < 1.

Definition 11. Let « be a discount function for the FA F. Given a path m =
. n
50,a1,...5, in F, we define a(m) = [[,_; a(si—1, a4, ;).

Definition 12. Let be given a FA F, a state s € V, and a discount function «
for F. We define the function f(r sq) : L* — RZ0 by

a(r)-r(s'sa) if s—2»s'"Na € L9

0 otherwise

f(F,s,0)(€) =0 [(F.s,0)(0a) = {

Since F is deterministic, there is at most one m with trace(w) = o, so the
function above is uniquely defined.

Definition 13. A FA F = (A,r) has a fair weight assignment r if for all s €
Inf r there exists an s’ € V' that is reachable from s with 7(s") > 0.

Proposition 3. Let F be a FA, s € V be a state and « be a discount function
Jor F. If F has fair weight assignment, then f(r ;o) is a weighted fault model
that is consistent with F.

Remark 1. We like to stress that the finite depth and discounted models are
just two examples for deriving weighted fault models from fault automata, but
there are many more possibilities. For instance, one may combine the two and
not discount the weights of traces of length less than some k or less, and only
discount traces longer than k. Alternatively, one may let the discount factor
depend on the length of the trace, etcetera. We claim that the methods and
algorithms we present in this paper can easily adapted for weighted fault models
with such variations.

4.3 Calibration

Discounting weighs errors in short traces more than in long traces. Thus, if we
discount too much, we may obtain very high test coverage just with a few short
test cases. The calibration result (Theorem 2) presented in this section shows
that, in any FA F and any ¢ > 0, we can choose the discounting function in such
a way that test cases of a given length k or longer are needed to achieve test
coverage higher than a coverage bound 1—e. That is, we show that for any given
k and €, there exists a discount function « such that the relative coverage of all
test cases of length k or shorter is less than e. This means that, to get coverage
higher than 1 — ¢, one needs test cases longer than k.



Theorem 2. Let F = (A,r) be a FA with fair weight assignment. Then there
exists a family of discount functions o, for F such that for oll k € N and states

s €V limy,_0 COU(,];C(f(}',s,au))a f(]-",s,ozu)) =0

5 Algorithms

Given an FA F = (A,r), we write Ax for the multi-adjacency matrix of A,
containing at position (s, s’) the number of edges between s and §'; i.e. (Ax)ssr =
Za:(s asea L If o is a discount function for F, then A% is a weighted version
of Ar,ie. (A%)ssr = D ,4cp (s, a,s"). We omit the subscript F if it is clear from
the context.

5.1 Absolute coverage in a test suite

To make the notation simpler for a test ¢ and an action a we write at for
{ao | Vo € t}. Moreover if t’ is also a test, then t+t' = {o | Vo € t} U{o’ | Vo' €
t'}. In this way we can write a test as: ¢ = € or t = at; in case a is an input or
t = byty + -+ + byt, when by, .-+, b, are the output actions of the system. We
called super-test (Stest) in case t' = ast] + - - - + agt) + b1ty + - - - + b,t]) where
a; are inputs and b; are all the outputs.

Given an FA F, a discounting function « for F and a test suite T =
{t1, -+ ,tx}. To compute the absolute coverage of T, using Definition 2, we have
to compute:abscov(T, F) = abscov(Uer t, F). Then, we have to compute the
union and then compute the absolute coverage of the union. To do the union we
use the merge function form a test ¢ and a Stest ¢’ to a Stest.

Merge set of tests. Given a set of test {¢1,--- ,¢;} merge is a function mg:
Stest x test — Stest. Let ¢’ be a Stest. (Note that any test is a Stest.) Let ¢ be
a test, then t = e or t = aty or t = byt) + -+ + byt),

mg(t',t) =
arty + - +aymg(ty, t1) + - +apty, +oit) + -+ bty ift=ati Na=a;
arth + -+ agty, + bimg(t], t1) + - - + bymg(ty, ty) it t=0byt) + -+ bpt),
t+t otherwise

Now we can compute the absolute coverage of a Stest, given a state s € V,
then

n
te(e, s) = te(t, s) :Z auz(a;t;, s)
i=1

a(s,a;,0(s,a;))te(t;,6(s,a;)) if a; € §(s)

r(a;, s) otherwise

auz(a;t;,s) = {

Then to compute the absolute coverage of a Stest ¢ it is enough with te(t, sp).



Theorem 3. Given a FA F, a state s € V, a number k € N and T a set of test,
then

o abscov(T, f(F,s,a)) = tc(mg(T), s)
o Ifk> Ttan:v|t| and a(s,a,s’) =1 then abscov(T, fir s 1)) = tc(mg(T), s).
€

5.2 Total coverage algorithms

Total coverage in discounted FA. Given a FA F, a state s € V and a dis-
counting function a for F, we desire to calculate totcov(f( 7 s.a)) = D ger~ f(F,5,0)(T)-
The basic idea behind the computation method is that the function tw : V —

[0, 1] given by s +— totcov(f(r s,qa)) satisfies the following set of equations.

tw(s) =7(s) + Z a(s,a, s tw(s') =7(s) + Z AS - tw(s’) (*)

acL,s’'eV s'eV

These equations express that the total coverage in state s equals the weight
7(s) of all immediate errors in s, plus the weights in all successors s’ in s,
discounted by: > ., a(s,a,s’). In matrix-vector notation, we obtain: tw =7 +
A%tw. Since the matrix I — A* is invertible (cf. [3]), we obtain the following
result. In particular, tw is the unique solution of the equations (*) above.

Theorem 4. Let F be a FA, and « be a discount function for F . Then tw =
(I —A>)~L.7.

Complezity. The complexity of the method above is dominated by matrix inver-
sion, which can be computed in O(|V|?) with Gaussian elimination, O(|V|!°927)
with Strassen’s method or even faster with more sophisticated techniques.

Total coverage in finite depth FA. Given a FA F, a state s € V and a
depth k € N, we desire to compute totcov(f(r sx) = D yer~ f(F,s,k)(0). The
basic idea behind the computation method is that the function twy, : V' — [0, 1]
given by s — totcov(f(r s r)) satisfies the following recursive equations.

two(s)

twigr(s) =7(s)+ Y twn(s) =T(s)+ Y Age - twa(s)

(a,s")EA(s) a€L,s'eV

Il
o

Or, in matrix-vector notation we have twg = 0 and twi41 = 7 + Atwy. Thus,
we have the following.

Theorem 5. Let be given a FA F, a state s € V and a number k € N. Then
twy = Zf;()l AT,



Complezity. By using Theorem 5 with sparse matrix multiplication, or by iter-
ating the equations just above it, twy can be computed in time O(k - |A] + |V]).

Remark 2. A similar method to the one above can be used to compute the weight

of all tests of length k in the discounted fault model, i.e. abscov(Tk, f(F,s,a))
where T, is the set of all tests of length & in F. Writing twdy.(s) = abscov(Tk, f(F.s,a));
the recursive equations become

twdg(s) =0

twdg11(s) =7(s) + Z twi(s") =7(s) + Z AL - twdy(s")
ac€L,s'eV acL,s’'eV

and the analogon of Theorem 5 becomes twd; = Zf:ol (A)T=(T—-A>)"1-(I-
(A*)¥).7. The latter equality holds because I — A% is invertible. Thus, the com-
puting twd}, requires one matrix inversion and, using the power method, log, (k)
matrix multiplications, yielding time complexity in O(|V|°%27 4 [V|°82(F)) with
Strassen’s method. These tricks cannot be applied in the finite depth model,
because I — A is not invertible.

5.3 Optimization

Optimal coverage in a single test case. This section presents an algorithm
to compute, for a given FA F, and a length k, the best test case with length &,
that is, the one with highest coverage. We treat the finite depth and discounted
model at once by putting, in the finite depth model «a(s,a,s’) = 1 if (s,a,s’) is
a transition in A and having (s, a, s’) = 0 otherwise. We call a function « that
is either obtained from a finite depth model in this way, or that is a discount
function, an extended discount function.

The optimization method is again based on recursive equations. We write
tecopt,(s) = maxser, {abscov(t, s)}. Consider a test case of length k& + 1 that in
state s applies an input a? and in the successor state s’ applies the optimal test
of length k. The (absolute) coverage of this test case is a(s,a?,s’) - tcopt,(s).
The best coverage that we can obtain by stimulating the IUT is given by
max(, s yeal(s) a(s,a?,s") - tcopt;(s').

Now, consider the test case of length k£ 4 1 that in state s observes the IUT
and in each successor state s’ applies the optimal test of length k. The coverage
of this test case is T(s) + X1 sycn0(s) (5, 0L, 8") - teopty(s'). The optimal test
teopt(s) of length k+1 is obtained from by tcopt, by selecting from these options
(i.e. inputing an action a? or observing) the one with the highest coverage. Thus,
we have the following result.



Theorem 6. Let be given a FA F, an extended discount function «, and test
length k € N. Then tcopt, satisfies the following recursive equations.

tcopty(s) =0
teoptyq1(s) =

max (7(8) + Z a(s, bl S/)tCOPtk(S/)’ max as,a?, Sl)tcoptk(s’)>
(b,s")€AO (s) (a?,s")€AT(s)

Complezity. Based on Theorem 6, we can compute tcopt,, in time O(k - (|V] +
|A]).

Shortest test case with high coverage. We can use the above method not
only to compute the test case of a fixed length k with optimal coverage, but
also to derive the shortest test case with coverage higher than a given bound c.
That is, we iterate the equations in Theorem 6 and stop as soon as we achieve
coverage higher than c, i.e. at the first n with tcopt,(s) > c.

We have to take care that the bound c is not too high, i.e. higher than what
is achievable with a single test case. In the finite depth model, this is easy: if the
test length is the same as ¢ then we can stop, since this is the longest test we
can have. In the discounted model, however, we have to ensure that c is strictly
smaller than the supremum of the coverage of all tests in single test case.

Let stw(s) = supp,crabscov(t, s), i.e. the maximal absolute weight of a single
test case. Then stw is again characterized by a set of equations.

Theorem 7. Let F be a FA, and « be a discount function for F. Then stw is
the unique solution of the following set of equations.

stw(s) =
max max  a(s,a?,s’) - stw(s"),7(s) + Z a(s,bl, s") - stw(s’)
(a?,s")€AT(s)
(bl,s")EAC(s)
The solution of these equations can be found by linear programming (LP).

Theorem 8. Let F be a FA, and o be a discount function. Then stw is the
optimal solution of the following LP problem.

minimize Z stw(s) subject to

seV
stw(s) > a(s,a?,s’) - stw(s), (a?,5') € Al(s)
stw(s) > r(s) + Z a(s,bl, s - stw(s) sevV

(b,8")€AO(s)

Complezxity. The above LP problem contains |V| variables and |V| + |AZ]| in-
equalities. Thus, solving this problem is polynomial in |V, |V| + |A!| and the
length of the binary encoding of the coefficients [11]. In practice, the exponential
time simplex method outperforms existing polynomial time algorithms.



tw|twk, k = 2[twk, k = 4|twk, k = 50
a1l 99.134 89.750 97.171 99.135
a2(511.369 130.607|  239.025 510.768
«3|743.432 132.652|  249.320 733.540

Fig. 1. Total coverage and maximal coverage of test with length k

6 Application: a chat protocol

This section applies the theory developed in this paper to a small chat protocol.

The chat protocol provides a multi-cast service to users engaged in a chat
session. Each user can send messages to all and receive messages from all other
partners participating in the same chat session. The participants can change
dynamically, as the chat service allows users to join and leave a chat at any
point in time. Different chats can exist at the same time, but each user can only
participate in at most one at a time.

Based on the LTS model in [3], we have created a FA for this protocol. This
automaton considers two chat sessions and two users. It has 39 states and 95
transitions. The state weight function 7 in the FA assigns different weights per
state, depending on the gravity of the error.

We work in the discounted fault model and consider three different discount
functions, oy, ag and agz. Given a transition in the FA leaving from a state with
out-degree n, a1 assigns value é to this transition; as assigns (% - ﬁ) to it and
a3 assigns (% — ﬁ). We evaluate the relative coverage for two different kinds
of test suites.

Figure 1 gives the total coverage in the FA (column 1) and the absolute
coverage of the test suites containing all tests of length & (columns 2, 3, 4), for
k = 2,4,50, for the various discount functions. These results have been obtained
by applying Algorithm 5.2 (total coverage) and Algorithm 5.2 (relative coverage).
We have used Maple 9.5 to resolve the matrix equations in these algorithms.

Figure 2 displays the relative coverage for test suites that have been generated
automatically with TorX. For each test we use the discount function as. For
given test lengths k£ = 30, £ = 35, Kk = 40, £ = 45 and k = 50, TorX has
generated a test suite 7, consisting of 10 tests t¥, ... t’fo of length k. We have
used Algorithm 5.1 to calculate the relative coverage of T*. Figure 2 lists the
coverage of each individual test t¥ as well as for the test suites 7. The running
times of all computations were very small, in the order of a few seconds.

In the figures it is possible to appreciate who important the discount factor
is, and who it influences in the coverage metrics.

7 Conclusions and future research

Semantic notions of test coverage have long been overdue, while they are much
needed in the selection, generation and optimization of test suites. In this paper,



test t’f test t'§ test t7§ test tﬁf test tlg test t’g test t? test t’g test t'g test t’fo suite T"
k =30|15.275| 4.573|13.983| 5.322|15.278|4.5877|14.235| 8.502|15.265| 4.898| 63.052
k = 35/14.100{15.275|15.263| 8.537| 8.579| 5.348|15.275| 8.536| 8.495| 4.900| 69.146
k = 40| 5.325|13.968|14.237(15.276| 5.343|14.130|15.275| 5.314|13.980| 15.276| 72.848
k =45| 5.021| 8.536|13.969| 4.969| 8.548|15.275| 4.894|15.263| 4.532| 14.235| 47.153
k =50 5.320|72.802| 5.326| 4.898]13.982| 5.319|14.233| 5.320(|13.968| 15.289| 54.204

Fig. 2. Relative coverage, as a percentage, of tests with length £ using .

we have presented semantic coverage notions based on weighted fault models.
We have introduced fault automata, FA, to syntactically represent (a subset
of) weighted fault models and provided algorithms to compute and optimize
test coverage. This approach is purely semantic since replacing a FA with a
semantically equivalent one leaves the coverage unchanged. Our experiments
with the chat example indicate that our approach is feasible for small protocols.
Larger case studies should evaluate the applicability of this framework for more
complex systems.

Our fault models are based on (adaptive) ioco test theory. We expect that
it is easy to adapt our approach to different settings, such as FSM testing or
on-the-fly testing. Furthermore, our optimization techniques use test length as
an optimality criterion. To accommodate more complex resource constraints (e.g
time, costs, risks/probability) occurring in practice, it is relevant to extend our
techniques with these attributes. Since these fit naturally within our model and
optimization problems subject to costs, time and probability are well-studied,
we expect that such extensions are feasible and useful.
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