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Abstract. The constrained resources of sensors restrict the design of a
key management scheme for wireless sensor networks (WSNs). In this
work, we first formalize the security model of ALwEN, which is a gossip-
based wireless medical sensor network (WMSN) for ambient assisted liv-
ing. Our security model considers the node capture, the gossip-based net-
work and the revocation problems, which should be valuable for ALwEN-
like applications. Based on Shamir’s secret sharing technique, we then
propose two key management schemes for ALwEN, namely the KALwWEN+
schemes, which are proven with the security properties defined in the se-
curity model. The KALWEN+ schemes not only fit ALWEN, but also can
be tailored to other scalable wireless sensor networks based on gossiping.
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1 Introduction

Following the improvement of wireless technologies and embedded systems, the
potential of wireless sensor networks (WSNs) for various applications has been
drawing a great deal of attention from the academia and the industry. For WSNs,
one of the promising applications is healthcare. A wireless medical sensor net-
work (WMSN, sometimes also called body sensor network) [19], which can be
developed from a WSN, is a developing technology for long term monitoring of
biological events or any abnormal condition of patients for realizing Ambient As-
sisted Living (AAL) [1]. In general, a WMSN is a moderate-scale wireless network
of low-cost sensors. The purpose of WMSN is to monitor the user’s physiological



parameters and the related information in environment, e.g., ECG, EMG, EEG,
SpOs and blood pressure. The collected data will be sent to doctors or nurses
for daily diagnosis. A typical scenario of WMSN is illustrated in Figure 1.
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Fig. 1. A Scenario of Wireless Medical Sensor Network.

In practice, sensors used in WMSNs also have limited computational abil-
ities and small memories, typically with a low-end CPU and RAM in KBytes
level. These factors are important not only in the implantable but also in the
external sensor settings because they determine how “hidden” and “pervasive”
the sensors are. A gossip protocol is a style of computer-to-computer commu-
nication protocol inspired by the form of gossip seen in social networks. Since
gossip-based network protocol is proven to be energy-efficient, it would be a low-
cost candidate for realizing a WMSN via gossiping [10]. Recently, the ALWEN
project [2] built a gossip-based wireless sensor network with 1000 nodes. The es-
timated lifetime of the network can be 1-2 years, which is a promising property
in practice.

Although gossip-based WSN is energy-efficient, designing a appropriate key
management scheme for WMSN is a challenging task. In the gossip mode, each
node will send out messages to 1-hop neighbor nodes with a well-chosen proba-
bility. Thus the security model should consider the situations that all nodes can
receive the message, and the message might be dropped during multi-hops. More-
over, the security and privacy problems related to healthcare systems are critical
[3]. As a recent study has demonstrated, medical devices that do not support any
confidentiality and authentication function are prone to eavesdropping and at-
tacks [11]. Basically, solving these problems requires a key management scheme,
which handles the cryptographic keys in a right manner, to provide data con-
fidentiality and authenticity. In the literature, many key management schemes
have been proposed for broadcast/gossip WSNs [8,13,16]. However, a WMSN-
oriented key management must consider the following differences. Firstly, in



WMSN applications, nodes might be added or removed frequently. For the ease
of a user, the initialization or revocation of such nodes should be designed as agile
as possible. Since we suppose the added /removed nodes might be tampered, the
resilience of compromise becomes serious in WMSN key management. Secondly,
a typical WMSN is a moderate-scale WSN, so probabilistic key sharing schemes
that are designed for large-scale WSNs are not suitable [6,7,12]. For practical
applications, a good WMSN key management scheme must consider the above
differences carefully, whilst balancing the applicability and the security.

Recently, Law et al. propose a novel WMSN key management scheme, which
is called KALWEN [14]. But KALWEN relies on a smart Faraday cage and uni-
cast communication channels, which might be impractical in some cases. In this
work, our main contribution are two new key management schemes, namely the
KALwWEN+ schemes, which are secure against active and aggressive adversaries
respectively. Compared to KALWEN, KALwEN+ does not require a Faraday
cage, and the communication can be fully broadcast for satisfying gossip-based
networks. Based on Shamir’s secret sharing technique, KALwWEN+ schemes sup-
port an efficient way to add/remove nodes. Using formal analysis, we prove that
the KALwWEN+ schemes are secure in our formalized security model. Based on
their theoretical performances, the KALWEN+ schemes not only fit ALWEN, but
also can be tailored to other scalable wireless sensor networks based on gossiping.

The rest of this paper is organized as follows. In Section 2, we first describe
the system environment, then define the security model for KALWEN+. In Sec-
tion 3, we describe the KALwEN+ scheme secure against active adversaries and
prove its security in our security model. In Section 4, we describe the KALwWEN-+
scheme secure against aggressive adversaries and prove its security in our secu-
rity model. In Section 5, we present the performance analysis for KALWEN-+
schemes. In Section 6, we conclude the paper.

2 Key Distribution Schemes for Gossip-based WMSN

In this section we first describe the system environment, then formulate the
security properties of key distribution schemes which are specifically tailored
to gossip-based WMSN. The security formulations follow that of Bellare and
Rogaway [4].

2.1 Environment of Gossip-based WMSN

Due to the special setting of gossip-based WMSN as shown in Figure 2, at the
beginning of the key distribution, a node denoted as the sink node is connected to



trusted device Dev (e.g., a home-based computer) and key distribution messages
will be broadcast by the sink node as an initiator. Then, the sink node and other
nodes will engage in a key management scheme. The resultant session keys will
be used to protect the data collection and the gossip communications.
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Fig. 2. Environment of Gossip-based WMSN.

2.2 Description of Key Distribution Schemes

We consider an environment which can consist of maximal N sensor nodes, say
node; (1 < i < N), and a trusted device Dev, such as a PC or a programmer
or any other trusted infrastructure, which serves as a fully trusted third party
(TTP). All nodes are honest and follow the pre-configured instructions, unless
they are compromised by an adversary. In addition, we note that the trusted
device Dev typically does not have the ability to connect to any node through
wireless communication. To facilitate the establishment of our security model,
we assume that a key distribution scheme for gossip-based WMSN consists of
the following three phases.

1. System setup. In this phase, the trusted device Dev generates the long-term
credentials. In the symmetric-key setting, a global key k¢ is generated, while
in the public-key setting a public/private key pair (PK g, SK¢) is generated.
In addition, the trusted device Dev generates some public system parameters
params.

2. Node setup. In this phase, every node node; is initialized by the trusted device
Dev. In the symmetric-key setting, the global key k¢ is stored in the node.
In the public-key setting, the trusted device Dev generates a public/private
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Fig. 3. Key Distribution of WMSN.

key pair (PK;, SK;) and stores (PKq, Cert;, PK;, SK;, params) in node;,
where Cert; is a certificate of PK; generated with PK¢.

Note that the above two steps can be executed outside the key distribution
scheme. The manufacturer can generate the certificates and the global key,
and then distribute them to the trusted device and the nodes beforehand.

3. Key distribution. In this phase, the following two types of session keys will
be distributed to a group of nodes, say node; (1 <i < N') and N’ < N.

— The first type is data collection keys used for data collection. For node
node;, the data collection key is denoted as dk;. This key is used for end-
to-end communication between node; and the data collection gateway
(namely, the sink node).

— The second type is pairwise keys used for nodes to securely communicate
with each other. For a pair of nodes node; and node;, the the pairwise
key is denoted as pk; ;.

In addition, we assume that the trusted device Dev keeps a counter ctr
to count all the key distribution sessions. Identified by the counter ctr, we
denote an invocation of the key distribution protocol as a session.

2.3 Security Properties and their Formulations

In our security model, we only consider attacks from adversaries, whose main
focus is to obtain information about the session keys, including cluster keys and
pairwise keys, in a certain session. We make the following assumptions:

1. No adversary is present in the system setup and node setup phases, so that
no information about the long-term credentials will be leaked in both phases.



2. An adversary may mount a denial of service (DoS) attack against the key
distribution process. How to make a key distribution scheme secure in this
case is beyond the scope of our model.

With respect to the secrecy of the data collection keys and pairwise keys, we
consider the following types of adversaries.

— Passive Adversary (A™). This type of adversary can only passively eavesdrop
on the wireless communications in the network.

— Active Adversary (A). This type of adversary can not only eavesdrop on, but
also manipulate the wireless communications in the network. The possible
manipulation of communication includes delaying, deleting, inserting, and
replacing messages.

It is worth noting that both types of adversaries are outsiders since we assume
all nodes are honest. In addition, since active adversaries are more powerful than
the passive ones, a scheme secure against the former will also be secure against
the latter.

Following the work by Bellare and Rogaway [4], the security of a key distribu-
tion scheme for gossip-based WMSN is evaluated by the attack game between a
challenger and an adversary, as shown in Fig. 4, where the adversary’s advantage
is defined to be | Pr[b = b'] — 1|. It is worth noting that the challenger faithfully
simulates all these activities of the trusted device Dev and all the nodes.

Definition 1. A key distribution scheme for gossip-based WMSN is secure against
(passive and) active adversaries, if any polynomial-time adversary has only neg-
ligible advantage in the attack game defined in Fig. 4.

It is worth stressing that in the attack game defined in Fig. 4, the adversary
is allowed to obtain all data collection keys and pairwise keys in all sessions
except ctr*. As a result, a secure scheme under this definition achieves known-
key security [15].

Compared with other settings, in gossip-based WMSN, it is reasonable to
assume that it is very difficult for an adversary to physically capture the nodes
since they will be locked indoor or worn by patients. In other words, key distri-
bution schemes secure against passive and active adversaries provide adequate
security guarantees in most application scenarios. However, in some scenarios,
higher security level may be required in the presence of an aggressive adversary
AT. Besides eavesdropping on and manipulating wireless communications, this



1. Setup: the challenger generates the parameters for the trusted device Dev and
publishes the public parameters.

2. Phase 1: Besides delivering messages for all sessions, the adversary is allowed to
issue the following types of queries.

(a) Invoke(set,node;): The trusted device Dev initiates a new session to distribute
cluster keys and pairwise keys to the nodes in the set set which is a subset of
{node;|1 < j < N}. The node node; belongs to the set set and acts as the
sink node.

(b) Corrupty(ctr, node;): If the session identified by ctr has successfully ended and
node; has been involved in the session, the challenger sends the data collection
key and pairwise keys of node; to the adversary. Otherwise, the challenger
returns nothing.

At some point, the adversary chooses a counter value ctr* and a user index 7, such
that, in the session identified by ctr®, node; has successfully ended with dk}, pk; ,
for all ¢ such that node; is also involved in the session. This is subject to the
restriction that there has been no Corruptk(ctr®, node;) query for any t.

3. Challenge: Select b €r {0,1}. If b = 0, send dkj, pkj, for all ¢ such that node; is
also involved in the session, otherwise send a replacement to the adversary, where
the keys are replaced by a set of random values.

4. Phase 2: The adversary is allowed to issue the same types of queries as in Phase
1, and is subject to the same restriction. At some point, the adversary terminates
by outputting a guess bit b’.

Fig. 4. The Attack Game

type of adversary is also capable of physically compromising some wireless nodes
in the network even before the key management.

The security against an aggressive adversary is evaluated by the attack game
between a challenger and an adversary, as shown in Fig. 5, where the adversary’s
advantage is defined to be |Pr[b=b] — 1|.

Definition 2. A key distribution scheme for WMSN is secure against an aggres-
sive adversary, if any polynomial-time adversary has only negligible advantage
in the attack game defined in Fig. 5.

It is worth stressing that in the attack game defined in Fig. 5, the adversary is
allowed to obtain all data collection keys and pairwise keys in all sessions except
ctr*, and it is also allowed to obtain all long-term private keys of all nodes in
Phase 2. As a result, a secure scheme under this definition achieves known-key
security and perfect forward security [15].



1. Setup: the challenger generates the parameters for the trusted device Dev and
publishes the public parameters.

2. Phase 1: Besides delivering messages for all sessions, the adversary is allowed to
issue the following types of queries.

(a) Invoke(set,node;): The trusted device Dev initiates a new session to distribute
cluster keys and pairwise keys to the nodes in the set set which is a subset of
{node;|1 < j < N}. The node node; belongs to the set set and acts as the
sink node.

(b) Corrupty(ctr, node;): If the session identified by ctr has successfully ended and
node; has been involved in the session, the challenger sends the data collection
key and pairwise keys of node; to the adversary. Otherwise, the challenger
returns nothing.

(c) Corrupti(index): The challenger returns the long-term public/private keys of
nodeindez to the adversary.

At some point, the adversary chooses a counter value ctr* and a user index 7, such

that, in the session identified by ctr*, node; has successfully ended with dkj, pk] ,

for all ¢ which satisfies that node; is also involved in the session. This is subjected

to the following restrictions.

(a) Suppose the node node; is the sink node in the session identified by ctr”*. There
has been no Corrupt(¢) and Corruptk(ctr®, node;) queries. The requirement also
applies to node;. Note that the adversary may choose j = ¢ in the challenge.

(b) Suppose set™ is the set of nodes in the session identified by ctr* satisfying
that if node; € set™ then there has been no Corruptk(ctr”™, node;) query and
no Corrupti(7) query. The size of set” is at least 2.

(c) In the session identified by ctr”, at most t—1 nodes have been issued a Corrupty
query.

3. Challenge: Select b €g {0,1}. If b = 0, send dkj, pkj , for all ¢ which satisfies that
nodey is also involved in the session and there has been no Corrupty(ctr™, nodes)
query and and no Corrupt|(t) query, otherwise send a replacement to the adversary,
where the keys are replaced by a set of random values.

4. Phase 2: The adversary is allowed to issue the same types of queries as in Phase
1, with the following restriction.
(a) There has been no Corrupty(ctr®, nodey) query for any h satisfying that there
has been no Corrupty(ctr™, noder) query in Phase 1.

At some point, the adversary terminates by outputting a guess bit b'.

Fig. 5. The Enhanced Attack Game

3 Scheme Secure against Active Adversaries

In this section, we propose a key distribution scheme which is secure against
active adversaries. In this scheme we use symmetric key cryptographic primitives,



including message authentication code (MAC) algorithms [15] and symmetric
key encryption schemes. We make use of Shamir’s secret sharing scheme [17]
to deal with the issues such as adding nodes and key recovery in emergency
situations.

3.1 Preliminaries

A MAC algorithm is a family of functions {MACy}, parameterised by a secret
key k, with the following properties:

1. Ease of computation: for a known function MACy, given a value k& and an
input x, MACg(z) is easy to compute. This result is called the MAC-value
or MAC.

2. Compression: MAC, maps an input z of arbitrary finite bit-length to an
output MACy () of fixed bit-length.

Definition 3. A MAC algorithm is said to be secure against existential forgery
if, for any fized key k (not known to the attacker), and given any number of
MAC queries MACy(z), where the values of x may be chosen by the adversary
after observing the results of previous queries, a adversary can only succeed with
a negligible probability in finding a pair (x*, MACg(x*)) where =* (which could
be chosen by the attacker) was not in the set of MAC queries.

Shamir’s secret sharing scheme [17] is based on the polynomial interpolation:
given k points (x1,y1), (x2,92), -, (T, yx), where all elements are from a finite
field F and z; (1 < ¢ < k) are distinct, there is one and only one polynomial
f(z) of degree k — 1 such that f(x) = y; for all is. To hide a secret d, first pick
a random k — 1 degree polynomial f(x) = d + a1z + - + ap_12" ! and sets
d; = f(j) for 1 < j <n where n > k. It is straightforward to verify that, given
any subset of k tuples of the set {(4,d;)|1 < i < n}, we can find the coefficients
of f(z) by interpolation and then obtain d = f(0). Given just k — 1 of these
values, d is indistinguishable from a random element from F.

Let F: K x D — R be a function family, where K = {0,1}*, D = {0,1}¥, R =
{0,1}* for some integers z,y, z. F is said to be a pseudorandom function family
if, given the input-output behaviors, an adversary can only distinguish F(k,-)
from Ran with a negligible probability, where k is randomly chosen from {0, 1}*
and Ran: D — R is a random function [9].



3.2 Description of the Scheme

In the system setup phase, the trusted device Dev selects a symmetric encryption
algorithm (ENC,DEC), an MAC algorithm MAC, and a symmetric key kg =
(k1, k2). It also choose a finite field F for Shamir’s secret sharing.

In the node setup phase, (kg,TF) is stored in the node. For simplicity, we
assume all nodes have been programmed to perform all the operations in the
key distribution scheme. The key distribution scheme is as follows.

1. A node node;, which is connected to the trusted device Dev, becomes a
sink node, broadcasts a bootstrap message to the network. The bootstrap
message is defined as follows

node; + Dev — x : ctr, ENCy, (ks), MACy, (1||ctr||ENCy, (ks)), (1)

where k, is a randomly-chosen ephemeral key for MAC.

2. After receiving the message, if the value of ctr is smaller than the local
counter value, node; terminates by broadcasting a failure message. Other-
wise, it sets the local counter value to be ctr, decrypts ENCg, (ks ), and checks

MAC, (1||ctr||[ENCy, (ks)).

If the MAC code is correct, it sends (r;, MACy 1)k, (2]|ctr||[ID;||n;) to the
sink node, where n; is a nonce.

nodej — node; : nj, MACy|x,) (2|[ctr||1D;l[n;). (2)

3. After receiving the message from node;, the sink node first checks the MAC
code MACy(qjx,)(2|[ctr|[ID;||n;). If the check fails, it terminates by broad-
casting a failure message. Otherwise, it continues. At a certain point, the sink
node learns that session keys need to be distributed to a group of nodes, say
node; (1 <j < N') and N’ < N. The sink node computes an ephemeral key
pool I = {eky, eka, - -+ ,ekns,ek], ekh, -+ ek}, where 1 < j < N’ j #1

(a) Using Shamir’s (¢, N)-threshold secret sharing technique, generate N
shares {(j, sh;)|1 <¢ < N} to hide a secret r €g F.

(b) Send the following message to the node node;

node; — node; ENCH(QHIDJ.H;CS)(j||shjHskj||Tj),
MACk, (1D;|[n;llctr|[ENCua) 1D, k. (FlIshi sk [ T5)), (3)
where sk; = H(3||ctr||ID,||r) and T} is a concatenation of pk; ; for all ¢
such that ek, € I" and ¢ # j. pk; ; is set to be H(4||ctr||ID||ID,||r) if

t < j, and H(4||ctr||ID;||ID;||r) otherwise. Consequently, pk:; = pk;.
holds.
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(c) The sink nodes stores r and the shares {(j, sh;)|N'+1 <i < N} at the
trusted device Dev.

4. After receiving the message, node; first checks the MAC code. If the check
fails, it terminates by broadcasting a failure message. Otherwise, it decrypts
ENChi2) 11D, k. (d[sh;|sk;||T) to obtain the data collection key sk;, pair-
wise keys T}, and the share (7, sh;). It also updates ctr to be ctr + 1.

Lemma 1. The proposed scheme is secure under Definition 1 given that the
MAC algorithm is secure against existential forgery, the encryption algorithm is
a pseudorandom function, and H is a random oracle.

Proof sketch. Suppose that an adversary has the advantage € the attack game
shown in Fig. 4. We first have the following observation, which implies the in-
tegrity of messages received by all nodes (the adversary is not able to manipulate
the messages without being detected by some users).

Observation. During the attack game, in the session identified by ctr*
(and in any other sessions), nodej, for any j such that node; is involved
in the session, is supposed to receive the following values:

Ct?"*, ENCkl (ks)a MACkz (1||Ctr*||ENCk1 (ks))v

ENCh(aik.) ([ shyl sk T5),
MACk, (1Dj]|n|ctr™|[ENChg ) (7] [sh;][sk; | T5)),

Ifnode; accepts the values, the probability that these values are not gener-
ated (or, simulated) by the challenger is negligible. Intuitively, the reason
is that, in the proposed scheme, only sink nodes will generate messages
in these format, and based on the existential forgeability of the MAC
algorithm an adversary can only forge such messages with a negligible
probability. The proof is straightforward so that we skip it here.

The rest of the security proof is done through a sequence of games [18].

Gameg: In this game, the challenger faithfully simulates the protocol execu-
tion and answers the oracle queries from A. Let o = Pr[b/ = b], as we assumed
at the beginning, [0y — | =e.

Game;: The challenger performs faithfully as in Gameg, except that the chal-
lenger stops if the values described in the above observation are not generated
by the challenger (referred to as the event Ent;). Let §; = Pr[b' = b] at the end
of this game. From the Difference Lemma in [18], we have |§; — 09| < Pr[Ent;]
which is negligible.

11



Game;: The challenger performs faithfully as in Game;, except that, in the
session identified by ctr*, in step 3 of the scheme the messages sent to node;, for
any j such that node; is involved in the session, are replaced with the following,
where Ran; is random function.

Ran; (j||sh;l|sk;||T;),

MACk, (1Dj||n|[ctr||Ran; (j||sh;||sk;||T})),

Since H is a random oracle and the encryption algorithm is a pseudorandom
function, Game; is identical to Game; unless the adversary queries H with || k,||*
(referred to as the event Ents), where % can be any string. Furthermore, since
the encryption algorithm is a pseudorandom function, Pr[Ents] is negligible. Let
02 = Pr[b’ = b] at the end of this game. From the Difference Lemma in [18], we
have |d2 — 91| < Pr[Ents] which is negligible.

In Game,, since the encryption of the session keys and shares is provided by
random functions, the probability d; = % As a result, we have

1
62‘(50—5‘

1
<61 — do| + |02 — 01| + [02 — §|
< Pr[Ent,] + Pr[Ents]

Since Pr[Ent;] and Pr[Ents] are negligible, the lemma now follows. O

3.3 Further Remarks

If a key distribution execution has been carried out for node; (1 < j < N'),
later on node, for any N’ +1 > v > N may need to join the communications.
With respect to the key distribution scheme, there are two possibilities to add
a new node into a group. Note the fact that node, should have been initialized
and share the key K with the trusted device Dev.

In the first case, if Dev is available, then it can just generate the corresponding
data collection key and pairwise keys for node, based on the secret value r and
sends these keys and a share (v, sh,) to node, through a secure channel provided
by the shared long-term key K¢.

In the second case, if Dev is unavailable, then the secret r can be recovered
by node; (1 < j < N’) using their shares (j,sh;) (1 < j < N’). Then the
corresponding data collection key and pairwise keys for node, can be generated
and transmitted to node, in the same way as the above case.

12



4 Scheme Secure against Aggressive Adversaries

In this section, we propose a key distribution scheme which is secure against
aggressive adversaries. Compared with the previous scheme, we use public key
cryptographic techniques, including digital signature schemes and Diffie-Hellman
key exchange, in order to deter the effect of compromised nodes by aggressive
adversaries. Nonetheless, both key distribution schemes make use of the secret
sharing technique, therefore, the remarks in Section 3.3 apply to this scheme and

we skip it here <.

4.1 Preliminaries

Digital signature schemes provide a means by which an entity can bind its iden-
tity (or public key) to a piece of information (usually referred to as a message).
A digital signature scheme is made up of the following algorithms [15]:

1. KeyGen: which takes a security parameter ¢ as input, and outputs a public
(verification) key pk and a private (signing) key sk.

2. Sign: which takes as input a message m and a private key sk and produces
a signature o for the message m.

3. Verify: which takes as input a message m, a public key pk and a signature
o, and outputs either accept (denoted by 1) or reject (denoted by 0).

The existential unforgeability of a digital signature scheme is defined as follows:

Definition 4. A digital signature scheme is existentially unforgeable under an
adaptive chosen message attack if the probability of success of any polynomially
bounded attacker in the following game is negligible. The attack game is carried
out between an attacker A and the hypothetical challenger C.

1. Initialisation: C runs KeyGen(f) to generate a public key pk and a private
key sk.

2. Challenge: The attacker runs A on the input pk and terminates by outputting
a pair m*,o*. During its execution, A can query the Sign oracle with any
input m (m # m*).

The attacker wins the game if Verify(m*,pk,o*) = 1, and, the attacker’s
advantage is defined to be Pr[Verify(m*, pk,o*) = 1].

4 The only difference is that a secure channel between Dev and a new node can be pro-
vided using a symmetric key resulted from a standard Diffie-hellman key exchange.

13



Given a group G of order p, the computational Diffie-Hellman assumption
holds if, given ¢* and ¢g¥ where x,y are randomly chosen from Z,, an adversary
can compute g*¥ only with a negligible probability.

4.2 Description of the Proposed Scheme

In the system setup phase, the trusted device Dev selects a digital signature
algorithm (KeyGen, Sign, Verify) and a public/private key pair (PKqg, SK¢). It
also chooses a group G for Diffie-Hellman key exchange [5] and a finite field F
for Shamir’s secret sharing.

In the node setup phase, every node node; is initialized by the trusted de-
vice Dev: a public/private key pair (PK;, SK;) is generated and the parameters
(PKg,Cert;, PK;, SK;,G,F) are stored in the node, where Cert; is a signature
of PK;||ID; signed with SKq. For simplicity, we assume all nodes have been
programmed to perform all the operations in the key distribution scheme. The
key distribution scheme is as follows.

1. A node node;, which is connected to the trusted device Dev, becomes a
sink node, broadcasts a bootstrap message to the network. The bootstrap
message is defined as follows.

node; + Dev — x : ctr, g™, Signgg (ctr|[g"). (4)

2. After receiving the bootstrap message, every node node; verifies the signa-
ture. If the signature is not valid or the value of ctr is smaller than the local
counter value, node; terminates by broadcasting a failure message. Other-
wise, it sets its local counter value to be ctr, and sends the following message
to the sink node.

nodej — node; : g', Signg, (ctr|[g"[|g"). (5)
The node node; computes two ephemeral keys ek; and ek}, where
ekj = H(1|lg"" ||ctr||IDi||ID;), ekj = H(2||g"*" [|ctr|[ID;||1D;).

3. After receiving the message from node;, the sink node first checks the counter
value and the signature. If the check fails, it terminates by broadcasting a
failure message. Otherwise, it continues. At a certain point, the sink node
learns that session keys need to be distributed to a group of nodes, say node;
(1<j < N')and N' < N. The sink node computes an ephemeral key pool
I = {eky,eka, - ,eknr, ekl ek, -+ ek}, where for 1 < j < N’ j #i

ekj = H(1lg"" [[etr|[IDi||1D;), ek = H(2|lg"™" ||ctr(|1D;|[1D;).

The sink node then does the following.
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(a) Using Shamir’s (¢, N)-threshold secret sharing technique, generate N
shares {(j, sh;)|1 < j < N} to hide a secret r €g F.
(b) Send the following message to the node node;

node; — node; : ENCey, (ctr||j||sh;||sk;||T;),
MAC.y; (ctr||ENCex, (ctr||sk;||T})), (6)

where sk; = H(3||ctr||ID,||r) and T} is a concatenation of pk, ; for all
ek, € I and t # i. The value pk; ; is set to be H(4||ctr||ID||ID,||r) if
t < j, and H(4||ctr||[ID;||IDy||r) otherwise. Consequently, pk; ; = pk;
holds.

4. After receiving the message, node; first checks the MAC code. If the check
fails, it terminates by broadcasting a failure message. Otherwise, it decrypts
ENCe, (jl|sh;||sk;||T;) to obtain the data collection key sk;, pairwise keys
T;, and the share (7, sh;). It also update ctr to be ctr + 1.

Lemma 2. The proposed scheme is secure under Definition 2 based on the com-
putational Diffie-Hellman (CDH) assumption, given that the digital signature
scheme is existentially unforgeable, the encryption algorithm is a pseudorandom
function, and H is a random oracle.

Proof sketch. Suppose that an adversary has the advantage e the attack game
shown in Fig. 5. We first have the following observation.

Observation. During the attack game, in the session identified by ctr*,
nodej, for any j such that node; is involved in the session, is supposed
to receive the following value:

ctr*, g™, Signg,, (ctr*||g"),
ENCer, (ctr*(|j]Ish;||sk;||T;), MACey: (ctr™[[ENCep, (ctr™||sk;||T})).

Based on the ezistential unforgeability of the signature scheme, the prob-
ability that the first message is not generated (or, simulated) by the chal-
lenger is negligible. Based on the CDH assumption and the existential
unforgeability of the MAC algorithm, the probability that an adversary
can forge the second message is negligible given that H is a random ora-
cle. Therefore, these values are generated by the challenger, and the proof
18 straightforward so that we skip it here.

The rest of the security proof is done through a sequence of games [18].
Gameg: In this game, the challenger faithfully simulates the protocol execu-

tion and answers the oracle queries from A. Let §p = Pr[b' = b], as we assumed
at the beginning, |6y — %| =e.
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Game;: The challenger performs faithfully as in Gameg, except that the chal-
lenger stops if the values described in the above observation are not generated
by the challenger (referred to as the event Ent;). Let §; = Pr[b’ = b] at the end
of this game. From the Difference Lemma in [18], we have |§; — dg| < Pr[Ent;]
which is negligible.

Game;: The challenger performs faithfully as in Game;, except that, in the
session identified by ctr*, in step 3 of the scheme the messages sent to node;, for
any j such that node; is involved in the session and node; has not been issued
any Corrupt; query, are replaced with the following, where Ran; is a random
function.

Ran; (j||sh;l|sk;||T;),
MACcy; (1D;l[ctr™|[Ran; (j]|sh;||sk;|T;)),

Since H is a random oracle and the encryption algorithm is a pseudorandom
function, Game; is identical to Game; unless the event Ent, occurs: the adversary
has queried H with x||r||* or *||g""i || for any j such that node; has not been
issued any Corrupt; query. Based on the CDH assumption and the security of the
Shamir secret sharing scheme, Pr[Ents] is negligible. Let d; = Pr[b’ = b] at the
end of this game. From the Difference Lemma in [18], we have |§2—d1| < Pr[Ents)
which is negligible.

In Gamey, since the encryption is provided by random functions, the proba-
bility do = % As a result, we have

1
€ =160 — 5\
1
< |81 — o] + |02 — 61| + |02 — §|
< Pr[Enty] + Pr[Ents]

Since Pr[Ent;] and Pr[Ents| are negligible, the lemma now follows. O

5 Performance Analysis

Based on the theoretical results, here we give a performance analysis of KALwEN+.
Let T, be the time for a symmetric key encryption, and 7, be the time for com-
puting a MAC value. Let T, be time for one exponentiation computation. T
denotes the time for the (¢, N)-threshold secret sharing algorithm which is used
in KALWEN+. Let Ty, and Ty, be the time costs for generating and veri-
fying a signature, respectively. For a gossip sensor network with n nodes, the
performance of KALWEN+ is estimated as follows.
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Table 1. The Performance Estimation of KALWEN+.

KALwWEN+ Against Active Adversary| Against Aggressive Adversary
Sink node costs (n+1)Te+(n+1) T +1Ts |1Tsig+(n+1)Tp+nTe+nT,+17T,
Member node costs 2T, +2T, 1Tyer+1Tsig+1Tp+1Te+1T,,
Communication rounds 3-Rounds 3-Rounds
Storage costs O(n) O(n)

For the estimated performance, the potential bottleneck of the scheme will
be the sink node. Especially in a large network, a typical sensor node can hardly
afford the computational costs of (¢, N)-threshold secret sharing by itself. Since
the sink node can be connected to a trusted device, the computational costs
would possibly be shared by the device while the scalability of network is large.

6 Conclusion

By simply using the Shamir’s secret sharing techniques and the Diffie-Hellman
algorithm, a family of novel key management schemes that named KALwEN-+
has been proposed for wireless medical sensor network. The KALwEN+ schemes
can be fully based on broadcast communication, and does not require special
equipment like some existing schemes do. The secret sharing technique used in
KALwEN+ not only supports efficient node addition/removal, but also elegantly
ensures security against key-exposure. For applications with highly-constrained
resources, the KALWEN+ scheme that fully based on symmetric cryptographic
primitives is a reasonable choice. For future work, we will investigate the practical
performance and the interoperability of KALwEN+ in a multi-user scenario.
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