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Abstract. We study a Lindenmayer-like parallel rewriting system to 
model the growth of filaments (arrays of cells) in which developmental 
errors may occur. In essence this model is the fuzzy analogue of the 
derivation-controlled iteration grammar. Under minor assumptions on the 
family of control languages and on the family of fuzzy languages in the 
underlying iteration grammar, we show that (i) regular control does not 
provide additional generating power to the model, (ii) the number of fuzzy 
substitutions in the underlying iteration grammar can be reduced to two, 
and (iii) the resulting family of fuzzy languages possesses strong closure 
properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed 
full Abstract Family of Fuzzy Languages. 

1. I n t r o d u c t i o n  

The original motivation to introduce Lindenmayer systems, or L-systems for short, 
consisted of modeling the development of filamentous organisms [15], [16]. The state 
space of each individual cell of such an organism is a finite set, symbolically represented 
as an alphabet V, and rewrite rules over V provide for the development of single cells. 
More precisely, a rule c~ -+ w with ~ ~ V and w E V*, allows for a state change 
(w C V, w ~ ~), a cell death (w = ~, t is the empty word), or the splitting of a 
cell in more than a single off-spring (I w I> 1, where ] w I is the length of the string 
w). Starting from an initial filament, i.e. a string over V, and applying the rules 
for individual cells in parallel yields the global state of the filament after a discrete 
time step. Iterating this rewriting process shows the development of this filament as 
function of the discrete time parameter. From a mathematical point of view the set of 
rules is just a finite substitution over V that is applied iteratively to the initial string. 

Subsequent contributions to the extension of this model resulted in the distinction 
between nonterminal and terminal symbols as in Chomsky phrase-structure gram- 
mars, in several sets of rules (several finite substitutions, also called tables) instead of 
just a single one, and numerous ways of restricting or regulating the parallel rewriting 
process. We refer the reader to [13], [21] for surveys of the early days of L-system 
theory; [13] is more elementary and devoted to biological applications, whereas [21] 
concentrates on mathematical properties. More recent developments and related ap- 
proaches can be found in [7], [22], of which [7] treats derivation-controlled rewriting 
in general, whereas [22] shows a rich variety of results closely related to or inspired 
by L-systems. 

The extension of the basic model with different sets of rules (a finite number of 
finite substitutions instead of a single one) stems from the observation that a filamen- 
tous organism might develop in a different way under different external conditions 
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[20]. A typical example is the difference between day and night; in that  case we have 
two sets of rules, or tables, viz. a day table 7"d and a night table Tn, each table being 
a finite substitution over the alphabet V. Closely related to this extension are the 
so-called derivation-controlled tabled L-systems in which the order of application is 
prescribed by a control language over the table names [10], [18], [1]. E.g. in order to 
obtain the right sequence of day, followed by night, followed by day, etc., a regular 
control language of the form (~-dT~)*~-a can be used, provided each sequence should 
start and end with the day table ~-d. Similarly, but on a larger time scale, the or- 
der of the four seasons can be described by a regular control language of the form 

( Tspring Tsumraer Tautmnn Twinter ) * rspring. 
In this paper we introduce a further extension of this model which enables us 

to describe developmental errors. Such an error occurs when, instead of applying 
the correct rule a -+ w from the table T, the symbol a is replaced by a string w ~ 
with w J # w and a -+ w ~ is not a rule in r. In such a situation the "quality" of 
this incorrect off-spring w ~ should be strictly less than the corresponding correct one 
and, consequently, the "quality" of the entire filament should also decrease by this 
developmental error. In addition we want that making two developmental errors is 
worse than a single error and, in general, that  each additional developmentM error 
should strictly decrease the "quality" of the filament under consideration. 

But how do we measure the "quality" of a string or filament x derived by a 
controlled tabled L-system G? In traditional formal language theory there only are 
two possibilities, viz. (i) x belongs to the language L(G) generated by G: its "quality" 
equals 100%, or (ii) x does not belong to L(G): the "quality" of x is 0%. Clearly, 
there is no room for expressing statements like "x is slightly imperfect due to a 
minor developmental error" or "x has been severely damaged by a long sequence of 
considerable errors during its development". This lack of expressibility is, of course, 
due to restrictions in set theory: the membership function or characteristic function 
#L(a) of a set, or a language L(G) in our case, has two possible values only: ~tL(G)(X ) = 
1 if x E L(G), and #L(a)(x) = 0 if x ~ L(G). Thus, if L(G) C E*, then #L(a} is a 
mapping of type #L(a) : E* --+ {0, 1}. 

Fortunately, using fuzzy sets and fuzzy languages we are able to express "qualities" 
different from 0% and 100%, since #L(a) is now a mapping of type ttn(a) : E* ~ /2 
where ~ is a complete lattice, eventually provided with additional operations and 
properties. As a typical example, the reader may consider the case in which / :  equals 
the real interval [0,1] with min and max as lattice operations. Fuzzy languages have 
been introduced in [17], which is restricted to fuzzy analogues of Chomsky grammars 
and languages. In [19] fuzzy Lindenmayer systems and their languages have been 
studied, however, without any motivation in terms of developmental errors. This mo- 
tivation is the obvious parallel Lindenmayer variant based on the idea of grammatical  
error studied in [3], [4], [5]. 

So in fuzzy L-system theory the "quality" of a string is a value in s which might 
be anything in between 0 (the smallest element of/2) and 1 (the greatest element of 
s  depending on the actual structure o f / : .  And making a developmental error in 
the derivation of x means that the "quality" of x will not increase compared to the 
previous string. But whether it will strictly decrease depends on the structure and 
the operations o f / :  as well as their relation with the definition of derivation step; cf. 
Section 4 for details. 
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In dealing with developmental errors there is another problem. Usually, an L- 
system has in each of its tables a finite number of rewrite rules. Making a devel- 
opmental mistake, i.e., replacing a by w t instead of by the correct string w can be 
modeled by adding the rule a --+ w t to the table ~" to which a --+ w belongs, and 
requiring #~(~)(w') < 1, where r (a )  is the set of all strings w such that a ~ w belongs 
to r. This construction works for a finite number of possible developmental errors 
only. But, in general, there is an infinite number of ways to make mistakes, and fila- 
mentous development does not form an exception to this observation. So we should 
add an infinite number of rules a ~ w t to T or, equivalently, an infinite number of 
strings to the fuzzy set r (a) .  So each set {w E T(a) I 0 < #~(~)(w) < 1} is allowed to 
be infinite. But then the language {w e T(a) ] #,(~)(W) = 1} might be infinite as well, 
or, equivalently, each T(a) may be a fuzzy subset of V*, i.e., a fuzzy languages over 
V. However, we could not let be the sets r (a )  arbitrary fuzzy languages over V: they 
should be restricted in some uniform way, otherwise we end up with languages L(G) 
that are not even recursively enumerable; cf. [8]. A well-known way to restrict these 
fuzzy languages is the following: we require that each fuzzy language T(a) belongs to 
a given family K of fuzzy languages. The family K is a parameter in our approach: 
usually, we demand that K meets some minor conditions, but sometimes we simply 
take a concrete value for K,  e.g., we take K equal to the family F I N / o f  finite fuzzy 
languages. 

This results in the notion of fuzzy K-iteration grammar which plays the main 
part in the present paper. Formally, such a grammar G = (V, E, U, S) consists of 
an alphabet V, a terminal alphabet E (E C V), an initial symbol S (S E V - E), 
and a finite set U of fuzzy K-substitutions over V. Thus for each T in U, and 
for each c~ in V, T(a) is a fuzzy language over V that belongs to the family K. 
The controlled variant of this grammar concept is the so-called F-controlled fuzzy 
K-iteration grammar, or fuzzy (F, K)-iteration grammar where F is a family of (non- 
fuzzy) languages. A grammar (G; M) = (V, E, U, S, M) of this type consists of a 
fuzzy K-iteration grammar (V, E, U, S) and a language M over U (considered as an 
alphabet) with M C F. Each derivation D according to (G; M) satisfies the condition 
that the sequence of fuzzy K-substitutions used in D constitutes a string in the control 
language M. 

The remaining part of this paper is organized as follows. In Section 2 we introduce 
the basic notions with respect to fuzzy languages and operations on fuzzy languages. 
Section 3 is devoted to families of fuzzy languages. The formal definitions of fuzzy 
K-iteration grammar and of F-controlled fuzzy K-iteration grammar are provided in 
Section 4, where we also give a few examples of these grammars together with the fuzzy 
languages that they generate. Section 5 consists of some elementary but useful prop- 
erties of fuzzy K-iteration and fuzzy (F,K)-iteration grammars. The main results, 
viz. Theorem 6.1 and its corollaries, which deal with the generating power of fuzzy 
(F, K)-iteration grammars, are in Section 6. Closure properties of the corresponding 
families of fuzzy languages are the subject of Section 7. Under minor conditions on 
the families Y and K, the families HI(K ) and HI(F , K)  of fuzzy languages, generated 
by fuzzy K-iteration grammars and (F, K)-iteration grammars, respectively, possess 
strong closure properties very similar to the ones of the corresponding non-fuzzy lan- 
guage families; cf. [1]. Finally, Section 8 contains some concluding remarks. 



52 

2. Fuzzy Languages  and Operat ions  on Fuzzy Languages  

We assume that  the reader is familiar with basic formal language theory to the 
extend of the first few chapters of standard texts like [12], [14], [23]. L-systems and 
Abstract  Families of Languages are treated much more thoroughly in [13], [21] and [9], 
respectively. Finally, we need some rudiments of lattice theory which can be found in 
most books on algebra; all what we use of lattice theory is also summarized in [2]. 

In order to define several types of fuzziness we need a few lattice-ordered structures. 
Instead of stacking adjectives, we collect some collections of properties under simple 
names as "type-bb lattice" for some short bit strings bb. The following definitions and 
examples are quoted from [5]. The definition of the principal notion of type 00-lattice 
is a slight modification of a structure originally introduced in [11]. 

D e f i n i t i o n  2.1. An algebraic structure ~ or (~, A, V, 0, 1,*) is a type-O0 lattice if 
it satisfies the following conditions. 

�9 (Z~, A, V, 0, 1) is a completely distributive complete lattice. Therefore for all ai, 
a, b~ and b in s  aA V;b~ = V~(a A bl) and (Va~) A b = V~(ai A b) hold. And 0 
a~d 1 are the smallest and the greatest element of s  respectively; so 0 = / ~  s 
and 1 = V s  

�9 ( s  is a commutat ive semigroup. 

�9 The following identities hold for all a~'s, hi's, a and b in s  

a* V~ b~ = Vi(a. bl), 

(V,  ai) * b = Vi(ai. b) ,  

O A a = O * a = a * O = O ,  

1 A a =  l * a  = a * l  = a .  

A type-01 lattice is a type-00 lattice in which the operation * coincides with the 
operation A; so it is a completely distributive complete lattice actually. A type-lO 
lattice is a type-00 lattice in which (s A, V, 0, 1) is a totally ordered set or chain, i.e., 
for all a and b in s  we have a A b = a or a A b = b. In a type-10 lattice the operations 
V and A are usually denoted by max and min, respectively. Finally, when Z: is both  
a type-01 lattice and a type-10 lattice~ s is called a type-11 lattice. 

E x a m p l e  2.2. As usual we denote the closed interval of all real numbers in 
between 0 and 1 by [0, 1]. 
(1) The structure ([0, 1] • [0, 11, A, V, (0,0), (1, 1),*) in which the operations are 
defined by (x l ,y l )  A (x~,y2) = (min{x l ,x2} ,min{y l ,y2}) ,  (zl ,Yl) V (z2,y2) = 
(max{x1, x2}, max{y1, Y2}) and (xl, Yl) * (x2, Y2) -- (xlx2, YlY2) for all Xl, x2, Yl and 
y2 in [0, 1] is a type-00 lattice. 
(2) Consequently, ([0,1] x [0,1], A, V, (0,0), (1, 1) , , )  where the operations A and V are 
defined as in (1) and (x l ,Yl )*  (x2 ,Y2)  = (min{xl ,x2} ,min{yi ,Y2})  for all Xl, x2, Yl 
and y2 in [0, 1], is a type-01 lattice. 
(3) The structure ([0, 1], min, max, 0,1,*) with Xl*X2 = xlx2 for all Xl and x2 in [0f 1] 
is a type-10 lattice. 
(4) Taking * equal to min in (3) yields a type - l l  lattice. 
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The following useful fact is very easy to prove. 

L e m m a  2.3. For each type-O0 lattice s a*b < a A b holds for all elements a and 
b inE.  

Pro@ 
By the distributivity of * over V, a * ( 1 V b )  = a * l V a * b h o l d s .  As 1 V b =  1 

and a * 1 = a, we have a = a V a * b, and therefore a * b _< a. Analogously, we obtain 
a *  b_< b, and hence a *  b <_ a A b. [] 

Of course, Lemma 2.3 implies that  in a type-00 lattice the inequalities a * b < a 
and a * b _< b also hold for all a and b. 

Now we are ready to define fuzzy languages relative to the lattice-ordered struc- 
tures of Definition 2.1. 

D e f i n i t i o n  2.4. L e t / :  be a type-00 lattice and let E be an alphabet.  A/ : - fuzzy  
language over E is a / : - fuzzy  subset of E*, i.e., it is a triple (P,, #Lo, Lo) where #Lo is 
a function #Lo : E* --+ /:, the degree of membership function, and Lo is the support  
of #Lo; i.e., Lo = {w e E* ] #Lo(W) > 0}. Very often we will write Lo rather than 

Lo). 
Henceforth, w h e n / :  is clear from the context, we use "fuzzy language" instead of 

"/:-fuzzy language". Usually we write #(x; Lo) instead of #L0 (x) in order to reduce 
the number  of subscript levels. 

For each fuzzy language Lo over E, the crisp language c(Lo) induced by Lo - -a l so  
known as the crisp part of Lo - -  is the subset of E* defined by c(Lo) = {w C E* I 
#(w; Lo) = 1}. Each ordinary (non-fuzzy) language Lo coincides with its crisp part  
c(Lo). Therefore an ordinary language will also be called a crisp language. 

In dealing with fuzzy languages (F,,#Lo,Lo) the degree of membership function 
#Lo is actually the principal concept, whereas the languages L0, c(Lo) and many  
other crisp languages like 

L>~ = {w e E* l t t (w;Lo)  >_ a} , 

n>~ = {w e E * l # ( w ; L o )  > a} , 

L<~ = {w e E * l # ( w ; L o )  _< a} , 

n<~ = {w �9 E * l # ( w  ;no) < a} , 

L~<;<b = {w �9 E * l a  < #(w;Lo) < b} , 

where a and b are elements i n / : ,  are derived notions. 

E x a m p l e  2.5. (1) L e t / :  be the type-00 lattice of Example 2.2.(1). Consider the 
/:-fuzzy language Lo over E = {a, b} defined by 

) #(ambn; Lo) = m~x{~,~,~} . . . .  {Y,m,n} if rn, n >__ O. 

In defining the degree of membership function is such a concrete case, we always 
tacitly assume that  #(:e;Lo) = (0,0) in all other, unmentioned cases for x in E*. 
Consequently, we have, e.g., #(baa2; Lo) -- #(a2baS; Lo) = #(ab3a2b4; Lo) = (0, 0), etc. 

Then the crisp part  of Lo equals c(Lo) = {a'% m I m >_ 1}; for each x in c(Lo), we 
have #(x; Lo) = (1, 1). Note that  for each m _> 1, #(am; Lo) = (1, 0) and ~(b'~; L0) = 
(0,1), whereas for the empty  word ~, we have #( I ;  Lo) = (0, 0). 
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(2) Now we take for s the type-10 lattice of Example 2.2.(3). Let L be the fuzzy 
language over {a, b} defined by 

# ( w ; L ) = O  i f l w l  # 2 k f ~  

# ( w ; L ) = 2  -#b(~~ if I T ]  = 2 k f o r s o m e k > 0 .  

As usual, #~(w) denotes the number of times that the symbol c~ occurs in the 
word w. Then c(L) = {a 2~ I k > 0}. 

Throughout this paper we will restrict ourselves to the computable or even to the 
rational elements in [0, 1]. For an account on the impact of computability constraints 
in fuzzy formal languages we refer the reader to [8]. 

Starting from simple fuzzy languages we can define more complicated ones by 
means of operations on fuzzy languages. First, we consider the operations union, 
intersection and concatenation for fuzzy languages; they have been defined originally 
in [17] for the type-l l  lattice [0, 1]; cf. Example 2.2(4). In [4] we remarked that 
a generalization to the type-10 lattice of Example 2.2(3) is possible. However, it is 
straightforward to define these operations for arbitrary type-00 lattices; cf. [5] from 
which we cite the following definitions. 

Let (F,1, #L1, L1) and (E2, #L2, L2) be fuzzy languages, then the union of the fuzzy 
languages L1 and L2, denoted by (El U E2, #L1uL2, L1 U L2) or abbreviated by L1 U L2, 
is defined by 

#(x; nl U L~) = #(x; L1) V #(x; L2) , 

for all x in (El U E2)*. And for the intersection of fuzzy languages La and L2, denoted 
by (El • ~2,[-tLanL2, L1 [~ L2) or L1 ["1L~ for short, the equality 

//.(x; 51 ~ L2) = #(x; nl) A/.t(x; L2),  

holds for all x in (El A E2)*. Finally, for the concatenation of fuzzy languages L1 and 
L2, denoted by (El U E2, #LaL2, L1L2) or abbreviated to LIL2, we have 

#(x; LIL2) = V{#(Y; L1) * #(z; L~) I x = yz) 

for all x in (El U E2)*. 

E x a m p l e  2.6. Let P(X)  denote the power set of the set X. Then 7)(E *) is 
the collection of all crisp languages over the alphabet E. Let PI(E*) be the class of 
all fuzzy languages over E. Clearly, we have P(E*) = {c(L) I L E p~(r~*)}. And 
(7~f(E*), N, U, | E*,-) --where N, U and �9 denote the operations union, intersection 
and concatenation for fuzzy languages, respectively-- is not an example of a type-00 
lattice, since (7~1, .) is not a commutative semigroup. In case E contains a single 
letter only, (7)], .) is a commutative semigroup and (7~I(E*), f'l, U, Q, E*, .) is a type- 
00 lattice. The same remarks apply to the structure (7~(E*), A, U, Q, E*, .) of crisp 
languages. 

Once we have defined the operations of union and concatenation it is straightfor- 
ward to define the operations of Kleene + and Klcene * for a fuzzy language L; viz. 
by 

L + = L U L L U L L L U  . . . .  [J{L i t i > l ) ,  and 

L* = {A} U L U LL U LLL U . . . .  ~ {  Li I i > O) , 

respectively, where L ~ = {A}, and L =+1 = L'% with n > 0. In defining L* we demand 
that #(A; L*) = 1. Consequently, L* = L + U {A) where the latter set in this union is 
a crisp set. 
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Apart  from these simple operations we need some other well-known ones, like 
homomorphisms and substitutions. They can be extended to fuzzy languages as well 
by means of the concept of fuzzy function; cf. [5] for the original definitions. 

A fuzzy relation R between crisp sets X and Y is a fuzzy subset of X • Y. If 
R C X • Y and S C Y • Z are fuzzy relations, then their composition RoS is defined 
by 

z); noS) = y); R ) .  z); s )  I y e v} .  (1) 

A fuzzy function f : X ~ Y in its turn, is a fuzzy relation f C X • Y, satisfying 
the condition that  for all x in X: if #((x,y);f) > 0 and #((x,z);f) > 0 hold, then 
y = z and hence #((x,  y); f )  = tt((x, z); f ) .  For fuzzy functions (1) holds as well, but 
we write the composition of two functions f : X ~ Y and g : Y ~ Z as gof : X --~ Z 
rather than as fog. 

As mentioned before, "P(X) denotes the power set of the set X. In the sequel we 
need functions f : V* ~ 7~(Y *) that  will be extended to f : 7)(V *) ~ 7)(V *) by 
f(L) = (_J{f(x) ] x C L} and for each subset n of Y*, 

#(y; f(L)) = V { # ( x ;  L ) ,  #((x, y); f )  ] x e V*}. (2) 

Consequently, by (1) and (2) iterating a single fuzzy function f ,  yielding functions 
like fof,  fofof, and so on, are now defined. Clearly, each of these functions f('~) is of 
type f(n) : 7)(V,) ~ 7~(V.). Of course, we can iterated a finite set of such functions 
{ f l , . - - , f n }  in the very same way. 

3. Families of Fuzzy Languages 
This section is devoted to some families of simple fuzzy languages, their crisp 

counterparts,  and a few operators that  transform families of fuzzy languages into 
other families. The next few definitions are simple generalizations based on well- 
known concepts for families of crisp languages; cf. [5]. 

Throughout  this paper  E~ denotes a countably infinite set of symbols. All fami- 
lies of languages that  we will consider in the sequel only use symbols from this set. 
Henceforth, /~ is a type-00 lattice, and "fuzzy" means "L-fuzzy" actually. 

D e f i n i t i o n  3.1. A family of fuzzy languages K is a set of fuzzy languages 
(EL,#L,L)  such that  each E L is a finite subset of E~. As usual, we assume that  
for each fuzzy language (EL, #L, L) in the family K,  the alphabet EL is minimal with 
respect to #L, i.e., a symbol a belongs to EL if and only if there exists a word w in 
which a occurs and for which #L(W) > 0 or, equivalently, for which w C L holds. 

A family K of fuzzy languages is called nontriviaI if K contains a language 
(EL, #L, L) with n N E + • | i.e., (EL, #L, L) satisfies #(x; L) > 0 for some x �9 E +. 

For each family K of fuzzy languages, the crisp part of K ,  denoted by c(K), is 
defined by c(K) = {c(L) I L �9 K}.  

We already remarked that  we write L rather than (EL, #r ,  L) for members  of a 
family of fuzzy languages. And we also assume that  each family of fuzzy languages, 
tha t  we will use in this paper, is closed under isomorphism ("renaming of symbols"),  
i.e., for each family K we assume that  for each fuzzy language L in K over some 
a lphabe t  E L and for each bijective non-fuzzy mapping i : ~-~L -"4 Y]L - - ex tended  to 
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words and to languages in the usual way--  we have that the language i(L) also belongs 
to K. Consequently, we have the equality #(x; L) = #(i(x); i(L)) for all x in E~. 

We will encounter a few simple, nontrivial families of fuzzy languages in the sequel: 
they are the family F I N / o f  finite fuzzy languages 

FIN l = {(EL, #L, L) I EL C E~, L is finite}, 

the family ONE] of singleton fuzzy languages 

ONEs = {(EL, #L, L) I EL C E~, L is a singleton}, 

the family ALPHA] of fuzzy alphabets 

ALPHA] = {(EL, #L, L) I EL C E~, L = EL} , 

and the family SYMBOL] of singleton fuzzy alphabets 

SYMBOL/=  {(EL,#L,L) I EL C E~, L = EL,  L is a singleton } . 

The crisp counterparts of these language families are denoted by FIN, ONE, 
ALPHA, and SYMBOL, respectively. Clearly, the equality c(FINs) = FIN holds, 
as well as similar statements for the other families of languages. 

Another important role will be played by the family REGs of regular fuzzy lan- 
guages, which is defined in a way very similar to its crisp counterpart REG. 

Def ini t ion 3.2. Let E be an alphabet. The regular fuzzy languages over E are 
defined as follows: 
(1) The fuzzy subsets Q, {~}, and {a} (for each ~r in E) of E*, are regular fuzzy 
languages over E. 
(2) If R1 and R2 are regular fuzzy languages over E, then so are R1 U R2, RIR2, and 

(3) A fuzzy subset R of E* is regular fuzzy language over E if and only if R can 
be obtained from the basic elements in (1) by a finite number of applications of the 
operations in (2). 

The family of regular fuzzy languages us denoted by REG S. 

In the remainder of this paper we frequently need the concept of fuzzy substitution. 
It is defined in a way very similar to the notion of substitution for crisp languages; cf. 
[5], [6]. 

Def ini t ion 3.3. Let K be a family of fuzzy languages and let V be an alphabet. 
A mapping T : V --* K is called a fuzzy K-substitution T on V; it is extended to words 
over V by T(~) = {~} with #(~; T()~)) = 1, and T (a l . . .  an) = T(a~). . .  T(a~) where 
ai E V (1 < i < n), and to languages L over Y by r(L) = U{r(w) I w E L}. If 
for each a E V, r (a )  C V*, then r : V --+ K is called a fuzzy K-substitution over V. 
If K equals FIN/ or REGs, r is called a fuzzy finite or a fuzzy regular substitution, 
respectively. 

Given families K and K '  of fuzzy languages, let Sfib(K, K')  = {r(L) I L E K; 
~- is a fuzzy K~-substitution}. A family K is closed under fuzzy K~-substitution if 
Sfib(K, K ~) _C K, and K is closed under fuzzy substitution, if K is closed under fuzzy 
K-substitution. 

When we take K and K ~ equal to families of crisp languages we obtain the well- 
known definition of (ordinary, non-fuzzy) substitution. Therefore a ONE-substitution 
is just a homomorphism and an isomorphism ("renaming of symbols") is a one-to- 
one SYMBOL-substitution. And a fuzzy ONEs-substitution may be called a fuzzy 
homomorphism. 
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Definit ion 3.4. A fuzzy prequasoid K is a nontrivial family of fuzzy languages 
that is closed under fuzzy finite substitution (i.e., Sflb(K, FINf) C K) and under 
intersection with regular fuzzy languages. A fuzzy quasoid is a fuzzy prequasoid that 
contains an infinite fuzzy language. 

It is a straightforward exercise to show that each fuzzy [pre]quasoid includes the 
smallest fuzzy [pre]quasoid REGf [FIN f, respectively], whereas FIN s is the only fuzzy 
prequasoid that is not a fuzzy quasoid; cf. [6]. 

Let II](K) denote the smallest fuzzy prequasoid that includes the family K of fuzzy 
languages. Similarly, let Of(K) lAy(K), Of(K), respectively] be the smallest family 
of fuzzy languages that includes K and is closed under fuzzy finite substitutions [in- 
tersection with regular fuzzy languages, fuzzy homomorphisms, respectively]. Then, 
obviously, for each family K of fuzzy languages, we have g f (K)  = {~S, AI, OS}*(K) 
or even IIs(K ) = {q~s, As}*(K). But instead of this infinite set of strings over 
{r AS, Of} a single string suffices; viz. 

Propos i t ion  3.5. [6] For each family K of fuzzy languages, Hf(K) = 
@]Afr  

Definit ion 3.6. A full Abstract Family of Fuzzy Languages or full AFFL is a 
nontrivial family of fuzzy languages closed under union, concatenation, Kleene , ,  
(possibly erasing) fuzzy homomorphism, inverse fuzzy homomorphism, and intersec- 
tion with fuzzy regular languages. A full substitution-closed AFFL is a full AFFL 
closed under fuzzy substitution. 

In many situations the following characterization of full AFFL happens to be more 
useful than the original definition. 

Propos i t ion  3.7. [6] A family K of fuzzy languages is a full AFFL if and only 
if K is a fuzzy prequasoid closed under fuzzy regular substitution (i.e., Sfib(K, REG]) 
C K), and under substitution in the regular fuzzy languages (i.e., Sfib(REG], K) C_ 
K). 

Closely related to regular fuzzy languages is a kind of fuzzy finite automaton. The 
next definition and equivalence result is useful, and should not come as a surprise. A 
proof of this characterization can be found in [6]. 

Definit ion 3.8. A nondeterministic fuzzy finite automaton or NFFA is a 5-tuple 
M = (Q, E, 5, q0, F) where Q is a finite fuzzy set of states, E is an alphabet, q0 is an 
element of Q with #(q0; Q) > 0, F is a crisp subset of the crisp set {q ] #(q; Q) > 0}, 
and 5 is a fuzzy function of type 8 : Q • (E U {~} ~ ~of(Q). Note that M may have 
.~-moves. 

The fuzzy function 5 is extended to 5' : Q • E* ~ ~I(Q) by 5'(q, )t) = 5(q, )t) and 
5'(q, aw) = U{5'(q',w) [q ' e  5(q,~r)} for all q in Q. 

The language L(M) accepted by an NFFA M is defined by #(x;L(M)) = 
V{#(q; 5'(qo, x))) [ q e F}. 

Propos i t ion  3.9. A fuzzy language L is regular if and only if L is accepted by a 
nondeterministic fuzzy finite automaton. 
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4. Control led  Fuzzy  Iterat ion Grammars  

The notion of fuzzy K-iteration grammar is a straightforward modification of 
the definition of (ordinary) K-iteration grammar: we just replace the ordinary K- 
substitutions by fuzzy K-substitutions; cf. [1]. 

Defini t ion 4.1. Let K be a family of fuzzy languages. A fuzzy K-iteration 
grammar G is a four-tuple G = (V, E, U, S) where 
�9 V is an alphabet (the alphabet of G); 
�9 E is an alphabet with E C V (the terminal alphabet of G); 
�9 S is a symbol in V (the initial symbol of G); 
�9 U is a finite set of fuzzy K-substitutions over V. 

The fuzzy language L(G) generated by G is defined by 

L(G)=U*(S)NE*=U{Tp(. . .(TI(S)). . . )]  P>-O; ~-~eU, l < i < p } .  

The family of fuzzy languages generated by fuzzy K-iteration grammars is denoted 
by H/(K). For each m ~ 1, H/,,~(K) is the family of fuzzy languages generated by 
fuzzy K-iteration grammars that contain at most m fuzzy K-substitutions in U. 

Defini t ion 4.2. Let F be a family of crisp languages and let K be a family of fuzzy 
languages. A F-controlled fuzzy K-iteration grammar or fuzzy (F, K)-iteration gram- 
mar is a pair (G, M) that consists of a fuzzy K-iteration grammar G = (V, E, U, S) 
and a control language M, i.e., M is a crisp language over the alphabet U. The fuzzy 
language L(G, M) generated by (G, M) is defined by 

L(G,M)=M(S)NE*=[_J{Tp(. . . (rl(S)) . . . )I  P->0; r i e U ,  T1 . . .~pEM}.  

The family of fuzzy languages generated by fuzzy (F, K)-iteration grammars is 
denoted by HI(F , K). And H/,~(F, K) is the family of fuzzy languages generated by 
fuzzy (F, K)-iteration grammars that contain at most m fuzzy K-substitutions in U 
(m> 1). 

Note that in Definitions 4.1 and 4.2 L(G) and L(G, M), respectively, are defined 
in terms of union, intersection, concatenation and iterated function application for 
fuzzy sets; cf. Section 2 for the precise definitions of these fundamental concepts. 

Clearly, we have that HI (K ) = U{HLm(K) I m >_ 1} and HI(F,K) = 
U{Hy,m(F, K) I m ~ 1) for each family K of fuzzy languages and each family F 
of crisp languages. 

Exa m ple  4.3. Let s be the type-10 lattice of Example 2.2.(3). 
(1) Consider the fuzzy FIN/-iteration grammar G = (V, E, U, S) defined by E --- {a, b}, 
V = E U {S}, and U = {rl, T2} where 71 is an ordinary or crisp FIN-substitution with 
TI(S) = {SS} and rl(a)  = {a} (a E E), whereas ~-2 is a FINf-substitution with 
T2(S) = {a,b}, T2(oQ ~-~  {O~}, #(b;r2(S)) = 0.5 and #(a; r2(S)) = #(a;r2(a))  = 1 
(~ E z). 

Then L(G) consists of all strings w with length 2 ~ for some n _> 0 and #(w; L(G)) = 
2-#b(~); ~ ( x )  denotes the number of times that the symbol ~ occurs in the word x. 
Clearly, c(L(G)) = {a 2~ ] n > 0} which is the set of strings that are obtained without 
making any "developmental error"; cf. the discussion in Section 1. A developmental 
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error occurs when S changes into a b rather than into an a; the quality of the string 
reduces to 50% of its previous value by each such erroneous replacement. 
(2) Define the REG-controlled fuzzy FINf-iteration grammar or (REG,FINf)-  
iteration grammar (G, M) where G is as in (1) and M = {r~k+lT2 I k > 0}. Now 
L(G, M) equals the set of all strings w with length 2 ~ for some odd n > 1 and still we 
have #(w; L(G, M)) = 2 -#b(~). Remark that c(L(G, M)) = {a 2" I n > O, n is odd }. 
(3) We modify (G, M) of (2) to a REG-controlled fuzzy REGf-iteration grammar or 
(REG, REGf)-iteration grammar (G1, M) by redefining T2(S) to a REG/-substitution 
with T2(S) = {a} U {b k I k k 1}, r2(a) = {a} for each a in E, #(bk;r2(S)) = 2 -k 
for each k _> 1 and #(a;T~(S)) = #(a;r2(a))  = 1 (a �9 E). Then for all strings x 
over {a, b}, we have/~(z; L(G1, M)) > g(z; L(G, M)), L(G, M) is a proper subset of 
L(G~, M), but c(L(G1, M)) = c(L(G, M)). 

Since in Example 4.3 K equals FINf in both (1) and (2), a may be called a fuzzy 
ETOL-system and (G, M) a regularly controlled fuzzy ETOL-system. 

E x a m p l e  4.4. By taking concrete values for the parameter K we obtain fuzzy 
analogues for some families of (ordinary or crisp) Lindenmayer languages; viz. 

Hf(ONEI)  = EDTOLf, Hf,I(ONEf) = EDOLf, 
Hf(FINf)  = ETOLf, Hf,~(FIN/) = EOL 1. 

Readers unfamiliar with L-systems are referred to [21] for the meaning of these 
abbreviations. 

5. Elementary Properties 
In this section we establish some basic properties of F-controlled fuzzy K-iteration 

grammars and their languages that already hold under very mild restrictions on the 
parameters F and K. These results turn out to be very useful in proving more 
complicated and more interesting propositions to which the following two sections 
are devoted. 

First we show that regular control does not extend the generating power of fuzzy 
K-iteration grammars; cf. Theorem 2.1 in [1]. 

T h e o r e m  5.1. For each family K of fuzzy languages, Hf(REG, K) -- HI(K ) 
provided K D ONE. 

Proof. Since U * is regular for each alphabet U, the inclusion Hf(REG, It') _D 
Hf(K) is obvious. 

Conversely, let (G, M) -- (V, E, U, S, M) be an arbitrary fuzzy (REG, K)- 
iteration grammar where M is accepted by a complete deterministic finite automaton 
(Q,U,(~,q0, QF) with finite set of states Q, input alphabet U, transition function 

: Q • U --+ Q, initial state q0, and set of final states QF. 
We define a new initial symbol So, a set of new nonterminal symbols Nz = (A~ I 

a E ~}, and a new alphabet V0 = Q u V u (So, F} U Nz. Define an isomorphism 
r : V ~ ( V - E )  UNr. b y e ( a )  = Aa (a e 2) and r  = A (A �9 V - E ) .  The 
isomorphism r is extended to words and to languages in the usual way. Remember 
that we assumed that each family of (fuzzy) languages is closed under isomorphism. 

Define the fuzzy K-iteration grammar Go = (V0, E, U0, So) with U0 = {r '  I v E 
U} t.) {To}. So for each fuzzy K-substitution ~" in U there is corresponding fuzzy 
K-substitution T ~ in U0, defined by 
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~'(So) = {q0s}, 
~,( .)  = r  

T(A~) = r 
~'(q) = {q'}, 
~'(~) = {F} ,  

#(qoS; "r'(So)) = 1, 

It(q'; T'(q)) = 1, 

It(F; ~-'(a)) = 1, 

for each a in V - E, 

for each A~ in N~ (a in E), 

iff 5(q, T) = q' (q in Q), 

for each a in E U {F}. 

The additional fuzzy K-subst i tut ion TO is defined as follows. 

~0(q) = {~}, 
~o(q) = {F},  
T0(A~) = {a}, 

*0(~) = {F} ,  

It(A; vo(q))  = 1, 

It(F; vo(q)) = 1, 
It(a; ~o(Ao)) = 1, 
It(F; to(a))  = 1, 

for each q in QF, 

for each q in Q - QF, 

for each As in Nz (a in E), 

for each a in V U {So, F}.  

This construction implies that  for each string x in E*, we have #(x; L(Go)) = 
It(x; L(G, M)), and hence H / ( R E G ,  K) C_ HI(K). [] 

There exists a sort of reverse of Theorem 5.1 in the sense that  all "productive" 
sequences of substitutions in a fuzzy Kdtera t ion  grammar  G --i .e. ,  those sequences 
that  yield at least one terminal string x with #(x; L(G)) > 0 - -  form a regular language 
over U; cf. Definition 5.2, Theorem 5.3 and [24]. 

D e f i n i t i o n  5.2. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar.  Then the 
Szilard language of G - -denoted  by Sz(G)--  is 

Sz(a)  = {~ ~ u*13~  e z* :  I t(x;~(s))  > 0}. 

The following theorem is the straightforward fuzzy counterpart  of one of the main 
results in [24]. 

T h e o r e m  5.3. If G is a fuzzy K-iteration grammar, then its Szilard language 
Sz(G) is a regular language. 

Proof. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar.  For each word x, we 
denote the set of all symbols that  occur in x by ~(x) ;  formally, ~ (x )  = A{E  ] E C 
2~, x E E*}. 

Consider the right-linear g rammar  Go = (Vo, U, P0, So) where Vo - U -- {X ] X C_ 
V}, So -- {S}, and P0 is defined by 

P o = { X - - + T Y I 3 x , y e V * :  O ( x ) = X ,  � 9  I t (y ;T(X) )>0}  U 

o { x - + A  [ x _ c ~ } .  

Clearly, L(Go) is regular, and it is a routine mat ter  to verify that  So ::~* w with Go 
w e U* if and only if 3x e E* : It(x; w(S)) > O. [] 

Next we show that  the number of fuzzy K-substi tut ions in a F-controlled K-  
iteration g rammar  can be reduced to two in case the parameters  F and K satisfy 
some very simple conditions as in the corresponding crisp case; cf. [1]. 

T h e o r e m  5.4. Let F be a family of crisp languages closed under A-free homo- 
morphism, and let K be a family of fuzzy languages with K D_ SYMBOL. Then 
Hs,2(r, K) = Hs,~(r, K)  = Hs(r, K) for each m > 2. 

Proof. Of course, H/,2(P, K)  C HI,,~(F , K)  C H/(F ,  K)  holds for each m _> 2. So 
it remains to prove that  HI(F , K) C_ H],2(F, K).  
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Let (G, M) = (V, E, U, S, M) be a fuzzy (F, K)-iteration grammar with m (m > 3) 
fuzzy K-substitutions in U --say, U = {T~,...,  T,~}-- and let for each i (1 < i < m) r 
be the isomorphism defined by r = a~ (a in V; each a~ is a new, unique symbol). 

Construct the fuzzy (r, K)-iteration grammar (Go, M0) = (V0, E, U0, S, M0) with 
�9 V 0 = V U { F } U { r  l a � 9  l _ < i _ < m } ,  
�9 U0 = {al,~r2} where the fuzzy K-substitutions al and or2 are defined respectively 

O'I(OZ) : {~1} ,  #(~1; O'l(OZ)) : 1, O/ in V,  

O'l(O~i) = {O'i.t_1} , ~(O@t_1; O'l(Oli) ) = 1, C~ in V and 1 < i < m,  

r = { F } ,  #(F;cr~(B))  = 1, fl in { F }  V { r  I a �9 Y } ,  

~r2(ai) = r i ( a ) ,  a in V and 1 < i < m,  

~ ( ~ )  = { F } ,  ~ ( F ;  ~ ( ~ ) )  = l ,  ~ in v u { F ) .  

by 

�9 Mo = h(M) where the homomorphism h : U* --+ U~ is defined by h(~'i) = ~r~a2 
(1<_i_<.~) 

An application of r~ of (G, M) is simulated by i times applying or1 (by which 
each a is changed into ai) and a single application of ~r2 which carries out the actual 
simulation of wl and removes all subscripts from the symbols. 

It is left to the reader to show that #(x; L(G0, M0)) = #(x; L(G, M)) for each x 
over S. Hence HI(r,K ) c_ Hj,~(r,K). [] 

Obviously, we can combine Theorems 5.1 and 5,4 to establish a similar result for 
the uncontrolled case. However, we can achieve this under weaker assumptions on K 
by slightly modifying the proof of Theorem 5.4. 

Coro l l a ry  5.5. I l K  is a family of fuzzy languages with K D_ SYMBOL, then 
HI,~(K ) = HS,~(K ) = Hf (K  ) for each ,~ > 2. 

Proof. Take M and M0 in the proof of Theorem 5.4 equal to M = U* and 
M0 = U~ = {al, a2}*, respectively. Then for each x in E*, #(x; L(a0)) = ~(x; L(G)) 
holds and, consequently, HI(K ) C HI.r~(K ) C Hi.2(h" ). The converse inclusions are 
trivial. [] 

We conclude this section with a few useful inclusion properties for which we need 
some additional terminology. 

Def ini t ion 5.6. A family r of crisp languages is closed under left marking [right 
marking] if for each language L in r with L C_ E* for some E, and for each symbol c 
not in E, the language {c}L [L{c}, respectively] belongs to F. And I" is closed under 
full marking if r is closed under both left and right marking. Frequently, we write cL 
and Lc rather than {c}L and L{c}, respectively. 

P r o p o s i t i o n  5.7. (1) Let P be a family of crisp languages closed under right 
marking, and let K be a family of fuzzy languages with K D_ ONE. Then the inclusions 
r c_ H f ( r , K )  and K C H I ( F , K )  hold. 
(2) Let F be a family of crisp languages closed under (i) left or right marking, (ii) 
union or concatenation, and (iii) Kleene star. If  K is a family of fuzzy languages with 
K __D SYMBOL, then HI(K ) C HI(F,K ). 

Proof. (1) Consider an arbitrary crisp language Lo over U0 in the family F. Define 
the fuzzy (P, g)-i terat ion grammar (G, M) = (V, Uo, U, S, M) with U = Uo t_J {er}, 
M = Loot, and U consists of fuzzy K-substitutions defined by 
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T(s)  = {Ts ) ,  e u0, 

= {A}, 

= { . ) ,  e u0. 

All degrees of membership are equal to 1 (or to 0 in all other, unmentioned cases). 
So (G, M) is actually a crisp (r, Z)-iteration grammar with L(G, M) = Lo. Conse- 
quently, we have F C HI(F , K). 

Similarly, let L0 be a fuzzy language over E and let M0 be an arbitrary nonempty 
crisp language over U0. We define the fuzzy (F, K)-iteration grammar (G, M) = 
(V, E, U, S, M) where V = E U {S}, U = U0 U {a} (c~ ~ U0), M = M0a, and the fuzzy 
K-substitutions are defined by 

r(a) = {a}, ~(a; r(a)) = 1, a e V, ~ e U, 

a(S) = no, #(x; a(S)) = #(x; Lo), for all x over E, 

Then #(x; L(G, M)) = #(x; L0) for all x over E, and thus K _C H/(F, g) .  
(2) Let G -= (V, ~, U, S) be an arbitrary fuzzy K-iteration grammar with U = 

(T1,...,~'~} and let M0 be a nonempty crisp language over U0 from F such that 
U N U0 = | If the family F is closed under union [concatenation], then the crisp 
language M = (MOT: O Mo~'2 U. . .  U M07,)* [or M = ((Mor:)*(Mo~'2)*... (MoTh)*)*, 
respectively] is also in F. 

Finally, we define the fuzzy (F, /(-)-iteration grammar (G:, M) by (G1, M) = 
(V, E, U~, S, M) with U: = UUUo and for each T in Uo and for each a in V, T(a) = {a} 
with #(a; r(a)) = 1. Then #(x; L(G:, M)) --- #(x; L(G)) for each x over ~ and, con- 
sequently, HI(K ) C HI(F , K). [] 

6. T h e  M a i n  R e s u l t s  

In Section 1 we argued that in order to model developmental errors we should 
allow a countable rather than a finite number of productions in each table (or substi- 
tution). This resulted in the notion of F-controlled fuzzy K-iteration grammar and 
the corresponding language family HI(F , K). 

In this section we address the question to which extend we can enlarge the family K 
of fuzzy languages and still remain within the family HI(F, K). The answer (Theorem 
6.1 and Corollaries 6.2, 6.3 and 6.4)) is rather surprising and implies that both families 
HI(r, K) and HI(K) possess very strong closure properties; this latter subject will 
be discussed in Section 7. 

For families F1 and F2 of crisp languages, Sfib(rl,F~) denotes the family of 
crisp languages that results from substituting F2-1anguages into Fl-languages, i.e., 
Sfib(F1, F~) = {T(L) [ L E 1~1, T is  a F2-substitution}. A family F is closed under sub- 
stitution if Sfib(F, F) C_ r. Of course, these concepts are well-known special instances 
of Definition 3.3. 

T he o r e m 6.1. Let rl  and F2 be families of crisp languages and let F2 be closed 
under full marking, union or concatenation, and Kleene *. I l K  is a family of fuzzy 
languages with K D ALPHA, then H/(F:, HI(F2, K)) c Hs(S~b(r:, r~), K). 
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Proof. Consider an arbitrary Fl-controlled fuzzy Hl(P2,K)-iteration grammar 
(G, M) --- (V, E, U, S, M), where each ~- in U is a fuzzy Hi(F2, K)-substitution over V. 
For each such fuzzy Hf (F2, K)-substitution ~- in U and each symbol a in V, we assume 
that #(x;T(a)) = # (x ;L(G~,M.~) )  holds for each x over V. Here (G.~,M.~) = 
(V~, V, U.~, S.~, M.~) (v E U and a E V) are fuzzy (F2, K)-iteration grammars that 
have mutually disjoint nonterminal alphabets V.~ - V as well as mutually disjoint 
sets of fuzzy K-substitution names U.~. 

We also assume that the fuzzy (P2, K)-iteration grammars (G.~, M.~) meet the 
following conditions: (i) for each a in V and each g in U~: e(a) = {a} with 
#(a; ~r(a)) = 1, and (ii) if an intermediate string w in a derivation due to (G.~, M ~ )  
contains a symbol of V, then for each a in U~: e(w) = {~o}, while for all u over 
U~ and each w over V.~, we have #(w;au(w)) = #(w; u(w)). Otherwise, we intro- 
duce for each a in V a new nonterminal symbol Aa and we replace each occurrence 
of a in (G.~, M.~) by A~. Each fuzzy substitution is extended with a(/~) = {/3}, 
#(/~; e(fl)) = 1 with fl C V U {F0}, where F0 is a new rejection symbol. Finally, we 
add a new fuzzy substitution ~ defined by 

~(A~) = {a}, #(a; ~(A~)) = 1, for each a in V, 

~(a) = {a), #(a; ~(a)) = 1, for each a in V U {Fo}, 

T(/~) = {F0}, #(F0; T(3)) = 1, for each/~ in V~ - V, 

and we replace the control language M.~ by M . ~ .  
In order to show that the fuzzy language L(G,M) belongs to the fam- 

ily Hf(Sfib(F1,F2),K), we construct a fuzzy (Sfib(F1,F2),K)-iteration grammar 
(Go, Mo) = (Vo, E, Uo, S, Mo) such that #(x; L(Go, Mo)) = #(x; L(G, M)) holds for 
each x in E*. The definition of (Go, Mo) is as follows. 
�9 Vo = U~,~(V~ U {S~}) W {F} where F is a rejection symbol and each S'~ is 
a new nonterminal symbol associated with S~.  Remark that S E V, and since 
V G V~ C Vo, we have S e Vo. 
�9 Go = {r v { ~  I .  ~ u} u {g'.~ I g . ~  e u.o}. 
�9 The fuzzy K-substitutions in Uo are defined in the following way: 
(a) For the initial fuzzy K-substitution go we have with degree of membership equal 
to 1 in all the following instances: 

~o(a) = {S'~ I~ �9 g}, a �9 V, 

~o(~) = {~}, ~ ~ V. 

(b) For each r in U the fuzzy K-substitution g~ is defined by 

o~(s'.o) : {s '~,  s.~}, ~ e v ,  

g.(~) = {~}, ~ �9 v ,  
g~(~) = {F},  ~ ~ v u {s '~} ,  

where all degrees of membership are again equal to 1. 
(c) For each fuzzy K-substitution a~k from Ur~ we define a corresponding fuzzy 
K-substitution a ~  k by 

g ' ~ ( ~ )  = g~.~(~), ~ �9 v ~ ,  
I I ! I l g~k(S~)  = {S~}, #(S~;  g,~k(S,~)) = 1, fl E V, 

o"~_=k(fl ) = {F}, #(F; g~,k(fl))--- 1, otherwise. 
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�9 The control language M0 is defined by M0 = 7(M) where 7 is the F2-substitution 
defined by 

7(r)  = tl//,, z C U, 

where the languages M, with v C U satisfy --assuming V = { a l , . . . ,  a n } - -  

M~ = ~ro(a~M~ 1 U . . .  U a~M~.)*, if F2 is closed under union, and 

M, = ~r0(~,M,~ 1 . . .  ~r,M,~)*, if F2 is closed under concatenation. 

Clearly, each language M, (r C U) belongs to the family F2. 
Each step in any derivation according to the Fl-controlled fuzzy (F2, K)-iteration 

grammar (G, M) is simulated by a finite number of derivational steps of the fuzzy 
(Sab(gl, r2),/()-iteration grammar (Go, M0) in the following way. 

For each intermediate string in a derivation of (G, M) there is an identical string 
over V in the simulation by (Go, M0). However, going from such a string to the 
next one over V --i.e., the actual simulation of the application of a fuzzy (F2, K)- 
substitution r from U in a (G, M)-derivation-- takes a finite number of steps con- 
trolled by the language M,. So the simulation of a single step according to ~- by M, 
proceeds as follows. First, all symbols a from V are converted into S ~  by a single 
application of Cro. Next an application of c% checks whether all first indices of these 
primed initial symbols are indeed equal to r, otherwise at least one occurrence of 
the rejection symbol F is introduced. Simultaneously, some of the occurrences of the 
primed initial symbols S~  may be changed into their unprimed counterparts S,~. 
And symbols from Up,~ v;~ - v are rewritten into the rejection symbol F. Obvi- 
ously, the unprimed symbols S,~ start an actual derivation according to (G,~, M,~), 
i.e., according to the fuzzy K-substitutions ~ k  due to the control language M,~. 
Clearly, the definitions of M~ and of cr, allow different occurrences of S ~  be rewritten 
under different control words from M,~. Finally, after the simulation of a r-step only 
occurrences of symbols from V will survive the simulation of a subsequent r~-step and 
contribute to the derivation of a possible terminal substring in the end. 

By a long, straightforward correctness proof --which we leave to the in- 
terested reader-- one can establish that for each string x over E, we have 
#(x; L(Go, 3//o)) = #(x; L(G, M)), and, consequently, we have established the inclu- 
sion -~rf(rl, Hs(r2, K)) ___ Hf(Sfib(F1, F2), K). [] 

Coro l la ry  6.2. (1) Let F be a family of crisp languages closed under full marking 
and under substitution that satisfies F __D REG. I f  K is a family of fuzzy languages 
with t (  2 A•PI4A u ONE, then Hs(r, H~(r, K)) = H~(r, K). 
(2) Let F be a family of crisp languages that is closed under full marking, union, 
concatenation, and Klcene *. I l K  is a family of fuzzy languages with K D_ ALPHAU 
ONE, then ~s(Hs(F ,K))  = HS(F,K). 

Proof. (1) follows from Theorem 6.1 in which we take F1 = F2 = F, Proposition 
5.7.(1), and the fact that a family of crisp languages is closed under union, concate- 
nation, and Kleene * if and only if it is closed under substitution into the regular 
languages (Proposition 3.3.1 in [9]). 

(2) is implied by (i) Theorem 6.1 (where we take F1 and F2 equal to REG and 
F, respectively), (ii) Theorem 5.1, (iii) Proposition 3.3.1 in [9] (as in the proof of 
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6.2.(1)), and finally (iv) the inclusion Hf(r, K) C Hf(Hs(r , K)) due to Proposition 
5.7(1). [] 

Coro l l a ry  6.3. If K is a family of fuzzy languages with K D ALPHA U ONE, 
then HI(HI(K)) = Hf(K ). 

Proof. If we take F equal to REG, then the result follows from Theorem 5.1 and 
Corollary 6.2.(2) immediately. [] 

C o r o l l a r y  6.4. ETOLf = Hf(ETOL])  = Hf(Hf(FIN])) = Hf(FINf) .  

Proof. Example 4.4 and Corollary 6.3 with K equal to FINf. [] 
This latter corollary shows that, in order to stay within the framework of ETOLf- 

languages (i.e., Hf(FINf)-languages; cf. Example 4.4.), we have to restrict the infinite 
fuzzy sets T(a) consisting of developmental rules together with developmental errors 
to ETOLf-languages as Hf(ETOLf) C ETOLf; cf. the discussion in Section 1. Of 
course, a similar remark applies in the more general case (Corollary 6.3) but the ex- 
tension from finite sets to countably infinite fuzzy sets is a more striking phenomenon. 

7. C l o s u r e  P r o p e r t i e s  

We already remarked that Theorem 6.1 and its corollaries imply that the families 
HI(F , K) and HI(K ) of fuzzy languages possess very strong closure properties under 
minor assumptions and the families I' and K. In this section we first consider some 
simple closure properties (Lemmas 7.1 and 7.2) before we consider the more important 
ones (Theorem 7.5) due to our results from Section 6. 

L e m m a  7.1. Let K be a family of fuzzy languages with K D__ FINf, and let F 
be a family of crisp languages closed under right marking. Then the families of fuzzy 
languages Hf(K) and Hf(F, K) are closed under fuzzy finite substitution. 

Proof. Let G = (V, E, U, S) he a fuzzy K-iteration grammar and let ~ : E --+ A* be 
a fuzzy finite substitution. Without loss of generality we assume that the alphabets 
E and A are disjunct. 

Consider the fuzzy K-iteration grammar Go = (Vo, A, (/0, S) where V0 = V tl A U 
{F}, U0 = {T ' IT  �9 U} U {W} with 

= �9 

a ' (a)  = { r} ,  #(F; W(c~)) = 1, a ~ E, 

and for each T in U we define 

= e v ,  

= i F } ,  , ( F ;  = 1, �9 Zx u i F } .  

Then for each string x over A, we have #(x; (r(L(G))) = #(z; L(Go)). 
In the F-controlled case we depart from (G, M) and we construct (Go, Mo) with 

Go as above and Mo = p(M){a '}  where c~ is the isomorphism that maps each T on 
T t . [] 

L e m m a  7.2. Let K be a fuzzy prequasoid, and let F be a family of crisp languages 
closed under full marking. Then the familes of fuzzy languages HI(K ) and Hf(F, K)  
are closed under intersection with regular fuzzy languages. 
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Proof. Let G = (V, E, U, S) be a fuzzy K-iteration grammar, and let R be a regular 
fuzzy language accepted by a nondeterministic fuzzy finite automaton (Q, E, 5, q0, F); 
cf. Proposition 3.9. 

Consider the fuzzy K-iteration grammar Go = (Vo, E, Uo, So) where Vo = E U 
{so, F }  u {[q, ~, q'] I q, q' �9 Q, ~ �9 v } ,  Go = {~o, ~1} u (~' I ~ ~ u} ,  with 

~r0(S0) = {[qo, S,q] l q �9 F}, q �9 F, 
~0(~) = {~} ,  ~ �9 v0 - {So}, 
~1(~) = {~} ,  ~ �9 ~ u {So, F}; 

the degrees of membership are equal to 1 for all these instances. But for 

~l([q,~,q']) = {~ I q' e 5(q,~)} u {F} ,  ~ c V, q ,q '~  Q, 

we have #(~; ~l([q,a, q'])) = #(q'; 5(q, c~)) and #(F; al([q, c~, ql]) = 1. 
For each T in U, we define the fuzzy substitution 7' over V0 by 

~'([q, ~, q']) = {[q, ~1, q~][ql, ~ ,  q2].., f%-~, ~ ,  q'] I q l , . . . ,  qn-~ �9 Q; 
~ 1 ~ . . .  ~ �9 ~(~), ~ > 1} u E((~, ~, q, ql), ~ e V, q, q' �9 Q, 

with E((r ,  c~, q, q') = if ~ �9 r ( a )  and q = q' t h e n  {A} else {F}. For the degrees of 
membership we have 

#([q, ~ , ,  q l ] . . .  [q~-~, ~ ,  q']; ~'([q, ~, q'])) = # ( ~ , . . .  ~ ;  ~(~)), ~ > 1, 
#(~; ~'([q, ~, q'])) = i f  ~ �9 ~(~) and q = q' then  #(A; T(c~)) else 0, 
#(F; v'([q, ot, q'])) = 1. 

Since K is a fuzzy prequasoid, it easy to show that each T ~ is a fuzzy K-substitution 
over Vo. The proof that for each string x over E, #(x; L(Go)) = #(x; L(G) ;3 R) holds 
is also left to the reader. 

When G is provided with a crisp control language M from the family F, we con- 
struct (Go, Mo) with M0 --- {Go}~(M){cr~}, where ~ is as in the proof of Lemma 
7.1. 

We now turn to more complicated closure properties for fuzzy languages. 

Def in i t ion  7.3. A family K of fuzzy languages is dosed under iterated fuzzy 
substitution if for each fuzzy language L in K over some alphabet V (L _C V*), and 
each finite set U of fuzzy K-substitutions over V, the language U*(L) defined by 

U*(L)=U{Tp(.. .(rl(L)). . .)] p_>0; r i e U ,  l < i < p }  

belongs to K. 
A hyper-algebraicaIly closed full Abstract Family of Fuzzy Languages, or full hyper- 

AFFL for short, is a full AFFL closed under nested iterated fuzzy substitution. 

For a fuzzy prequasoid closure under iterated fuzzy substitution implies closure 
under many of the operations related to the notion of full AFFL; using Proposition 
3.7, Definitions 7.3 and 3.6 it is straightforward to establish the following characteri- 
zation. 

P r o p o s i t i o n  7.4. A family K of fuzzy languages is a full hyper-AFFL if and only 
i l K  is a fuzzy prequasoid and HI(K) --- K. 
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Each full hyper-AFFL is a full super-APFL (i.e., a full AFFL closed under iterated 
nested fuzzy substitution; a substitution T is nested if a E r(a) holds for each symbol 
a.), and each full super AFFL is in its turn a full substitution-closed AFFL [5], but 
none of the converse implications holds. 

Now we are ready for the main results of this section. 

T h e o r e m  7.5. I l K  is a fuzzy prequasoid and if F is a family of crisp languages 
closed under full marking, union, concatenation, and Kleene ,, then the family of 
fuzzy languages H:(F, K) is a full hyper-AFFL. 

Proof. By Lemmas 7.1 and 7.2 we obtain the fact that H:(F, K) is a fuzzy pre- 
quasoid. Then by Proposition 7.4 and Corollary 6.2.(2) the result follows. [] 

T h e o r e m  7.6. (1) If K is a fuzzy prequasoid, then HI(K) is a full hyper-AFFL. 
(2) For each arbitrary family K of fuzzy languages, H:II:(K) is the smallest full 
hyper-AFFL that includes K. 
(3) For each arbitrary family K of fuzzy languages, H]O:A:OI(K) is the smallest 
full hyper-AFFL that includes K. 

Proof. (1) The statement follows immediately from Laminas 7.1 and 7.2 together 
with Corollary 6.3. 

(2) Let ~:(K)  be the smallest full hyper-AFFL that includes K. By the inclu- 
sion g C ~: (K)  and the monotonicity of both H: and H:, we haveH:H:(K) C_ 
H:II:~t:(K). According to Proposition 7.4 this yields H:II:(K) C 7"gy(K). Now 
Theorem 7.6.(1) implies that H:II:(K) is a full hyper-AFFL that includes K. Hence 
we obtain that 7~:(K) = H:II/(K). 

(3) By Theorem 7.6.(2) and Proposition 3.5. [] 

By Proposition 7.4 we have that a family of fuzzy languages K is a full hyper- 
AFFL if and only if YI:(K) = K and Hf(K) = K. Consequently, the smallest full 
hyper-AFFa ~ f ( I ( ) ,  that includes a family g of fuzzy languages, equals ~f (K)  = 
U{w(K) I w e {II:,Hf}* } or, written equivalently, ~](K) = {Hf,H:}*(K). Ac- 
cording Theorem 7.6.(2) this infinite set of strings over the alphabet {IIf, Hf} can be 
reduced to the single string H:H/. Of course, a similar remark applies to Theorem 
7.6.(3). 

From the fact that FIN: is the smallest fuzzy prequasoid, Theorem 7.6.(1), Corol- 
lary 6.4, Example 4.4, and the monotonicity of the operator H: we obtain 

Coro l la ry  7.7. ETOL/ is the smallest full hyper-AFFL. 

8. Concluding Remarks 

In the previous sections we extended the concept of F-controlled K-iteration gram- 
mar from [1] to its fuzzy analogue in order to model the phenomenon of "developmen- 
tal error". Many of the results that we have established are straightforward generaliza- 
tions of similar statements for the crisp case from [t], [24] once the language-theoretic 
operations --like homomorphism, substitution and concatenation-- are extended in 
the right way for fuzzy languages; cf. Section 2. On the other hand non-fuzzy versions 
of Theorem 6.1 and Corollary 6.2.(1) are proper generalizations of the main result in 
[1] which is more or less equivalent to the crisp counterpart of Corollary 6.2.(2). 
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Obviously, all our results apply to fuzzy ETOL languages as well; they are obtained 
by taking the parameter family K of fuzzy languages equal to the family F I N / o f  finite 
fuzzy languages. The precise formulation of these statements for F-controlled ETOLy- 
languages are left to the interested reader. 

In the definition of fuzzy K-iteration grammar each element in U is an arbitrary 
fuzzy K-substitution over V. Restricting each r in U to a nested fuzzy K-substitution 
--i.e., #(a; ~-(a)) = 1 for each a E V - -  results in the concept of fuzzy context-free 
K-grammar; cf. [3], [4]. A further restriction to not-self-embedding nested fuzzy K- 
substitutions yields the notion of fuzzy regular K-grammar; cf. [5]. Both types of 
grammars have properties rather similar than those presented in this paper. Partic- 
ularly with respect to closure properties there are many similarities and the question 
arises whether a uniform approach as the one in [2] for crisp languages is also possible 
for families of fuzzy languages. On the other hand there are some differences between 
fuzzy regular or context-free K-grammars and fuzzy K-iteration grammars. E.g., for 
fuzzy regular and fuzzy context-free K-grammars we can reduce the number of sub- 
stitutions to 1 rather than to 2 (cf. Theorem 5.4), which implies that providing these 
grammars with a control language is probably not very challenging. 

Next we return to a few matters discussed in Section 1. First, we want to reconsider 
the effect of developmental errors on the quality of the filament. In Section 1 we argued 
that each developmental error should properly change this quality, and therefore the 
underlying lattice-ordered structure/~ should possess an infinite number of elements. 
Clearly, the real closed interval [0, 1] --even restricted to its computable or rational 
elements; cf. [8]-- satisfies this condition, which is one reason for its popularity. But 
other instances of/2 may be useful too. E.g. in case we want to count symbols, 
i.e. to count cell states in filaments, the elements of E may be Parikh-vectors with 
0 = [0, 0 , . . . ,  0], and 1 = [oo, oo , . . . ,  oo] as smallest and largest element in E. Note 
that s has countably infinite elements too in this example. 

Two examples of biologically motivated Control languages have been mentioned in 
Section 1: the sequence of days and nights, and the sequence of seasons. Both sets of 
sequences are regular languages. So the obvious question is: are there any non-regular 
events in biology/nature? Other sets of sequences --like the proper order of the days 
in a week, of the months in a year- -  are unsuitable candidates: apart from being 
regular sets, they are also human artifacts rather than natural or biological events. 
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