
A Generic Synthesis Algorithm for Well-Defined Parametric Design

W.O. Schotborgh, F.G.M. Kokkeler, H. Tragter, M.J. Bomhoff1, F.J.A.M van Houten
Laboratory of Design Production and Management, Faculty of Engineering Technology, University of

Twente, Enschede, The Netherlands
1Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer

Science, University of Twente, Enschede, The Netherlands

Abstract
This paper aims to improve the way synthesis tools can be built by formalizing: 1) the design artefact, 2)
related knowledge and 3) an algorithm to generate solutions. This paper focuses on well-defined parametric
engineering design, ranging from machine elements to industrial products. A design artefact is formalized in
terms of parameters and topology elements. The knowledge is classified in three types: resolving rules to
determine parameter values, constraining rules to restrict parameter values and expansion rules to add
elements to the topology. A synthesis algorithm, based on an opportunistic design strategy, is described and
tested for three design cases.

Keywords:
Knowledge-based synthesis, Descriptive models, Parametric design

1 INTRODUCTION
Known algorithms to automate the synthesis phase of
design include mathematical constraint solvers and
inference engines. These algorithms require the
knowledge rules and variables in a specific form, such as
(in)equalities describing a continuous solution space.
In practice, design parameters are a mix of continuous
(e.g. length), discrete (e.g. DIN norms), set-based (e.g.
materials) and predicates (e.g. corrosive environment,
dynamic load). The (knowledge) rules that model these
design objects are often a mix of non-linear, discrete,
discontinuous, non-monotonic and (fuzzy) logic and
algebraic mathematics. From a computational
perspective, developing a generation algorithm for such a
model is not easy. Yet, from a human design point of
view, the ‘design’ of a spring is a relatively simple
process, often regarded as a search process instead of
design. It seems that the complexity of the rules is of little
importance to humans.
What is the difference between the human and
computational approach? This paper proposes a (generic)
model of the design artefact and knowledge rules that
enables a human-like approach to solution generation,
independent of the computational complexity. Modelling
designs and knowledge in a standardized way is
beneficial because it provides a common language to
compare designs, knowledge and algorithms. It allows
development of generic methods and algorithms, e.g. for
solution generation and optimization, software
architectures and class-libraries. The modelling standard
is developed within a larger scope to build synthesis tools
quickly for a wide range of industrial engineering design
processes.
The idea behind the generation algorithm, which came
from cognitive design research, is discussed first. Then, a
formal description of a design artefact is given in terms of
parameters and elements. Next, the knowledge rules that
are used during solution generation are discussed. Having
this formal description enables a generic synthesis
algorithm to automate the solutions generation process by
operating on a knowledge base. This algorithm is suitable
for automation, as demonstrated in section 8, where three

distinctly different designs are modelled and the synthesis
phase automated: a flat belt drive, an optical chamber of
an x-ray fluorescence instrument and a baggage handling
system.
This paper focuses on well-known parametric designs:
the degrees of freedom in terms of parameters and
topologies are explicit, as well as the relations between
these degrees of freedom.

2 A MENTAL MODEL OF DESIGN KNOWLEDGE
This section discusses a strategy that a human designer
uses to find candidate solutions during design, and the
role knowledge plays during synthesis. From this, a
model for design knowledge and a principle for a solution
generation algorithm are derived.
From cognitive design research, “design is most
appropriately characterized as a construction of
representations. The initial representation is formed by
the requirements, and through a series of transformations
(e.g. replicate, add, detail, concretize, modify and
substitute) develops towards its final form” [1, pp. 131].
The order in which parts of the representations are
modified is described by a strategy. One human design
strategy is called the “structured decomposition strategy”
[1], where the predictable paths from input to output are
used during synthesis.
Using this approach for the generation algorithm of
compression springs led to an approximately 16-layer
deep if-then tree to account for all possible sets of design
requirements. This means a considerable amount of
software development effort, and the addition of a single
design parameter results in significant extra work.
Another strategy is described as opportunistic, where it
depends on the current state of the design and available
knowledge to decide on that moment what to do. The
particular non-systematic character is attributed to the
fact that designers, rather than systematically
implementing a structured decomposition strategy, take
into consideration the data which they have at the time.
This focuses on their knowledge, the state of their design
in progress, their representation of this design and the
information at their disposal [1, pp. 125-126].

CIRP Design Conference 2008

2.1 Object-oriented knowledge
We can project the above view of design to the class of
well-defined parametric designs. Knowledge rules (e.g.
equations) can be modelled as parameter-oriented: aimed
at resolving a parameter value. This is the first step of the
Role-Limiting Method [2], where the steps to generate
design are 1) to extend partial design, 2) to check if
constraints are fulfilled and 3) to repair any violations.
Knowledge rules that decide if the extension is allowed
are modelled similarly: for a specific parameter, the
allowed values are determined
If the knowledge rules to extend and constrain is modelled
around the design degrees of freedom, an opportunistic
strategy can counsel all design parameters to decide
which rules to execute, without a premeditated plan. This
implements the object-oriented paradigm for knowledge
[3, 4]. This allows a clear interface that makes the content
of the knowledge (e.g. algebraic, logic, random)
independent of the function (e.g. to resolve and
constrain).
2.2 Opportunistic design strategy
Opportunistic is described as exploiting immediate
opportunities, in an unplanned way. If the goal of design is
to determine an allowed value for each parameter, this
strategy can be a starting point. Design knowledge is
used to refine the implementation. In this paper the
concept of ‘certainty’ describes the level of confidence
with which a parameter value can be determined by
knowledge: calculating a value using an equation has a
higher certainty compared to random guessing, for the
same parameter. The strategy proposed in this paper
determines parameter values following the highest
certainty, e.g. first user requirements, then equations and
first order logic, estimations, fuzzy logic and finally
random value generation. What parameter to resolve next
depends on the current state of the embodiment
(available information) and available knowledge. A formal
notation of a well-defined design in terms of topology
elements, parameters and knowledge is discussed in the
following sections.

3 WELL-DEFINED PARAMETRIC DESIGN
The class of well-defined parametric design ranges from
machine elements to industrial products, such as a
transport network for baggage handling systems. This
class has predictable parametric and topological degrees
of freedom, which can be quantified and fully
parameterized. The knowledge rules that govern the
degrees of freedom can be made explicit.
3.1 Design process
The design process can be modelled as depicted in
Figure 1. The process begins with a set of requirements,
stating what the designer wants to design. This set of
information is divided into four categories:
1. embodiment requirements: constraints or preferences

for the design object/artefact;
2. performance requirements: a quantitative measure of

quality, determined by the analysis method(s);
3. scenario description: states in what (worst-case)

situation the design is analyzed to determine the
performance;

4. engineering preferences: a subjective scaling
between the performance requirements, to
incorporate the design goal with more subtlety.

These requirements are the input for the synthesis phase
that generates an embodiment. This is a description of the
design artefact that is suitable for analysis. This

embodiment enters analysis, together with the scenario.
The outcome of the analysis method is the set of
performance indicator(s). Evaluation takes these and the
requirements into account, deciding what to do next:
1. an embodiment seems promising, an adjustment can

be made to it, after which it re-enters analysis;
2. an embodiment does not meet the requirements, nor

is it expected to. It is abandoned and synthesis is
initiated again;

3. the requirements are met, the embodiment is added
to the solution list.

Synthesis

Analysis

Evaluation

embodiment

performance

Adjustment

1 2 3

solutionsrequirements

scenario

Figure 1: design process

A consistent description of a design process for a specific
design includes all relevant information on one or more
distinct levels of abstraction. This requires definition of the
content of the modules, and their information input/output.
An analysis-oriented decomposition is used to acquire
this information, discussed next.
3.2 Analysis-oriented decomposition
An analysis-oriented approach is used to decompose a
design process and identify the information content of the
model of Figure 1.
This decomposition begins with grouping and prioritizing
dominant performance indicators within a design process.
Because each performance indicator is calculated and
quantified by means of an analysis method, these
methods themselves are identified. An analysis method is
used to identify the parameters of the embodiment,
performance and scenario.
The objective of the synthesis phase is to generate an
embodiment. In order to model the knowledge and an
algorithm for embodiment generation, first a formal model
of an embodiment is proposed.

4 EMBODIMENT
An embodiment is a representation of the design object,
suitable for analysis. It consists of a hierarchical tree of
elements. First, a description is given of a single element,
after which the topology of multiple elements is taken into
account.
4.1 Parameters and elements
A parameter is an information entity that will receive a
value during the synthesis process, i.e. a degree of
freedom. Parameters can be of different types, e.g.
discrete, continuous, integers and predicates.
Parameters are grouped within elements, so that the
element ‘compression spring’ is described by parameters
‘material’, ‘wire thickness’ and ‘length’. During synthesis,
multiple instances of the same element are allowed, e.g.
two compression springs in a machine. Although these
elements have the same parameters, these parameters

can have different values. We say, that both elements are
of the same ‘type’ (i.e. compression spring) but have
different instances. The description of an element in terms
of parameters p P∈ is associated to an element type
t T∈ . We have separate types for cogwheels, levers and
springs.
Instantiations of an element type are made during
synthesis to form the elements e E∈ . The parameter
values of this instance e are represented by the following
vector:

()ev p tp P∈

For notational convenience, we define () λv p = to denote
that parameter p has not yet been assigned a value. How
these parameters receive their values is discussed in
section 5.
Note
Embodiment parameters are the minimal set that
describes the design artefact with sufficient detail to be
analyzed. Beside embodiment parameters, auxiliary
parameters are introduced that aid the understanding and
design intent, e.g. preferences, ratios.
4.2 Elements and topologies
A topology is defined as a hierarchical tree of elements
e E∈ . During synthesis of a topology, each element e
receives a (possibly empty) set of sub-elements es E⊂ .

These sets, of course, have to respect the normal tree
semantics, i.e. no element can be its own sub-element,
neither directly, nor indirectly. Furthermore, except for a
single root element that represents the complete design,
we demand that each element has a unique super-
element.
A (partial) embodiment is thus represented by the set E
of elements in it, together with their associated parameter
values v and hierarchical structure s . A partial
embodiment is thus represented by a vector (), ,E v s .

5 KNOWLEDGE
Apart from the embodiment it generates, a synthesis
module is also defined by the knowledge it uses. The
knowledge is organized using the object-oriented
paradigm, such as discussed by [3]. The objects in
question are parameters p and element types t . Each
type t contains synthesis knowledge about its own
parameters, divided into three types of rules:
• expand rules that prescribe the creation of new sub-

elements;
• resolve rules that govern the assignment of values

to parameters;
• constrain rules that restrict the possible values of

parameters.
The first two of these transform a partial embodiment into
another, more refined (partial) embodiment. Constrain
rules on the other hand limit the set of allowed values for
a parameter.
For an element type t T∈ , we have ,t tR X and tC
representing respectively its resolve, expand and
constrain rules. It is of importance to note that these rules
are the same for every instantiated element e from t , i.e.
two compression springs possess the same knowledge.
The expand, resolve and constrain rules share the
following properties:

• object: the parameter or element type to operate
upon;

• conditional set: the set of parameters that are
required to have a (possibly specific) value, possibly
from other elements in the topology;

• action: the operation on the object(s), either
resolving its value or sub-elements. This is not
necessarily a deterministic mathematical algorithm; it
could also take the form of a fuzzy logic system or
external application.

A more detailed discussion of the rules is given next.
Expand rules
Expand rules `grow' the hierarchy of elements by
transforming a partial embodiment (), ,E v s into a new

partial embodiment (), ,E v s′ ′ . This is done by determining

the set of sub-elements es′ for an element ∈e E for

which = λes and adding these elements to E to form
′E . A single expand rule can add multiple types of

elements, or multiple instances of the same element type.
Resolve rules
A resolve rule transforms a partial embodiment
(), ,E v c into a new partial embodiment ()′, ,E v c that has

one less free parameter. I.e., to transform v to ′v , the
value of a parameter p for some element ∈e E is fixed
from its state λ in v . This implies resolve rules can only
be applied to fix values of parameters that had not
already been fixed before.
A random generator is a resolve rule that can be applied
to many types of parameters: in case of floating point or
integer parameters, it will generate a value within the
solution space. In case of e.g. a material, it can randomly
select an allowed material.
Constrain rules
Constrain rules govern the boundaries of what is possible
within a design problem. It returns a set of allowed values
for a parameter: pc . At any time during the synthesis
process, the value of any assigned parameter must be a
member of all of the sets of allowed values produced by
applicable constrain rules.
5.1 User requirements
User requirements are (combinations of) additional rules
without a conditional set, i.e. always and immediately
executable. This is the starting point for a synthesis
process, and any embodiment must satisfy these rules.
Examples are: length = 10.0, thickness ≤ 5.0mm, M4 ≤
bolt size ≤ M20, material ≠ {copper, aluminium, gold}.
5.2 A solution
A solution is an embodiment that satisfies the following
conditions:

es E⊂ e E∀ ∈ (1)

()ev p λ≠ te E, p P∀ ∈ ∈ (2)

()ev p pc⊂ te E, p P∀ ∈ ∈ (3)

I.e. (1) topology fully expanded, (2) no parameter value is
unresolved for any element and (3) each parameter value
lie within the allowed set, for each element.

6 SYNTHESIS ALGORITHM
A synthesis algorithm is discussed that consists of a
specific part and a generic part. The specific part contains
the description of element types (parameters and
knowledge). The generic part of the algorithm resolves the
parameters using an opportunistic strategy, based on a
design mechanism used by a human designer. This step-
wise approach is used to expand the topology and resolve
parameters, where each step considers the available
knowledge and embodiment representation to decide
what to do.
An algorithm is presented to generate one solution, given
an element description.
Step 0: initialization
The algorithm initialization requires a set of element types
T . A single instance is denoted the root element, from
which the algorithm starts. User requirements of an
element e are superimposed on the knowledge base
when they are instantiated.
Loop step 1: constrain check
Goal: test if all parameter are valid.
Execute constrain rules tC if the conditional set allows it.
Test for all parameter:

1. solution space not empty, i.e. pc ≠ ∅ ;

2. their value (if resolved) lies within the allowed set, i.e. ()e pv p c∈ .

If all tests are passed: current embodiment representation
is allowed. If one test is negative: current embodiment is
not allowed. A previous (allowed) representation
(), ,E v s is retrieved to proceed.

Loop step 2: complete check
Goal: check for complete embodiment
Test for all elements e E∈ :

1. es E⊂ ;

2. ()ev p λ≠ te E, p P∀ ∈ ∈

I.e. (1) topology fully expanded, and (2) no parameter
value is unresolved for any element. If tests are passed,
the embodiment (), ,E v s is a complete representation and
the synthesis phase is terminated.
Loop step 3: advance partial embodiment
Goal: execute one expand or resolve rule.
This is done in two phases:
1. explore possibilities;
2. execute rule
The first step tests the conditional sets for the expand and
resolve rules of each element. The decision, which one to
execute, can be made with or without a strategy. In the
most basic form, this is a random selector.
The second step executes the action of the rule,
effectively creating a more refined embodiment. An
expand rule results in an embodiment (), ,E v s′ ′ and

resolve rule produces (), ,E v s′ . After this action, the loop
continues with step 1.
Notes
If backtracking is implemented to solve constrain rule
violations, the algorithm effectively implements a non-
deterministic version of depth-first search.

7 KNOWLEDGE EXTRACTION
In the development process of any synthesis tool, an
important phase is that of knowledge extraction. The
functionality of the tool is determined here, as well as the
knowledge that will be used to generate solutions. The
object-oriented knowledge organization paradigm enables
efficient extraction and implementation of design
knowledge from expert designers or literature sources.
The goal of knowledge extraction from human or literature
source is to model the design process as a consistent
and coherent whole with predictive behaviour. This
translates to engineering design knowledge modelling as
determining the right parameters and knowledge rules. It
should enable a third party (algorithm or novice designer)
to generate designs.
An analysis-oriented decomposition method first isolates
performance indicators of equal importance and their
analysis methods. Second, the expressiveness of the
analysis methods leads to the identification of the
scenario and embodiment parameters. The embodiment
description is divided into element types and parameters.
The synthesis knowledge determines the formation of
elements. Groups of parameters that occur in the same
rules are likely to belong to the same element, however
his is somewhat subjective. Also, the physical model can
serve as an indicator.
The knowledge rules for synthesis are extracted, or
formalized, by studying for each parameter:
1. how a parameter value is determined (= resolve

rule);
2. what constrains are relevant (e.g. geometric,

manufacturability, experience).
When dealing with topologies:
3. how to determine the sub-elements (= expand rule).
And possibly, to guide the parameter selection process:
4. In what order the parameters or elements are

resolved (= a strategy).
If an (expert) designer is available, an interview style
knowledge extraction can be done. This knowledge
extraction process is eased due to the explicitness of the
parameters.
A method to determine a coherent model is an analysis-
oriented approach for a new (and unfamiliar) design
process is discussed in more detail in [5].

8 EXAMPLE
A number of cases have been used to verify the approach
described in this paper. Three examples are illustrated
here. The design processes of these cases were
modelled using the approach described in this paper.
Implementation of the described synthesis algorithm
resulted in automatic generation of embodiments,
independent of the user requirements. Some
characteristics of the knowledge used during synthesis
are depicted in table 1. This table indicates the relative
complexity of the three cases, as far as synthesis
knowledge is concerned.

A complete synthesis tool for design of flat belt drives
(Figure 2) is developed. Analysis methods and synthesis
knowledge is extracted from a mechanical engineering
handbook. Embodiment parameters are belt material,
width and thickness, disc diameters and axis distance.
Auxiliary parameters are transmission ratio, overall length,
enclosed arc around smallest disc, 2 ‘utility factors’ and
length of the belt. Scenario description is given in terms of
rotation speed, torque and power, for both discs.

Figure 2: flat belt drive

A second example is the optical chamber of an x-ray
fluorescence instrument, Figure 3. This chamber is the
heart of an instrument that determines the chemical
composition of a material. The x-ray source radiates the
sample material through a diaphragm. The sample,
contained in a holder, expels characteristic photons into a
detector. This in turn reveals the composition of the
sample.

Figure 3: optical chamber [copyright PANalytical BV]

The synthesis phase of the design process is automated
for baggage transport networks, Figure 4. This design
consists of a modular arrangement of transport units and
equipment that process the pieces of baggage. The
knowledge base of this design is continuously being
expanded, so table 1 contains a snapshot. Embodiments
for this network contain many hundreds of transport
connections.

Figure 4: transport network

[copyright VanderLande Industries]

CONCLUSION
The presented approach enables modelling of a design
process, design artefact and synthesis knowledge for
well-defined parametric design. The validity ranges from
machine elements and product components to transport
networks. The modelling process (extraction and
structuring) is aided by the explicitness of the information
content. The model is suitable for automation and
development of computational synthesis tools as well as
documentation of design knowledge.

ACKNOWLEDGEMENT
The authors gratefully acknowledge the support of the
Dutch Innovation Oriented Research Program ‘Integrated
Product Creation and Realization’ (IOP-IPCR) of the
Dutch Ministry of Economic Affairs.

REFERENCES
[1] Visser, W., Designing as Construction of

Representations: A Dynamic Viewpoint in Cognitive
Design Research. Human-Computer Interaction,
2006, Volume 21, pp. 103-152, Lawrence Erlbaum
Associates, Inc.

[2] Studer, S, Benjamins, V.R, Knowledge Engineering:
Principles and methods, Data & Knowledge
Engineering 25, pp. 161-197, 1998, Elsevier
Science

[3] Bento, J., Feijó, B., Smith, D.L., Engineering design
knowledge representation based on logic and
objects. Computers & structures, 1997, vol. 63, no.
5, pp. 1015-1032, Elsevier Science Ltd, Great
Britain

[4] Zhang, W.Y., Tor, S.B., Britton, G.A. prototype
Knowledge-Based System for Conceptual Synthesis
of the Design Process. Int J Adv Manuf Technol,
2001, 17: 549-557, Springer-Verlag London

[5] Schotborgh, W.O., Tragter, H., Kokkeler, F.G.M.,
van Houten, F.J.A.M., A Method to Translate an
Engineering Design Process into a Structure for
Computational Synthesis, 16th International
Conference on Engineering Design, Proceedings of
ICED’07, 2007, pp. 65-66, Paris

Table 1: characteristics of the knowledge base

 Belt drive Optical chamber Baggage handling system
parameters 18 46 191

element types 1 8 48
expand rules 0 4 45
resolve rules 28 22 80

constrain rules 21 20 18

