
Controlled Fuzzy Parallel Rewriting

Peter R. J. ASVELD

Department of Computer Science
Twente University of Technology

P.O. Box 217, 7500 AE Enschede, The Netherlands
E-m~il: i n f p r j a�9 utwente, nl

Abstract. We study a Lindenmayer-like parallel rewriting system to
model the growth of filaments (arrays of cells) in which developmental
errors may occur. In essence this model is the fuzzy analogue of the
derivation-controlled iteration grammar. Under minor assumptions on the
family of control languages and on the family of fuzzy languages in the
underlying iteration grammar, we show that (i) regular control does not
provide additional generating power to the model, (ii) the number of fuzzy
substitutions in the underlying iteration grammar can be reduced to two,
and (iii) the resulting family of fuzzy languages possesses strong closure
properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed
full Abstract Family of Fuzzy Languages.

1. I n t r o d u c t i o n

The original motivation to introduce Lindenmayer systems, or L-systems for short,
consisted of modeling the development of filamentous organisms [15], [16]. The state
space of each individual cell of such an organism is a finite set, symbolically represented
as an alphabet V, and rewrite rules over V provide for the development of single cells.
More precisely, a rule c~ -+ w with ~ ~ V and w E V*, allows for a state change
(w C V, w ~ ~), a cell death (w = ~, t is the empty word), or the splitting of a
cell in more than a single off-spring (I w I> 1, where] w I is the length of the string
w). Starting from an initial filament, i.e. a string over V, and applying the rules
for individual cells in parallel yields the global state of the filament after a discrete
time step. Iterating this rewriting process shows the development of this filament as
function of the discrete time parameter. From a mathematical point of view the set of
rules is just a finite substitution over V that is applied iteratively to the initial string.

Subsequent contributions to the extension of this model resulted in the distinction
between nonterminal and terminal symbols as in Chomsky phrase-structure gram-
mars, in several sets of rules (several finite substitutions, also called tables) instead of
just a single one, and numerous ways of restricting or regulating the parallel rewriting
process. We refer the reader to [13], [21] for surveys of the early days of L-system
theory; [13] is more elementary and devoted to biological applications, whereas [21]
concentrates on mathematical properties. More recent developments and related ap-
proaches can be found in [7], [22], of which [7] treats derivation-controlled rewriting
in general, whereas [22] shows a rich variety of results closely related to or inspired
by L-systems.

The extension of the basic model with different sets of rules (a finite number of
finite substitutions instead of a single one) stems from the observation that a filamen-
tous organism might develop in a different way under different external conditions

50

[20]. A typical example is the difference between day and night; in that case we have
two sets of rules, or tables, viz. a day table 7"d and a night table Tn, each table being
a finite substitution over the alphabet V. Closely related to this extension are the
so-called derivation-controlled tabled L-systems in which the order of application is
prescribed by a control language over the table names [10], [18], [1]. E.g. in order to
obtain the right sequence of day, followed by night, followed by day, etc., a regular
control language of the form (~-dT~)*~-a can be used, provided each sequence should
start and end with the day table ~-d. Similarly, but on a larger time scale, the or-
der of the four seasons can be described by a regular control language of the form

(Tspring Tsumraer Tautmnn Twinter) * rspring.
In this paper we introduce a further extension of this model which enables us

to describe developmental errors. Such an error occurs when, instead of applying
the correct rule a -+ w from the table T, the symbol a is replaced by a string w ~
with w J # w and a -+ w ~ is not a rule in r. In such a situation the "quality" of
this incorrect off-spring w ~ should be strictly less than the corresponding correct one
and, consequently, the "quality" of the entire filament should also decrease by this
developmental error. In addition we want that making two developmental errors is
worse than a single error and, in general, that each additional developmentM error
should strictly decrease the "quality" of the filament under consideration.

But how do we measure the "quality" of a string or filament x derived by a
controlled tabled L-system G? In traditional formal language theory there only are
two possibilities, viz. (i) x belongs to the language L(G) generated by G: its "quality"
equals 100%, or (ii) x does not belong to L(G): the "quality" of x is 0%. Clearly,
there is no room for expressing statements like "x is slightly imperfect due to a
minor developmental error" or "x has been severely damaged by a long sequence of
considerable errors during its development". This lack of expressibility is, of course,
due to restrictions in set theory: the membership function or characteristic function
#L(a) of a set, or a language L(G) in our case, has two possible values only: ~tL(G)(X) =
1 if x E L(G), and #L(a)(x) = 0 if x ~ L(G). Thus, if L(G) C E*, then #L(a} is a
mapping of type #L(a) : E* --+ {0, 1}.

Fortunately, using fuzzy sets and fuzzy languages we are able to express "qualities"
different from 0% and 100%, since #L(a) is now a mapping of type ttn(a) : E* ~ /2
where ~ is a complete lattice, eventually provided with additional operations and
properties. As a typical example, the reader may consider the case in which / : equals
the real interval [0,1] with min and max as lattice operations. Fuzzy languages have
been introduced in [17], which is restricted to fuzzy analogues of Chomsky grammars
and languages. In [19] fuzzy Lindenmayer systems and their languages have been
studied, however, without any motivation in terms of developmental errors. This mo-
tivation is the obvious parallel Lindenmayer variant based on the idea of grammatical
error studied in [3], [4], [5].

So in fuzzy L-system theory the "quality" of a string is a value in s which might
be anything in between 0 (the smallest element of/2) and 1 (the greatest element of
s depending on the actual structure o f / : . And making a developmental error in
the derivation of x means that the "quality" of x will not increase compared to the
previous string. But whether it will strictly decrease depends on the structure and
the operations o f / : as well as their relation with the definition of derivation step; cf.
Section 4 for details.

51

In dealing with developmental errors there is another problem. Usually, an L-
system has in each of its tables a finite number of rewrite rules. Making a devel-
opmental mistake, i.e., replacing a by w t instead of by the correct string w can be
modeled by adding the rule a --+ w t to the table ~" to which a --+ w belongs, and
requiring #~(~)(w') < 1, where r (a) is the set of all strings w such that a ~ w belongs
to r. This construction works for a finite number of possible developmental errors
only. But, in general, there is an infinite number of ways to make mistakes, and fila-
mentous development does not form an exception to this observation. So we should
add an infinite number of rules a ~ w t to T or, equivalently, an infinite number of
strings to the fuzzy set r (a) . So each set {w E T(a) I 0 < #~(~)(w) < 1} is allowed to
be infinite. But then the language {w e T(a)] #,(~)(W) = 1} might be infinite as well,
or, equivalently, each T(a) may be a fuzzy subset of V*, i.e., a fuzzy languages over
V. However, we could not let be the sets r (a) arbitrary fuzzy languages over V: they
should be restricted in some uniform way, otherwise we end up with languages L(G)
that are not even recursively enumerable; cf. [8]. A well-known way to restrict these
fuzzy languages is the following: we require that each fuzzy language T(a) belongs to
a given family K of fuzzy languages. The family K is a parameter in our approach:
usually, we demand that K meets some minor conditions, but sometimes we simply
take a concrete value for K, e.g., we take K equal to the family F I N / o f finite fuzzy
languages.

This results in the notion of fuzzy K-iteration grammar which plays the main
part in the present paper. Formally, such a grammar G = (V, E, U, S) consists of
an alphabet V, a terminal alphabet E (E C V), an initial symbol S (S E V - E),
and a finite set U of fuzzy K-substitutions over V. Thus for each T in U, and
for each c~ in V, T(a) is a fuzzy language over V that belongs to the family K.
The controlled variant of this grammar concept is the so-called F-controlled fuzzy
K-iteration grammar, or fuzzy (F, K)-iteration grammar where F is a family of (non-
fuzzy) languages. A grammar (G; M) = (V, E, U, S, M) of this type consists of a
fuzzy K-iteration grammar (V, E, U, S) and a language M over U (considered as an
alphabet) with M C F. Each derivation D according to (G; M) satisfies the condition
that the sequence of fuzzy K-substitutions used in D constitutes a string in the control
language M.

The remaining part of this paper is organized as follows. In Section 2 we introduce
the basic notions with respect to fuzzy languages and operations on fuzzy languages.
Section 3 is devoted to families of fuzzy languages. The formal definitions of fuzzy
K-iteration grammar and of F-controlled fuzzy K-iteration grammar are provided in
Section 4, where we also give a few examples of these grammars together with the fuzzy
languages that they generate. Section 5 consists of some elementary but useful prop-
erties of fuzzy K-iteration and fuzzy (F,K)-iteration grammars. The main results,
viz. Theorem 6.1 and its corollaries, which deal with the generating power of fuzzy
(F, K)-iteration grammars, are in Section 6. Closure properties of the corresponding
families of fuzzy languages are the subject of Section 7. Under minor conditions on
the families Y and K, the families HI(K) and HI(F , K) of fuzzy languages, generated
by fuzzy K-iteration grammars and (F, K)-iteration grammars, respectively, possess
strong closure properties very similar to the ones of the corresponding non-fuzzy lan-
guage families; cf. [1]. Finally, Section 8 contains some concluding remarks.

52

2. Fuzzy Languages and Operat ions on Fuzzy Languages

We assume that the reader is familiar with basic formal language theory to the
extend of the first few chapters of standard texts like [12], [14], [23]. L-systems and
Abstract Families of Languages are treated much more thoroughly in [13], [21] and [9],
respectively. Finally, we need some rudiments of lattice theory which can be found in
most books on algebra; all what we use of lattice theory is also summarized in [2].

In order to define several types of fuzziness we need a few lattice-ordered structures.
Instead of stacking adjectives, we collect some collections of properties under simple
names as "type-bb lattice" for some short bit strings bb. The following definitions and
examples are quoted from [5]. The definition of the principal notion of type 00-lattice
is a slight modification of a structure originally introduced in [11].

D e f i n i t i o n 2.1. An algebraic structure ~ or (~, A, V, 0, 1,*) is a type-O0 lattice if
it satisfies the following conditions.

�9 (Z~, A, V, 0, 1) is a completely distributive complete lattice. Therefore for all ai,
a, b~ and b in s aA V;b~ = V~(a A bl) and (Va~) A b = V~(ai A b) hold. And 0
a~d 1 are the smallest and the greatest element of s respectively; so 0 = / ~ s
and 1 = V s

�9 (s is a commutat ive semigroup.

�9 The following identities hold for all a~'s, hi's, a and b in s

a* V~ b~ = Vi(a. bl),

(V, ai) * b = Vi(ai. b) ,

O A a = O * a = a * O = O ,

1 A a = l * a = a * l = a .

A type-01 lattice is a type-00 lattice in which the operation * coincides with the
operation A; so it is a completely distributive complete lattice actually. A type-lO
lattice is a type-00 lattice in which (s A, V, 0, 1) is a totally ordered set or chain, i.e.,
for all a and b in s we have a A b = a or a A b = b. In a type-10 lattice the operations
V and A are usually denoted by max and min, respectively. Finally, when Z: is both
a type-01 lattice and a type-10 lattice~ s is called a type-11 lattice.

E x a m p l e 2.2. As usual we denote the closed interval of all real numbers in
between 0 and 1 by [0, 1].
(1) The structure ([0, 1] • [0, 11, A, V, (0,0), (1, 1),*) in which the operations are
defined by (x l ,y l) A (x~,y2) = (min{x l ,x2} ,min{y l ,y2}) , (zl ,Yl) V (z2,y2) =
(max{x1, x2}, max{y1, Y2}) and (xl, Yl) * (x2, Y2) -- (xlx2, YlY2) for all Xl, x2, Yl and
y2 in [0, 1] is a type-00 lattice.
(2) Consequently, ([0,1] x [0,1], A, V, (0,0), (1, 1) , ,) where the operations A and V are
defined as in (1) and (x l ,Yl)* (x2 ,Y2) = (min{xl ,x2} ,min{yi ,Y2}) for all Xl, x2, Yl
and y2 in [0, 1], is a type-01 lattice.
(3) The structure ([0, 1], min, max, 0,1,*) with Xl*X2 = xlx2 for all Xl and x2 in [0f 1]
is a type-10 lattice.
(4) Taking * equal to min in (3) yields a type - l l lattice.

53

The following useful fact is very easy to prove.

L e m m a 2.3. For each type-O0 lattice s a*b < a A b holds for all elements a and
b inE.

Pro@
By the distributivity of * over V, a * (1 V b) = a * l V a * b h o l d s . As 1 V b = 1

and a * 1 = a, we have a = a V a * b, and therefore a * b _< a. Analogously, we obtain
a * b_< b, and hence a * b <_ a A b. []

Of course, Lemma 2.3 implies that in a type-00 lattice the inequalities a * b < a
and a * b _< b also hold for all a and b.

Now we are ready to define fuzzy languages relative to the lattice-ordered struc-
tures of Definition 2.1.

D e f i n i t i o n 2.4. L e t / : be a type-00 lattice and let E be an alphabet. A/ : - fuzzy
language over E is a / : - fuzzy subset of E*, i.e., it is a triple (P,, #Lo, Lo) where #Lo is
a function #Lo : E* --+ /:, the degree of membership function, and Lo is the support
of #Lo; i.e., Lo = {w e E*] #Lo(W) > 0}. Very often we will write Lo rather than

Lo).
Henceforth, w h e n / : is clear from the context, we use "fuzzy language" instead of

"/:-fuzzy language". Usually we write #(x; Lo) instead of #L0 (x) in order to reduce
the number of subscript levels.

For each fuzzy language Lo over E, the crisp language c(Lo) induced by Lo - -a l so
known as the crisp part of Lo - - is the subset of E* defined by c(Lo) = {w C E* I
#(w; Lo) = 1}. Each ordinary (non-fuzzy) language Lo coincides with its crisp part
c(Lo). Therefore an ordinary language will also be called a crisp language.

In dealing with fuzzy languages (F,,#Lo,Lo) the degree of membership function
#Lo is actually the principal concept, whereas the languages L0, c(Lo) and many
other crisp languages like

L>~ = {w e E* l t t (w;Lo) >_ a} ,

n>~ = {w e E * l # (w ; L o) > a} ,

L<~ = {w e E * l # (w ; L o) _< a} ,

n<~ = {w �9 E * l # (w ;no) < a} ,

L~<;<b = {w �9 E * l a < #(w;Lo) < b} ,

where a and b are elements i n / : , are derived notions.

E x a m p l e 2.5. (1) L e t / : be the type-00 lattice of Example 2.2.(1). Consider the
/:-fuzzy language Lo over E = {a, b} defined by

) #(ambn; Lo) = m~x{~,~,~} {Y,m,n} if rn, n >__ O.

In defining the degree of membership function is such a concrete case, we always
tacitly assume that #(:e;Lo) = (0,0) in all other, unmentioned cases for x in E*.
Consequently, we have, e.g., #(baa2; Lo) -- #(a2baS; Lo) = #(ab3a2b4; Lo) = (0, 0), etc.

Then the crisp part of Lo equals c(Lo) = {a'% m I m >_ 1}; for each x in c(Lo), we
have #(x; Lo) = (1, 1). Note that for each m _> 1, #(am; Lo) = (1, 0) and ~(b'~; L0) =
(0,1), whereas for the empty word ~, we have #(I ; Lo) = (0, 0).

54

(2) Now we take for s the type-10 lattice of Example 2.2.(3). Let L be the fuzzy
language over {a, b} defined by

(w ; L) = O i f l w l # 2 k f ~

(w ; L) = 2 -#b(~~ if I T] = 2 k f o r s o m e k > 0 .

As usual, #~(w) denotes the number of times that the symbol c~ occurs in the
word w. Then c(L) = {a 2~ I k > 0}.

Throughout this paper we will restrict ourselves to the computable or even to the
rational elements in [0, 1]. For an account on the impact of computability constraints
in fuzzy formal languages we refer the reader to [8].

Starting from simple fuzzy languages we can define more complicated ones by
means of operations on fuzzy languages. First, we consider the operations union,
intersection and concatenation for fuzzy languages; they have been defined originally
in [17] for the type-l l lattice [0, 1]; cf. Example 2.2(4). In [4] we remarked that
a generalization to the type-10 lattice of Example 2.2(3) is possible. However, it is
straightforward to define these operations for arbitrary type-00 lattices; cf. [5] from
which we cite the following definitions.

Let (F,1, #L1, L1) and (E2, #L2, L2) be fuzzy languages, then the union of the fuzzy
languages L1 and L2, denoted by (El U E2, #L1uL2, L1 U L2) or abbreviated by L1 U L2,
is defined by

#(x; nl U L~) = #(x; L1) V #(x; L2) ,

for all x in (El U E2)*. And for the intersection of fuzzy languages La and L2, denoted
by (El • ~2,[-tLanL2, L1 [~ L2) or L1 ["1L~ for short, the equality

//.(x; 51 ~ L2) = #(x; nl) A/.t(x; L2),

holds for all x in (El A E2)*. Finally, for the concatenation of fuzzy languages L1 and
L2, denoted by (El U E2, #LaL2, L1L2) or abbreviated to LIL2, we have

#(x; LIL2) = V{#(Y; L1) * #(z; L~) I x = yz)

for all x in (El U E2)*.

E x a m p l e 2.6. Let P(X) denote the power set of the set X. Then 7)(E *) is
the collection of all crisp languages over the alphabet E. Let PI(E*) be the class of
all fuzzy languages over E. Clearly, we have P(E*) = {c(L) I L E p~(r~*)}. And
(7~f(E*), N, U, | E*,-) --where N, U and �9 denote the operations union, intersection
and concatenation for fuzzy languages, respectively-- is not an example of a type-00
lattice, since (7~1, .) is not a commutative semigroup. In case E contains a single
letter only, (7)], .) is a commutative semigroup and (7~I(E*), f'l, U, Q, E*, .) is a type-
00 lattice. The same remarks apply to the structure (7~(E*), A, U, Q, E*, .) of crisp
languages.

Once we have defined the operations of union and concatenation it is straightfor-
ward to define the operations of Kleene + and Klcene * for a fuzzy language L; viz.
by

L + = L U L L U L L L U [J{L i t i > l) , and

L* = {A} U L U LL U LLL U ~ { Li I i > O) ,

respectively, where L ~ = {A}, and L =+1 = L'% with n > 0. In defining L* we demand
that #(A; L*) = 1. Consequently, L* = L + U {A) where the latter set in this union is
a crisp set.

55

Apart from these simple operations we need some other well-known ones, like
homomorphisms and substitutions. They can be extended to fuzzy languages as well
by means of the concept of fuzzy function; cf. [5] for the original definitions.

A fuzzy relation R between crisp sets X and Y is a fuzzy subset of X • Y. If
R C X • Y and S C Y • Z are fuzzy relations, then their composition RoS is defined
by

z); noS) = y); R) . z); s) I y e v} . (1)

A fuzzy function f : X ~ Y in its turn, is a fuzzy relation f C X • Y, satisfying
the condition that for all x in X: if #((x,y);f) > 0 and #((x,z);f) > 0 hold, then
y = z and hence #((x, y); f) = tt((x, z); f) . For fuzzy functions (1) holds as well, but
we write the composition of two functions f : X ~ Y and g : Y ~ Z as gof : X --~ Z
rather than as fog.

As mentioned before, "P(X) denotes the power set of the set X. In the sequel we
need functions f : V* ~ 7~(Y *) that will be extended to f : 7)(V *) ~ 7)(V *) by
f(L) = (_J{f(x)] x C L} and for each subset n of Y*,

#(y; f(L)) = V { # (x ; L) , #((x, y); f)] x e V*}. (2)

Consequently, by (1) and (2) iterating a single fuzzy function f , yielding functions
like fof, fofof, and so on, are now defined. Clearly, each of these functions f('~) is of
type f(n) : 7)(V,) ~ 7~(V.). Of course, we can iterated a finite set of such functions
{ f l , . - - , f n } in the very same way.

3. Families of Fuzzy Languages
This section is devoted to some families of simple fuzzy languages, their crisp

counterparts, and a few operators that transform families of fuzzy languages into
other families. The next few definitions are simple generalizations based on well-
known concepts for families of crisp languages; cf. [5].

Throughout this paper E~ denotes a countably infinite set of symbols. All fami-
lies of languages that we will consider in the sequel only use symbols from this set.
Henceforth, /~ is a type-00 lattice, and "fuzzy" means "L-fuzzy" actually.

D e f i n i t i o n 3.1. A family of fuzzy languages K is a set of fuzzy languages
(EL,#L,L) such that each E L is a finite subset of E~. As usual, we assume that
for each fuzzy language (EL, #L, L) in the family K, the alphabet EL is minimal with
respect to #L, i.e., a symbol a belongs to EL if and only if there exists a word w in
which a occurs and for which #L(W) > 0 or, equivalently, for which w C L holds.

A family K of fuzzy languages is called nontriviaI if K contains a language
(EL, #L, L) with n N E + • | i.e., (EL, #L, L) satisfies #(x; L) > 0 for some x �9 E +.

For each family K of fuzzy languages, the crisp part of K , denoted by c(K), is
defined by c(K) = {c(L) I L �9 K}.

We already remarked that we write L rather than (EL, #r , L) for members of a
family of fuzzy languages. And we also assume that each family of fuzzy languages,
tha t we will use in this paper, is closed under isomorphism ("renaming of symbols"),
i.e., for each family K we assume that for each fuzzy language L in K over some
a lphabe t E L and for each bijective non-fuzzy mapping i : ~-~L -"4 Y]L - - ex tended to

56

words and to languages in the usual way-- we have that the language i(L) also belongs
to K. Consequently, we have the equality #(x; L) = #(i(x); i(L)) for all x in E~.

We will encounter a few simple, nontrivial families of fuzzy languages in the sequel:
they are the family F I N / o f finite fuzzy languages

FIN l = {(EL, #L, L) I EL C E~, L is finite},

the family ONE] of singleton fuzzy languages

ONEs = {(EL, #L, L) I EL C E~, L is a singleton},

the family ALPHA] of fuzzy alphabets

ALPHA] = {(EL, #L, L) I EL C E~, L = EL} ,

and the family SYMBOL] of singleton fuzzy alphabets

SYMBOL/= {(EL,#L,L) I EL C E~, L = EL, L is a singleton } .

The crisp counterparts of these language families are denoted by FIN, ONE,
ALPHA, and SYMBOL, respectively. Clearly, the equality c(FINs) = FIN holds,
as well as similar statements for the other families of languages.

Another important role will be played by the family REGs of regular fuzzy lan-
guages, which is defined in a way very similar to its crisp counterpart REG.

Def ini t ion 3.2. Let E be an alphabet. The regular fuzzy languages over E are
defined as follows:
(1) The fuzzy subsets Q, {~}, and {a} (for each ~r in E) of E*, are regular fuzzy
languages over E.
(2) If R1 and R2 are regular fuzzy languages over E, then so are R1 U R2, RIR2, and

(3) A fuzzy subset R of E* is regular fuzzy language over E if and only if R can
be obtained from the basic elements in (1) by a finite number of applications of the
operations in (2).

The family of regular fuzzy languages us denoted by REG S.

In the remainder of this paper we frequently need the concept of fuzzy substitution.
It is defined in a way very similar to the notion of substitution for crisp languages; cf.
[5], [6].

Def ini t ion 3.3. Let K be a family of fuzzy languages and let V be an alphabet.
A mapping T : V --* K is called a fuzzy K-substitution T on V; it is extended to words
over V by T(~) = {~} with #(~; T()~)) = 1, and T (a l . . . an) = T(a~). . . T(a~) where
ai E V (1 < i < n), and to languages L over Y by r(L) = U{r(w) I w E L}. If
for each a E V, r (a) C V*, then r : V --+ K is called a fuzzy K-substitution over V.
If K equals FIN/ or REGs, r is called a fuzzy finite or a fuzzy regular substitution,
respectively.

Given families K and K ' of fuzzy languages, let Sfib(K, K') = {r(L) I L E K;
~- is a fuzzy K~-substitution}. A family K is closed under fuzzy K~-substitution if
Sfib(K, K ~) _C K, and K is closed under fuzzy substitution, if K is closed under fuzzy
K-substitution.

When we take K and K ~ equal to families of crisp languages we obtain the well-
known definition of (ordinary, non-fuzzy) substitution. Therefore a ONE-substitution
is just a homomorphism and an isomorphism ("renaming of symbols") is a one-to-
one SYMBOL-substitution. And a fuzzy ONEs-substitution may be called a fuzzy
homomorphism.

57

Definit ion 3.4. A fuzzy prequasoid K is a nontrivial family of fuzzy languages
that is closed under fuzzy finite substitution (i.e., Sflb(K, FINf) C K) and under
intersection with regular fuzzy languages. A fuzzy quasoid is a fuzzy prequasoid that
contains an infinite fuzzy language.

It is a straightforward exercise to show that each fuzzy [pre]quasoid includes the
smallest fuzzy [pre]quasoid REGf [FIN f, respectively], whereas FIN s is the only fuzzy
prequasoid that is not a fuzzy quasoid; cf. [6].

Let II](K) denote the smallest fuzzy prequasoid that includes the family K of fuzzy
languages. Similarly, let Of(K) lAy(K), Of(K), respectively] be the smallest family
of fuzzy languages that includes K and is closed under fuzzy finite substitutions [in-
tersection with regular fuzzy languages, fuzzy homomorphisms, respectively]. Then,
obviously, for each family K of fuzzy languages, we have g f (K) = {~S, AI, OS}*(K)
or even IIs(K) = {q~s, As}*(K). But instead of this infinite set of strings over
{r AS, Of} a single string suffices; viz.

Propos i t ion 3.5. [6] For each family K of fuzzy languages, Hf(K) =
@]Afr

Definit ion 3.6. A full Abstract Family of Fuzzy Languages or full AFFL is a
nontrivial family of fuzzy languages closed under union, concatenation, Kleene , ,
(possibly erasing) fuzzy homomorphism, inverse fuzzy homomorphism, and intersec-
tion with fuzzy regular languages. A full substitution-closed AFFL is a full AFFL
closed under fuzzy substitution.

In many situations the following characterization of full AFFL happens to be more
useful than the original definition.

Propos i t ion 3.7. [6] A family K of fuzzy languages is a full AFFL if and only
if K is a fuzzy prequasoid closed under fuzzy regular substitution (i.e., Sfib(K, REG])
C K), and under substitution in the regular fuzzy languages (i.e., Sfib(REG], K) C_
K).

Closely related to regular fuzzy languages is a kind of fuzzy finite automaton. The
next definition and equivalence result is useful, and should not come as a surprise. A
proof of this characterization can be found in [6].

Definit ion 3.8. A nondeterministic fuzzy finite automaton or NFFA is a 5-tuple
M = (Q, E, 5, q0, F) where Q is a finite fuzzy set of states, E is an alphabet, q0 is an
element of Q with #(q0; Q) > 0, F is a crisp subset of the crisp set {q] #(q; Q) > 0},
and 5 is a fuzzy function of type 8 : Q • (E U {~} ~ ~of(Q). Note that M may have
.~-moves.

The fuzzy function 5 is extended to 5' : Q • E* ~ ~I(Q) by 5'(q,)t) = 5(q,)t) and
5'(q, aw) = U{5'(q',w) [q ' e 5(q,~r)} for all q in Q.

The language L(M) accepted by an NFFA M is defined by #(x;L(M)) =
V{#(q; 5'(qo, x))) [q e F}.

Propos i t ion 3.9. A fuzzy language L is regular if and only if L is accepted by a
nondeterministic fuzzy finite automaton.

58

4. Control led Fuzzy Iterat ion Grammars

The notion of fuzzy K-iteration grammar is a straightforward modification of
the definition of (ordinary) K-iteration grammar: we just replace the ordinary K-
substitutions by fuzzy K-substitutions; cf. [1].

Defini t ion 4.1. Let K be a family of fuzzy languages. A fuzzy K-iteration
grammar G is a four-tuple G = (V, E, U, S) where
�9 V is an alphabet (the alphabet of G);
�9 E is an alphabet with E C V (the terminal alphabet of G);
�9 S is a symbol in V (the initial symbol of G);
�9 U is a finite set of fuzzy K-substitutions over V.

The fuzzy language L(G) generated by G is defined by

L(G)=U*(S)NE*=U{Tp(. . .(TI(S)). . .)] P>-O; ~-~eU, l < i < p } .

The family of fuzzy languages generated by fuzzy K-iteration grammars is denoted
by H/(K). For each m ~ 1, H/,,~(K) is the family of fuzzy languages generated by
fuzzy K-iteration grammars that contain at most m fuzzy K-substitutions in U.

Defini t ion 4.2. Let F be a family of crisp languages and let K be a family of fuzzy
languages. A F-controlled fuzzy K-iteration grammar or fuzzy (F, K)-iteration gram-
mar is a pair (G, M) that consists of a fuzzy K-iteration grammar G = (V, E, U, S)
and a control language M, i.e., M is a crisp language over the alphabet U. The fuzzy
language L(G, M) generated by (G, M) is defined by

L(G,M)=M(S)NE*=[_J{Tp(. . . (rl(S)) . . .)I P->0; r i e U , T1 . . .~pEM}.

The family of fuzzy languages generated by fuzzy (F, K)-iteration grammars is
denoted by HI(F , K). And H/,~(F, K) is the family of fuzzy languages generated by
fuzzy (F, K)-iteration grammars that contain at most m fuzzy K-substitutions in U
(m> 1).

Note that in Definitions 4.1 and 4.2 L(G) and L(G, M), respectively, are defined
in terms of union, intersection, concatenation and iterated function application for
fuzzy sets; cf. Section 2 for the precise definitions of these fundamental concepts.

Clearly, we have that HI (K) = U{HLm(K) I m >_ 1} and HI(F,K) =
U{Hy,m(F, K) I m ~ 1) for each family K of fuzzy languages and each family F
of crisp languages.

Exa m ple 4.3. Let s be the type-10 lattice of Example 2.2.(3).
(1) Consider the fuzzy FIN/-iteration grammar G = (V, E, U, S) defined by E --- {a, b},
V = E U {S}, and U = {rl, T2} where 71 is an ordinary or crisp FIN-substitution with
TI(S) = {SS} and rl(a) = {a} (a E E), whereas ~-2 is a FINf-substitution with
T2(S) = {a,b}, T2(oQ ~-~ {O~}, #(b;r2(S)) = 0.5 and #(a; r2(S)) = #(a;r2(a)) = 1
(~ E z).

Then L(G) consists of all strings w with length 2 ~ for some n _> 0 and #(w; L(G)) =
2-#b(~); ~ (x) denotes the number of times that the symbol ~ occurs in the word x.
Clearly, c(L(G)) = {a 2~] n > 0} which is the set of strings that are obtained without
making any "developmental error"; cf. the discussion in Section 1. A developmental

59

error occurs when S changes into a b rather than into an a; the quality of the string
reduces to 50% of its previous value by each such erroneous replacement.
(2) Define the REG-controlled fuzzy FINf-iteration grammar or (REG,FINf)-
iteration grammar (G, M) where G is as in (1) and M = {r~k+lT2 I k > 0}. Now
L(G, M) equals the set of all strings w with length 2 ~ for some odd n > 1 and still we
have #(w; L(G, M)) = 2 -#b(~). Remark that c(L(G, M)) = {a 2" I n > O, n is odd }.
(3) We modify (G, M) of (2) to a REG-controlled fuzzy REGf-iteration grammar or
(REG, REGf)-iteration grammar (G1, M) by redefining T2(S) to a REG/-substitution
with T2(S) = {a} U {b k I k k 1}, r2(a) = {a} for each a in E, #(bk;r2(S)) = 2 -k
for each k _> 1 and #(a;T~(S)) = #(a;r2(a)) = 1 (a �9 E). Then for all strings x
over {a, b}, we have/~(z; L(G1, M)) > g(z; L(G, M)), L(G, M) is a proper subset of
L(G~, M), but c(L(G1, M)) = c(L(G, M)).

Since in Example 4.3 K equals FINf in both (1) and (2), a may be called a fuzzy
ETOL-system and (G, M) a regularly controlled fuzzy ETOL-system.

E x a m p l e 4.4. By taking concrete values for the parameter K we obtain fuzzy
analogues for some families of (ordinary or crisp) Lindenmayer languages; viz.

Hf(ONEI) = EDTOLf, Hf,I(ONEf) = EDOLf,
Hf(FINf) = ETOLf, Hf,~(FIN/) = EOL 1.

Readers unfamiliar with L-systems are referred to [21] for the meaning of these
abbreviations.

5. Elementary Properties
In this section we establish some basic properties of F-controlled fuzzy K-iteration

grammars and their languages that already hold under very mild restrictions on the
parameters F and K. These results turn out to be very useful in proving more
complicated and more interesting propositions to which the following two sections
are devoted.

First we show that regular control does not extend the generating power of fuzzy
K-iteration grammars; cf. Theorem 2.1 in [1].

T h e o r e m 5.1. For each family K of fuzzy languages, Hf(REG, K) -- HI(K)
provided K D ONE.

Proof. Since U * is regular for each alphabet U, the inclusion Hf(REG, It') _D
Hf(K) is obvious.

Conversely, let (G, M) -- (V, E, U, S, M) be an arbitrary fuzzy (REG, K)-
iteration grammar where M is accepted by a complete deterministic finite automaton
(Q,U,(~,q0, QF) with finite set of states Q, input alphabet U, transition function

: Q • U --+ Q, initial state q0, and set of final states QF.
We define a new initial symbol So, a set of new nonterminal symbols Nz = (A~ I

a E ~}, and a new alphabet V0 = Q u V u (So, F} U Nz. Define an isomorphism
r : V ~ (V - E) UNr. b y e (a) = Aa (a e 2) and r = A (A �9 V - E) . The
isomorphism r is extended to words and to languages in the usual way. Remember
that we assumed that each family of (fuzzy) languages is closed under isomorphism.

Define the fuzzy K-iteration grammar Go = (V0, E, U0, So) with U0 = {r ' I v E
U} t.) {To}. So for each fuzzy K-substitution ~" in U there is corresponding fuzzy
K-substitution T ~ in U0, defined by

60

~'(So) = {q0s},
~,(.) = r

T(A~) = r
~'(q) = {q'},
~'(~) = {F} ,

#(qoS; "r'(So)) = 1,

It(q'; T'(q)) = 1,

It(F; ~-'(a)) = 1,

for each a in V - E,

for each A~ in N~ (a in E),

iff 5(q, T) = q' (q in Q),

for each a in E U {F}.

The additional fuzzy K-subst i tut ion TO is defined as follows.

~0(q) = {~},
~o(q) = {F},
T0(A~) = {a},

*0(~) = {F} ,

It(A; vo(q)) = 1,

It(F; vo(q)) = 1,
It(a; ~o(Ao)) = 1,
It(F; to(a)) = 1,

for each q in QF,

for each q in Q - QF,

for each As in Nz (a in E),

for each a in V U {So, F}.

This construction implies that for each string x in E*, we have #(x; L(Go)) =
It(x; L(G, M)), and hence H / (R E G , K) C_ HI(K). []

There exists a sort of reverse of Theorem 5.1 in the sense that all "productive"
sequences of substitutions in a fuzzy Kdtera t ion grammar G --i .e. , those sequences
that yield at least one terminal string x with #(x; L(G)) > 0 - - form a regular language
over U; cf. Definition 5.2, Theorem 5.3 and [24].

D e f i n i t i o n 5.2. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar. Then the
Szilard language of G - -denoted by Sz(G)-- is

Sz(a) = {~ ~ u*13~ e z* : I t(x;~(s)) > 0}.

The following theorem is the straightforward fuzzy counterpart of one of the main
results in [24].

T h e o r e m 5.3. If G is a fuzzy K-iteration grammar, then its Szilard language
Sz(G) is a regular language.

Proof. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar. For each word x, we
denote the set of all symbols that occur in x by ~(x) ; formally, ~ (x) = A{E] E C
2~, x E E*}.

Consider the right-linear g rammar Go = (Vo, U, P0, So) where Vo - U -- {X] X C_
V}, So -- {S}, and P0 is defined by

P o = { X - - + T Y I 3 x , y e V * : O (x) = X , � 9 I t (y ;T(X))>0} U

o { x - + A [x _ c ~ } .

Clearly, L(Go) is regular, and it is a routine mat ter to verify that So ::~* w with Go
w e U* if and only if 3x e E* : It(x; w(S)) > O. []

Next we show that the number of fuzzy K-substi tut ions in a F-controlled K-
iteration g rammar can be reduced to two in case the parameters F and K satisfy
some very simple conditions as in the corresponding crisp case; cf. [1].

T h e o r e m 5.4. Let F be a family of crisp languages closed under A-free homo-
morphism, and let K be a family of fuzzy languages with K D_ SYMBOL. Then
Hs,2(r, K) = Hs,~(r, K) = Hs(r, K) for each m > 2.

Proof. Of course, H/,2(P, K) C HI,,~(F , K) C H/(F , K) holds for each m _> 2. So
it remains to prove that HI(F , K) C_ H],2(F, K).

61

Let (G, M) = (V, E, U, S, M) be a fuzzy (F, K)-iteration grammar with m (m > 3)
fuzzy K-substitutions in U --say, U = {T~,..., T,~}-- and let for each i (1 < i < m) r
be the isomorphism defined by r = a~ (a in V; each a~ is a new, unique symbol).

Construct the fuzzy (r, K)-iteration grammar (Go, M0) = (V0, E, U0, S, M0) with
�9 V 0 = V U { F } U { r l a � 9 l _ < i _ < m } ,
�9 U0 = {al,~r2} where the fuzzy K-substitutions al and or2 are defined respectively

O'I(OZ) : {~1} , #(~1; O'l(OZ)) : 1, O/ in V,

O'l(O~i) = {O'i.t_1} , ~(O@t_1; O'l(Oli)) = 1, C~ in V and 1 < i < m,

r = { F } , #(F;cr~(B)) = 1, fl in { F } V { r I a �9 Y } ,

~r2(ai) = r i (a) , a in V and 1 < i < m,

~ (~) = { F } , ~ (F ; ~ (~)) = l , ~ in v u { F) .

by

�9 Mo = h(M) where the homomorphism h : U* --+ U~ is defined by h(~'i) = ~r~a2
(1<_i_<.~)

An application of r~ of (G, M) is simulated by i times applying or1 (by which
each a is changed into ai) and a single application of ~r2 which carries out the actual
simulation of wl and removes all subscripts from the symbols.

It is left to the reader to show that #(x; L(G0, M0)) = #(x; L(G, M)) for each x
over S. Hence HI(r,K) c_ Hj,~(r,K). []

Obviously, we can combine Theorems 5.1 and 5,4 to establish a similar result for
the uncontrolled case. However, we can achieve this under weaker assumptions on K
by slightly modifying the proof of Theorem 5.4.

Coro l l a ry 5.5. I l K is a family of fuzzy languages with K D_ SYMBOL, then
HI,~(K) = HS,~(K) = Hf (K) for each ,~ > 2.

Proof. Take M and M0 in the proof of Theorem 5.4 equal to M = U* and
M0 = U~ = {al, a2}*, respectively. Then for each x in E*, #(x; L(a0)) = ~(x; L(G))
holds and, consequently, HI(K) C HI.r~(K) C Hi.2(h"). The converse inclusions are
trivial. []

We conclude this section with a few useful inclusion properties for which we need
some additional terminology.

Def ini t ion 5.6. A family r of crisp languages is closed under left marking [right
marking] if for each language L in r with L C_ E* for some E, and for each symbol c
not in E, the language {c}L [L{c}, respectively] belongs to F. And I" is closed under
full marking if r is closed under both left and right marking. Frequently, we write cL
and Lc rather than {c}L and L{c}, respectively.

P r o p o s i t i o n 5.7. (1) Let P be a family of crisp languages closed under right
marking, and let K be a family of fuzzy languages with K D_ ONE. Then the inclusions
r c_ H f (r , K) and K C H I (F , K) hold.
(2) Let F be a family of crisp languages closed under (i) left or right marking, (ii)
union or concatenation, and (iii) Kleene star. If K is a family of fuzzy languages with
K __D SYMBOL, then HI(K) C HI(F,K).

Proof. (1) Consider an arbitrary crisp language Lo over U0 in the family F. Define
the fuzzy (P, g)-i terat ion grammar (G, M) = (V, Uo, U, S, M) with U = Uo t_J {er},
M = Loot, and U consists of fuzzy K-substitutions defined by

62

T(s) = {Ts) , e u0,

= {A},

= { .) , e u0.

All degrees of membership are equal to 1 (or to 0 in all other, unmentioned cases).
So (G, M) is actually a crisp (r, Z)-iteration grammar with L(G, M) = Lo. Conse-
quently, we have F C HI(F , K).

Similarly, let L0 be a fuzzy language over E and let M0 be an arbitrary nonempty
crisp language over U0. We define the fuzzy (F, K)-iteration grammar (G, M) =
(V, E, U, S, M) where V = E U {S}, U = U0 U {a} (c~ ~ U0), M = M0a, and the fuzzy
K-substitutions are defined by

r(a) = {a}, ~(a; r(a)) = 1, a e V, ~ e U,

a(S) = no, #(x; a(S)) = #(x; Lo), for all x over E,

Then #(x; L(G, M)) = #(x; L0) for all x over E, and thus K _C H/(F, g) .
(2) Let G -= (V, ~, U, S) be an arbitrary fuzzy K-iteration grammar with U =

(T1,...,~'~} and let M0 be a nonempty crisp language over U0 from F such that
U N U0 = | If the family F is closed under union [concatenation], then the crisp
language M = (MOT: O Mo~'2 U. . . U M07,)* [or M = ((Mor:)*(Mo~'2)*... (MoTh)*)*,
respectively] is also in F.

Finally, we define the fuzzy (F, /(-)-iteration grammar (G:, M) by (G1, M) =
(V, E, U~, S, M) with U: = UUUo and for each T in Uo and for each a in V, T(a) = {a}
with #(a; r(a)) = 1. Then #(x; L(G:, M)) --- #(x; L(G)) for each x over ~ and, con-
sequently, HI(K) C HI(F , K). []

6. T h e M a i n R e s u l t s

In Section 1 we argued that in order to model developmental errors we should
allow a countable rather than a finite number of productions in each table (or substi-
tution). This resulted in the notion of F-controlled fuzzy K-iteration grammar and
the corresponding language family HI(F , K).

In this section we address the question to which extend we can enlarge the family K
of fuzzy languages and still remain within the family HI(F, K). The answer (Theorem
6.1 and Corollaries 6.2, 6.3 and 6.4)) is rather surprising and implies that both families
HI(r, K) and HI(K) possess very strong closure properties; this latter subject will
be discussed in Section 7.

For families F1 and F2 of crisp languages, Sfib(rl,F~) denotes the family of
crisp languages that results from substituting F2-1anguages into Fl-languages, i.e.,
Sfib(F1, F~) = {T(L) [L E 1~1, T is a F2-substitution}. A family F is closed under sub-
stitution if Sfib(F, F) C_ r. Of course, these concepts are well-known special instances
of Definition 3.3.

T he o r e m 6.1. Let rl and F2 be families of crisp languages and let F2 be closed
under full marking, union or concatenation, and Kleene *. I l K is a family of fuzzy
languages with K D ALPHA, then H/(F:, HI(F2, K)) c Hs(S~b(r:, r~), K).

63

Proof. Consider an arbitrary Fl-controlled fuzzy Hl(P2,K)-iteration grammar
(G, M) --- (V, E, U, S, M), where each ~- in U is a fuzzy Hi(F2, K)-substitution over V.
For each such fuzzy Hf (F2, K)-substitution ~- in U and each symbol a in V, we assume
that #(x;T(a)) = # (x ;L(G~,M.~)) holds for each x over V. Here (G.~,M.~) =
(V~, V, U.~, S.~, M.~) (v E U and a E V) are fuzzy (F2, K)-iteration grammars that
have mutually disjoint nonterminal alphabets V.~ - V as well as mutually disjoint
sets of fuzzy K-substitution names U.~.

We also assume that the fuzzy (P2, K)-iteration grammars (G.~, M.~) meet the
following conditions: (i) for each a in V and each g in U~: e(a) = {a} with
#(a; ~r(a)) = 1, and (ii) if an intermediate string w in a derivation due to (G.~, M ~)
contains a symbol of V, then for each a in U~: e(w) = {~o}, while for all u over
U~ and each w over V.~, we have #(w;au(w)) = #(w; u(w)). Otherwise, we intro-
duce for each a in V a new nonterminal symbol Aa and we replace each occurrence
of a in (G.~, M.~) by A~. Each fuzzy substitution is extended with a(/~) = {/3},
#(/~; e(fl)) = 1 with fl C V U {F0}, where F0 is a new rejection symbol. Finally, we
add a new fuzzy substitution ~ defined by

~(A~) = {a}, #(a; ~(A~)) = 1, for each a in V,

~(a) = {a), #(a; ~(a)) = 1, for each a in V U {Fo},

T(/~) = {F0}, #(F0; T(3)) = 1, for each/~ in V~ - V,

and we replace the control language M.~ by M . ~ .
In order to show that the fuzzy language L(G,M) belongs to the fam-

ily Hf(Sfib(F1,F2),K), we construct a fuzzy (Sfib(F1,F2),K)-iteration grammar
(Go, Mo) = (Vo, E, Uo, S, Mo) such that #(x; L(Go, Mo)) = #(x; L(G, M)) holds for
each x in E*. The definition of (Go, Mo) is as follows.
�9 Vo = U~,~(V~ U {S~}) W {F} where F is a rejection symbol and each S'~ is
a new nonterminal symbol associated with S~. Remark that S E V, and since
V G V~ C Vo, we have S e Vo.
�9 Go = {r v { ~ I . ~ u} u {g'.~ I g . ~ e u.o}.
�9 The fuzzy K-substitutions in Uo are defined in the following way:
(a) For the initial fuzzy K-substitution go we have with degree of membership equal
to 1 in all the following instances:

~o(a) = {S'~ I~ �9 g}, a �9 V,

~o(~) = {~}, ~ ~ V.

(b) For each r in U the fuzzy K-substitution g~ is defined by

o~(s'.o) : {s '~, s.~}, ~ e v ,

g.(~) = {~}, ~ �9 v ,
g~(~) = {F}, ~ ~ v u {s '~} ,

where all degrees of membership are again equal to 1.
(c) For each fuzzy K-substitution a~k from Ur~ we define a corresponding fuzzy
K-substitution a ~ k by

g ' ~ (~) = g~.~(~), ~ �9 v ~ ,
I I ! I l g~k(S~) = {S~}, #(S~; g,~k(S,~)) = 1, fl E V,

o"~_=k(fl) = {F}, #(F; g~,k(fl))--- 1, otherwise.

64

�9 The control language M0 is defined by M0 = 7(M) where 7 is the F2-substitution
defined by

7(r) = tl//,, z C U,

where the languages M, with v C U satisfy --assuming V = { a l , . . . , a n } - -

M~ = ~ro(a~M~ 1 U . . . U a~M~.)*, if F2 is closed under union, and

M, = ~r0(~,M,~ 1 . . . ~r,M,~)*, if F2 is closed under concatenation.

Clearly, each language M, (r C U) belongs to the family F2.
Each step in any derivation according to the Fl-controlled fuzzy (F2, K)-iteration

grammar (G, M) is simulated by a finite number of derivational steps of the fuzzy
(Sab(gl, r2),/()-iteration grammar (Go, M0) in the following way.

For each intermediate string in a derivation of (G, M) there is an identical string
over V in the simulation by (Go, M0). However, going from such a string to the
next one over V --i.e., the actual simulation of the application of a fuzzy (F2, K)-
substitution r from U in a (G, M)-derivation-- takes a finite number of steps con-
trolled by the language M,. So the simulation of a single step according to ~- by M,
proceeds as follows. First, all symbols a from V are converted into S ~ by a single
application of Cro. Next an application of c% checks whether all first indices of these
primed initial symbols are indeed equal to r, otherwise at least one occurrence of
the rejection symbol F is introduced. Simultaneously, some of the occurrences of the
primed initial symbols S~ may be changed into their unprimed counterparts S,~.
And symbols from Up,~ v;~ - v are rewritten into the rejection symbol F. Obvi-
ously, the unprimed symbols S,~ start an actual derivation according to (G,~, M,~),
i.e., according to the fuzzy K-substitutions ~ k due to the control language M,~.
Clearly, the definitions of M~ and of cr, allow different occurrences of S ~ be rewritten
under different control words from M,~. Finally, after the simulation of a r-step only
occurrences of symbols from V will survive the simulation of a subsequent r~-step and
contribute to the derivation of a possible terminal substring in the end.

By a long, straightforward correctness proof --which we leave to the in-
terested reader-- one can establish that for each string x over E, we have
#(x; L(Go, 3//o)) = #(x; L(G, M)), and, consequently, we have established the inclu-
sion -~rf(rl, Hs(r2, K)) ___ Hf(Sfib(F1, F2), K). []

Coro l la ry 6.2. (1) Let F be a family of crisp languages closed under full marking
and under substitution that satisfies F __D REG. I f K is a family of fuzzy languages
with t (2 A•PI4A u ONE, then Hs(r, H~(r, K)) = H~(r, K).
(2) Let F be a family of crisp languages that is closed under full marking, union,
concatenation, and Klcene *. I l K is a family of fuzzy languages with K D_ ALPHAU
ONE, then ~s(Hs(F ,K)) = HS(F,K).

Proof. (1) follows from Theorem 6.1 in which we take F1 = F2 = F, Proposition
5.7.(1), and the fact that a family of crisp languages is closed under union, concate-
nation, and Kleene * if and only if it is closed under substitution into the regular
languages (Proposition 3.3.1 in [9]).

(2) is implied by (i) Theorem 6.1 (where we take F1 and F2 equal to REG and
F, respectively), (ii) Theorem 5.1, (iii) Proposition 3.3.1 in [9] (as in the proof of

65

6.2.(1)), and finally (iv) the inclusion Hf(r, K) C Hf(Hs(r , K)) due to Proposition
5.7(1). []

Coro l l a ry 6.3. If K is a family of fuzzy languages with K D ALPHA U ONE,
then HI(HI(K)) = Hf(K).

Proof. If we take F equal to REG, then the result follows from Theorem 5.1 and
Corollary 6.2.(2) immediately. []

C o r o l l a r y 6.4. ETOLf = Hf(ETOL]) = Hf(Hf(FIN])) = Hf(FINf) .

Proof. Example 4.4 and Corollary 6.3 with K equal to FINf. []
This latter corollary shows that, in order to stay within the framework of ETOLf-

languages (i.e., Hf(FINf)-languages; cf. Example 4.4.), we have to restrict the infinite
fuzzy sets T(a) consisting of developmental rules together with developmental errors
to ETOLf-languages as Hf(ETOLf) C ETOLf; cf. the discussion in Section 1. Of
course, a similar remark applies in the more general case (Corollary 6.3) but the ex-
tension from finite sets to countably infinite fuzzy sets is a more striking phenomenon.

7. C l o s u r e P r o p e r t i e s

We already remarked that Theorem 6.1 and its corollaries imply that the families
HI(F , K) and HI(K) of fuzzy languages possess very strong closure properties under
minor assumptions and the families I' and K. In this section we first consider some
simple closure properties (Lemmas 7.1 and 7.2) before we consider the more important
ones (Theorem 7.5) due to our results from Section 6.

L e m m a 7.1. Let K be a family of fuzzy languages with K D__ FINf, and let F
be a family of crisp languages closed under right marking. Then the families of fuzzy
languages Hf(K) and Hf(F, K) are closed under fuzzy finite substitution.

Proof. Let G = (V, E, U, S) he a fuzzy K-iteration grammar and let ~ : E --+ A* be
a fuzzy finite substitution. Without loss of generality we assume that the alphabets
E and A are disjunct.

Consider the fuzzy K-iteration grammar Go = (Vo, A, (/0, S) where V0 = V tl A U
{F}, U0 = {T ' IT �9 U} U {W} with

= �9

a ' (a) = { r} , #(F; W(c~)) = 1, a ~ E,

and for each T in U we define

= e v ,

= i F } , , (F ; = 1, �9 Zx u i F } .

Then for each string x over A, we have #(x; (r(L(G))) = #(z; L(Go)).
In the F-controlled case we depart from (G, M) and we construct (Go, Mo) with

Go as above and Mo = p(M){a '} where c~ is the isomorphism that maps each T on
T t . []

L e m m a 7.2. Let K be a fuzzy prequasoid, and let F be a family of crisp languages
closed under full marking. Then the familes of fuzzy languages HI(K) and Hf(F, K)
are closed under intersection with regular fuzzy languages.

66

Proof. Let G = (V, E, U, S) be a fuzzy K-iteration grammar, and let R be a regular
fuzzy language accepted by a nondeterministic fuzzy finite automaton (Q, E, 5, q0, F);
cf. Proposition 3.9.

Consider the fuzzy K-iteration grammar Go = (Vo, E, Uo, So) where Vo = E U
{so, F } u {[q, ~, q'] I q, q' �9 Q, ~ �9 v } , Go = {~o, ~1} u (~' I ~ ~ u} , with

~r0(S0) = {[qo, S,q] l q �9 F}, q �9 F,
~0(~) = {~} , ~ �9 v0 - {So},
~1(~) = {~} , ~ �9 ~ u {So, F};

the degrees of membership are equal to 1 for all these instances. But for

~l([q,~,q']) = {~ I q' e 5(q,~)} u {F} , ~ c V, q ,q '~ Q,

we have #(~; ~l([q,a, q'])) = #(q'; 5(q, c~)) and #(F; al([q, c~, ql]) = 1.
For each T in U, we define the fuzzy substitution 7' over V0 by

~'([q, ~, q']) = {[q, ~1, q~][ql, ~ , q2].., f%-~, ~ , q'] I q l , . . . , qn-~ �9 Q;
~ 1 ~ . . . ~ �9 ~(~), ~ > 1} u E((~, ~, q, ql), ~ e V, q, q' �9 Q,

with E((r , c~, q, q') = if ~ �9 r (a) and q = q' t h e n {A} else {F}. For the degrees of
membership we have

#([q, ~ , , q l] . . . [q~-~, ~ , q']; ~'([q, ~, q'])) = # (~ , . . . ~ ; ~(~)), ~ > 1,
#(~; ~'([q, ~, q'])) = i f ~ �9 ~(~) and q = q' then #(A; T(c~)) else 0,
#(F; v'([q, ot, q'])) = 1.

Since K is a fuzzy prequasoid, it easy to show that each T ~ is a fuzzy K-substitution
over Vo. The proof that for each string x over E, #(x; L(Go)) = #(x; L(G) ;3 R) holds
is also left to the reader.

When G is provided with a crisp control language M from the family F, we con-
struct (Go, Mo) with M0 --- {Go}~(M){cr~}, where ~ is as in the proof of Lemma
7.1.

We now turn to more complicated closure properties for fuzzy languages.

Def in i t ion 7.3. A family K of fuzzy languages is dosed under iterated fuzzy
substitution if for each fuzzy language L in K over some alphabet V (L _C V*), and
each finite set U of fuzzy K-substitutions over V, the language U*(L) defined by

U*(L)=U{Tp(.. .(rl(L)). . .)] p_>0; r i e U , l < i < p }

belongs to K.
A hyper-algebraicaIly closed full Abstract Family of Fuzzy Languages, or full hyper-

AFFL for short, is a full AFFL closed under nested iterated fuzzy substitution.

For a fuzzy prequasoid closure under iterated fuzzy substitution implies closure
under many of the operations related to the notion of full AFFL; using Proposition
3.7, Definitions 7.3 and 3.6 it is straightforward to establish the following characteri-
zation.

P r o p o s i t i o n 7.4. A family K of fuzzy languages is a full hyper-AFFL if and only
i l K is a fuzzy prequasoid and HI(K) --- K.

67

Each full hyper-AFFL is a full super-APFL (i.e., a full AFFL closed under iterated
nested fuzzy substitution; a substitution T is nested if a E r(a) holds for each symbol
a.), and each full super AFFL is in its turn a full substitution-closed AFFL [5], but
none of the converse implications holds.

Now we are ready for the main results of this section.

T h e o r e m 7.5. I l K is a fuzzy prequasoid and if F is a family of crisp languages
closed under full marking, union, concatenation, and Kleene ,, then the family of
fuzzy languages H:(F, K) is a full hyper-AFFL.

Proof. By Lemmas 7.1 and 7.2 we obtain the fact that H:(F, K) is a fuzzy pre-
quasoid. Then by Proposition 7.4 and Corollary 6.2.(2) the result follows. []

T h e o r e m 7.6. (1) If K is a fuzzy prequasoid, then HI(K) is a full hyper-AFFL.
(2) For each arbitrary family K of fuzzy languages, H:II:(K) is the smallest full
hyper-AFFL that includes K.
(3) For each arbitrary family K of fuzzy languages, H]O:A:OI(K) is the smallest
full hyper-AFFL that includes K.

Proof. (1) The statement follows immediately from Laminas 7.1 and 7.2 together
with Corollary 6.3.

(2) Let ~:(K) be the smallest full hyper-AFFL that includes K. By the inclu-
sion g C ~: (K) and the monotonicity of both H: and H:, we haveH:H:(K) C_
H:II:~t:(K). According to Proposition 7.4 this yields H:II:(K) C 7"gy(K). Now
Theorem 7.6.(1) implies that H:II:(K) is a full hyper-AFFL that includes K. Hence
we obtain that 7~:(K) = H:II/(K).

(3) By Theorem 7.6.(2) and Proposition 3.5. []

By Proposition 7.4 we have that a family of fuzzy languages K is a full hyper-
AFFL if and only if YI:(K) = K and Hf(K) = K. Consequently, the smallest full
hyper-AFFa ~ f (I () , that includes a family g of fuzzy languages, equals ~f (K) =
U{w(K) I w e {II:,Hf}* } or, written equivalently, ~](K) = {Hf,H:}*(K). Ac-
cording Theorem 7.6.(2) this infinite set of strings over the alphabet {IIf, Hf} can be
reduced to the single string H:H/. Of course, a similar remark applies to Theorem
7.6.(3).

From the fact that FIN: is the smallest fuzzy prequasoid, Theorem 7.6.(1), Corol-
lary 6.4, Example 4.4, and the monotonicity of the operator H: we obtain

Coro l la ry 7.7. ETOL/ is the smallest full hyper-AFFL.

8. Concluding Remarks

In the previous sections we extended the concept of F-controlled K-iteration gram-
mar from [1] to its fuzzy analogue in order to model the phenomenon of "developmen-
tal error". Many of the results that we have established are straightforward generaliza-
tions of similar statements for the crisp case from [t], [24] once the language-theoretic
operations --like homomorphism, substitution and concatenation-- are extended in
the right way for fuzzy languages; cf. Section 2. On the other hand non-fuzzy versions
of Theorem 6.1 and Corollary 6.2.(1) are proper generalizations of the main result in
[1] which is more or less equivalent to the crisp counterpart of Corollary 6.2.(2).

68

Obviously, all our results apply to fuzzy ETOL languages as well; they are obtained
by taking the parameter family K of fuzzy languages equal to the family F I N / o f finite
fuzzy languages. The precise formulation of these statements for F-controlled ETOLy-
languages are left to the interested reader.

In the definition of fuzzy K-iteration grammar each element in U is an arbitrary
fuzzy K-substitution over V. Restricting each r in U to a nested fuzzy K-substitution
--i.e., #(a; ~-(a)) = 1 for each a E V - - results in the concept of fuzzy context-free
K-grammar; cf. [3], [4]. A further restriction to not-self-embedding nested fuzzy K-
substitutions yields the notion of fuzzy regular K-grammar; cf. [5]. Both types of
grammars have properties rather similar than those presented in this paper. Partic-
ularly with respect to closure properties there are many similarities and the question
arises whether a uniform approach as the one in [2] for crisp languages is also possible
for families of fuzzy languages. On the other hand there are some differences between
fuzzy regular or context-free K-grammars and fuzzy K-iteration grammars. E.g., for
fuzzy regular and fuzzy context-free K-grammars we can reduce the number of sub-
stitutions to 1 rather than to 2 (cf. Theorem 5.4), which implies that providing these
grammars with a control language is probably not very challenging.

Next we return to a few matters discussed in Section 1. First, we want to reconsider
the effect of developmental errors on the quality of the filament. In Section 1 we argued
that each developmental error should properly change this quality, and therefore the
underlying lattice-ordered structure/~ should possess an infinite number of elements.
Clearly, the real closed interval [0, 1] --even restricted to its computable or rational
elements; cf. [8]-- satisfies this condition, which is one reason for its popularity. But
other instances of/2 may be useful too. E.g. in case we want to count symbols,
i.e. to count cell states in filaments, the elements of E may be Parikh-vectors with
0 = [0, 0 , . . . , 0], and 1 = [oo, oo , . . . , oo] as smallest and largest element in E. Note
that s has countably infinite elements too in this example.

Two examples of biologically motivated Control languages have been mentioned in
Section 1: the sequence of days and nights, and the sequence of seasons. Both sets of
sequences are regular languages. So the obvious question is: are there any non-regular
events in biology/nature? Other sets of sequences --like the proper order of the days
in a week, of the months in a year- - are unsuitable candidates: apart from being
regular sets, they are also human artifacts rather than natural or biological events.

R e f e r e n c e s

1. Asveld, P.R.J.: Controlled iteration grammars and full hyper-AFL's, Inform.
Contr. 34 (1977) 248-269.

2. Asveld, P.R.J.: An algebraic approach to incomparable families of formal lan-
guages, pp. 455-475 in [22].

3. Asveld, P.R.J.: Towards robustness in parsing - - Fuzzifying context-free lan-
guage recognition, pp. 443-453 in: J. Dassow, G. Rozenberg & A. Salomaa
(eds.): Developments in Language Theory H - At the Crossroads of Mathemat-
ics, Computer Science and Biology (1996), World Scientific, Singapore.

4. Asveld, P.R.J.: A fuzzy approach to erroneous inputs in context-free language
recognition, pp. 14-25 in: Proc. 4th Internat. Workshop on Parsing Technolo-
gies (1995), Prague/Kaxlovy Vary, Czech Republic.

69

5. Asveld, P.R.J.: The non-self-embedding property for generalized fuzzy context-
free grammars, Memorandum Informatica 96-08 (1996), Dept. of Comp. Sci.,
Twente University of Technology, Enschede, the Netherlands. Presented at
8th Internat. Conf. on Automata and Formal Languages (1996), Salg6tarjs
Hungary.

6. Asveld, P.R.J.: A note on Full Abstract Families of Fuzzy Languages (Full
AFFL). In preparation.

7. Dassow, J. ~: P~un, G.: Regulated Rewriting in Formal Language Theory (1989),
Springer-Verlag, Berlin, etc.

8. Gerla, G.: Fuzzy grammars and recursively enumerable fuzzy languages, Inform.
Sci. 60 (1992) 137-143.

9. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Lan-
guages (1975), North-Holland, Amsterdam.

10. Ginsburg, S. ~ Rozenberg, G.: TOL schemes and control sets, Inform. Contr.
27 (1975) 109-12.5.

11. Goguen, J.A.: L-fuzzy sets, J. Math. Analysis Appl. 18 (1967) 145-174.

12. Harrison, M.A.: Introduction to Formal Language Theory (1978), Addison-
Wesley, Reading, Mass.

13. Herman, G.T. ~ Rozenberg, G.: Developmental Systems and Languages (1975),
North-Holland, Amsterdam.

14. Hopcroft, J.E. ~ Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation (1979), Addison-Wesley, Reading, Mass.

15. Lindenmayer, A.: Mathematical models for cellular interactions in development,
Parts I and II, J. Theor. Biology 18 (1968) 280-315.

16. Lindenmayer, A.: Developmental systems without cellular interaction, their lan-
guages and grammars, J. Theor. Biology 30 (1971) 455-484.

17. Lee, E.T. &: Zadeh, L.A.: Note on fuzzy languages, Inform. Sci. 1 (1969)
421-434.

18. Nielsen, M.: EOL systems with control devices, Acta Inform. 4 (1975) 373 386.

19. Prasad, N., Mahajan, M. & Krithivasan, K.: Fuzzy L-systems, Internat. J.
Comput. Math. 36 (1990) 139-161.

20. Rozenberg, G.: Extensions of tabled OL-systems and languages, Internat. J.
Comp. Inform. Sci. 2 (1973)311-336.

21. Rozenberg, G. ~ Salomaa, A.: The Mathematical Theory of L Systems (1980),
Academic Press, New York.

70

22. Rozenberg, G. & Salomaa, A. (eds.): Lindenmayer Systems -- Impacts on
Theoretical Computer Science, Computer Graphics, and Developmental Biology
(1992), Springer-Verlag, Berlin, etc.

23. Salomaa, A.: Formal Languages (1973), Academic Press, New York.

24. Wood, D.: A note on Lindenmayer systems, Szilard languages, spectra, and
equivalence, Internat. J. Comp. Inform. Sci. 4 (1975)53-62.

