
Non-Functional Requirements: Size Measurement and
Testing with COSMIC-FFP

M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

m.kassab@utwente.nl, ormandj@cse.concordia.ca,

m.daneva@utwente.nl, Alain.Abran@etsmtl.ca

Abstract. The non-functional requirements (NFRs) of software systems are well known to
add a degree of uncertainty to process of estimating the cost of any project. This paper
contributes to the achievement of more precise project size measurement through
incorporating NFRs into the functional size quantification process. We report on an
initial solution proposed to deal with the problem of quantitatively assessing the NFR
modeling process early in the project, and of generating test cases for NFR verification
purposes. The NFR framework has been chosen for the integration of NFRs into the
requirements modeling process and for their quantitative assessment. Our proposal is
based on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the
ISO/IEC 19761 standard. Also in this paper, we extend the use of COSMIC-FFP for NFR
testing purposes. This is an essential step for improving NFR development and testing
effort estimates, and consequently for managing the scope of NFRs. We discuss the merits
of the proposed approach and the open questions related to its design.

1. Introduction

The increasing software complexity and competition that exist in the software
industry have highlighted the need to consider non-functional requirements (NFRs) as
an integral part of software modeling and development. According to IEEE software
engineering standard 830-1998 [3], NFRs describe not what the software will do, but
how it will provide the means to perform functional tasks; for example, software
quality attributes, software design constraints and software interface requirements.
During requirements elicitation and analysis, NFRs tend to be stated in terms of either
the qualities of the functional tasks or the constraints on them, which are expressed as
functional requirements (FRs), as the former affect the semantics of the latter.

Empirical reports consistently indicate that improperly dealing with NFRs leads to
project failures, or at least to considerable delays, and, consequently, to significant
increases in the final cost [1, 2]. While estimating development effort is a major
activity in managing the scope of the requirements, this activity has, by and large,
been neglected for NFRs in practice. The need to deal comprehensively with the
effect of NFRs on the effort of building the software project generates the need to
measure their functional size, as effort is a function of size [18]. In this paper, the use
of the COSMIC-FFP [10, 11] functional size measurement method is proposed to
quantify NFR size in a software project. To our knowledge, this is the first attempt to
deploy such an approach for NFRs in a project and to generate test cases to verify
them.

mailto:m.kassab@utwente.nl
mailto:ormandj@cse.concordia.ca
mailto:m.daneva@utwente.nl
mailto:Alain.Abran@etsmtl.ca

2 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

The NFR framework outlined in [4] has been chosen to illustrate the applicability
of the proposed measurement method. It was the first framework to propose a
process-oriented and qualitative decomposition approach for dealing with NFRs in
requirements engineering (RE). A cornerstone of this framework is the concept of the
“softgoal”, which is used to represent the NFR. A softgoal is a goal that has no-clear
cut definition or criteria to determine whether or not it has been satisfied. In fact, the
framework speaks of softgoals being “satisficed” rather than satisfied, to underscore
their ad hoc nature, both with respect to their definition and to their satisfaction. One
drawback of the softgoal approach implied in the NFR framework becomes apparent
when we look at solution architecture tradeoffs. The term softgoal reflects the fact
that extensive interdependencies exist between the various NFRs, and it is often not
feasible to entirely fulfill each and every system goal. Tradeoffs must therefore be
made. To understand these tradeoffs with respect to the NFR framework, the subgoals
are decomposed into operationalizations, which provide both candidate design
solutions for achieving the goal and the basis for weighing potential tradeoffs.
However, the decision-making process for selecting from among different candidate
operationalizations to satisfice a particular NFR is a qualitative process, which,
typically, is not based on defined quantitative criteria. Furthermore, this process is
only carried out informally, leaving the knowledge and the rationale that led to
decisions undocumented. This makes it difficult to trace back to the selection criteria
on which the decisions were developed.

The above shortcomings underline the need to consider criteria that make it easier
for analysts and software engineers to weigh the various design options and make
tradeoffs in quantitative terms. In this paper, we address this need by suggesting that
the softgoal concept in the context of the NFR framework be coupled with NFR
functional size. Having the functional size stated for the operationalization softgoal in
this way provides quantitative criteria for the decision-making task to select the most
suitable operationalizations from the candidate alternatives. This paper also extends
the use of COSMIC-FFP for NFR verification purposes by combining the functions
measured by the COSMIC-FFP measurement procedure with a black box testing
strategy. The test generation method from the earlier research is adopted for the
purpose of generating scenario-based test cases from COSMIC-FFP models [28].

The rest of this paper is organized as follows: Section 2 presents related work and
introduces the NFR framework. In section 3, the approach to measuring the size of
NFRs is explained. Section 4 discusses the generation of test cases for NFR
verification. Section 5 provides a critical discussion of the approach. Section 6
summarizes the key points of the solution proposal and discusses avenues for future
research.

2. NFR Framework and Related Work

The NFR framework [4] is a process-oriented and goal-oriented approach aimed at
making NFRs explicit and putting them at the forefront of the stakeholder’s mind.

Size Measurement of NFRs and their Testing with COSMIC-FFP 3

Putting the framework in practice implies executing the following interleaved tasks,
which are iterative:

1. Acquiring knowledge about the system’s domain, FRs and the particular kinds
of NFRs of a particular system;

2. Identifying NFRs as NFR softgoals and decomposing them into a finer level;
3. Identifying the possible design alternatives for meeting NFRs in the target

system as operationalizing softgoals;
4. Dealing with ambiguities, tradeoffs, priorities and interdependencies among

NFRs and operationalizations;
5. Selecting operationalizations;
6. Supporting decisions with a design rationale;
7. Evaluating the impact of operationalization selection decisions on NFR

satisfaction.
The operation of the framework can be visualized in terms of the incremental and

interactive construction, elaboration, analysis and revision of a softgoal
interdependency graph (SIG). Figure 1 presents an example of a SIG with NFR
softgoals representing performance and security requirements for customer accounts
in a credit card system.

In terms of related work, Paech et al. [6] recommend that FRs, NFRs and
architecture be tightly co-developed and addressed in a coherent and integrated
manner. These authors suggest that NFRs be decomposable into more refined NFRs
and additional FRs, as well as architectural decisions. We adopt this proposal, while
quantifying the NFRs as described in section 3.

4 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

Performance[Account] Security[Account]

ResponseTime
[Account] Integrity Confidentiality Availability

Complete
accounts

Accurate
accounts Authorize access

to account information

Validate
[AccountAccess] Identify[users]

Authenticate
[userAccess]

Use P.I.N. Compare
[signature]

UseUncompressed
Format

UseIndexing

Audit
[Account]

-
+

+

+
+

+

Require
additional

ID

√ √

√

√

√
√

√

√

√

x

Figure 1. Softgoal interdependency graph for performance and security in a credit
card system [4]

3. Measuring the size of NFR

For the purposes of this research, we have chosen to use the functional size
measurement method COSMIC-FFP [10] developed by the Common Software
Measurement International Consortium (COSMIC) and now adopted as an
international standard (ISO/IEC 19761 [11]). Our solution proposal is presented in
Figure 2. It shows how the functional size measurement of NFRs is integrated into the
NFR framework. We see the NFR framework as the vehicle for eliciting,
documenting and operationalizing NFRs. We then propose that COSMIC-FFP be
applied to obtain the NFR functional size data. These data are then provided to the
relevant stakeholders to assist them in their decision-making process.

Size Measurement of NFRs and their Testing with COSMIC-FFP 5

Figure 2. The solution proposal: a high-level view.

3.1 The COSMIC_FFP method

The COSMIC-FFP measurement method conforms to all ISO requirements (ISO
14143-1 [12]) for functional size measurement, and addresses some of the major
theoretical weaknesses of the earlier Function Point Analysis techniques like
Albrecht’s Function Points [13], which dates back almost 30 years to a time when
software projects were much smaller and less complex. COSMIC-FFP, in contrast to
[13], focuses on the “user view” of functional requirements, and is applicable
throughout the development life cycle, from the requirements phase right through to
the implementation and maintenance phases.

The process of measuring software functional size using the COSMIC-FFP method
implies that the software functional processes and their triggering events be identified.
In COSMIC-FFP, the unit of measurement is the data movement, which is a base
functional component that moves one or more data attributes belonging to a single
data group. It is denoted by the symbol Cfsu (Cosmic Functional Size Unit). Data
movements can be of four types: Entry, Exit, Read or Write. The functional process is
an elementary component of a set of user requirements triggered by one or more
triggering events, either directly or indirectly, via an actor. The triggering event is an
event occurring outside the boundary of the measured software and initiates one or
more functional processes. The subprocesses of each functional process are sequences
of events; a functional process comprises at least two data movement types: an Entry
plus at least either an Exit or a Write. An Entry moves a data group, which is a set of
data attributes, from a user across the boundary into the functional process, while an
Exit moves a data group from a functional process across the boundary to the user

6 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

requiring it. A Write moves a data group lying inside the functional process to
persistent storage, and a Read moves a data group from persistent storage to the
functional process. Figure 3 illustrates the generic flow of data attributes through
software from a functional perspective.

Figure 3. Generic flow of data attributes through software from a functional
perspective [10]

3.2 Size measurement on NFRs

In our approach, we apply COSMIC-FFP to NFRs stated in verifiable terms. This
means that NFRs are stated in terms of crisp indicators with defined acceptable
values; thus, it is possible to verify the satisfaction level of those NFRs by comparing
the acceptable values with the actual achieved values.

Two views on the size of NFRs are tackled: (1) First, COSMIC-FFP is used to
measure the functional size for those operationalizations that correspond to functional
processes/functions; and (2) then COSMIC-FFP is used to measure the functional size
of the quality control that NFRs require at runtime. NFR quality control is the
operation/function that aims to verify the satisfaction of NFRs at runtime (e.g.
comparing the acceptable with the actual values).

We state that the size of verifiable NFRs is the sum of both views explained above.
The addition of the size values is theoretically valid because COSMIC-FFP size has a
unique unit of measurement, the Cfsu, thus the COSMIC-FFP size measure is at least

Size Measurement of NFRs and their Testing with COSMIC-FFP 7

on the ratio scale. For further discussion on the scale types and the representational
theory of measurement, see [27].
Illustration. The NFR size measurement approach is illustrated on the “availability”
NFRs from the credit card system accounts example (see Figure 1).

Two functional processes have been identified in the COSMIC-FFP model for the
NFR availability, one for each view of the NFR size measurement explained above.
The functional processes are: i) availability quantification operationalization, for
sizing the reliability of the availability; and ii) availability monitoring, for sizing its
monitoring at runtime. Our assumption here is that the availability measurement
model is time-dependent, and thus requires a record of the history of system failures,
which is stored by the Credit Card System. Moreover, each change in the failure
history triggers an update of the availability level, which is modeled as the
Availability Quantification process in Table 1. At the same time, the Credit Card
System can request a report on the current availability level. This request triggers the
Availability Monitoring process (see Table 1), which analyzes the current availability
level and issues an “acceptable level” or “critical level” report, depending on the
analysis results.

The COSMIC-FFP functional processes and their functional size calculation are
illustrated in Table 1. (In this table, the heading of the fifth column, DTM, stands for
Data Movement Type.) The total COSMIC-FFP functional size of the availability
operationalization and monitoring is 7 Cfsu.

Table 1. COSMIC-FFP Data Movements
Process
ID

Process
description

Triggering
event

Data movements
Identification

Data Group DMT Cfsu

1.1 Availability
Quantification

New Failure
Data Signal

Receive triggering event

New Failure
Data Signal E 1

 Read Failure History Failure
History R 1

 Write Current Availability
Level

Current
Availability W 1

 Functional size in Cfsu = ΣCfsu 3
1.2 Availability

Monitoring
Monitor
Availability
Signal

Receive triggering event

Monitor
Availability
Signal

E 1

 Read Target Availability Level Target
Availability R 1

 Read Current Availability
Level

Current
Availability R 1

 Send acceptable/critical level
message

Report X 1

 Functional size in Cfsu = ΣCfsu 4

 Total COSMIC-FFP points in Cfsu = ΣCfsu 7

Similarly, we perform this measurement for all non-decomposable

operationalizations that correspond to functional operations/functions. Calculating the
functional size of the NFRs is a bottom-up measuring process, in which the selected

8 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

operationalizations are aggregated to calculate the sub-NFRs and the respective NFRs
until the final value is obtained. The functional size of the control functions is added
during this process when applicable (see Figure 4 for an illustration of the process).

This task should be performed immediately following task 3 and prior to task 4 in
the NFR framework process presented in section 2. The measurement data will
provide the rationale required for selecting the appropriate operationalizations. For
example, the two operationalizations “Compare Signature” and “Use P.I.N.” are 3
Cfsu and 2 Cfsu in size respectively; we have to choose one operationalization to
satisfy “Authenticate”, and then we may consider choosing “Use P.I.N.”, as it has a
smaller functional size and will thus require less effort/cost to be implemented.

At the same time, some of the NFRs, such as availability, require continuous
control (quantification and analysis of the measurement data) at runtime to obtain
feedback on the overall quality of the application. We consider monitoring the quality
NFR as an NFR subprocess attached to the corresponding softgoal, and introduce a
special symbol to denote such a subprocess:

The subprocesses are further refined into Quantification and Monitoring
operationalizations, the size of which is measured with the COSMIC-FFP method in
case these subprocesses correspond to functions (see, for instance, Table 1). This
approach is illustrated on the Availability NFR (see Figures 4 and 5).

Performance[Account] Security[Account]

ResponseTime
[Account] Integrity Confidentiality Availability

Complete
accounts

Accurate
accounts Authorize access

to account information

Validate
[AccountAccess] Identify[users]

Authenticate
[userAccess]

Use P.I.N. Compare
[signature]

UseUncompressed
Format

UseIndexing

Audit
[Account]

-
+

+

+
+

+

Require
additional

ID

√ √

√

√

√
√

√

√

√

x

3 2

2 4 3

9

9 7

2

2

2

18

Figure 4: Calculating functional size for NFRs

Size Measurement of NFRs and their Testing with COSMIC-FFP 9

Figure 5: Refinement of the Availability control subprocess

Availability

Availability
Quantification

√ √
3 4

7

Availability
Monitoring

Black-box scenario-based test cases for NFR are then derived from the

corresponding COSMIC-FFP models, which helps ensure conformance of the final
product to user expectations. The test cases are generated through a mapping of
scenarios to sequences of events in time (or data movements in COSMIC-FFP), as
described below.

4. Testing NFRs

Scenario-based testing is a typical black-box testing methodology at the system
level [28]. One of its greatest benefits is that it provides testers with a set of assets that
can directly drive the testing process. The scenario-based black-box test cases for
verifying NFRs are generated through mapping the corresponding COSMIC-FFP
functional processes to sequences of events in time (or data movements in COSMIC-
FFP). The procedure for generating a test case is illustrated on availability monitoring
(see section 3.2), which in this instance is generated from the corresponding
functional processes (see Table 1, process 1.2), and in turn mapped to the following
sequence of events:

Test case ID Test case description

t1

Receive Monitor Availability Signal, Read Target Level, Read
Current Level, Send Result

Next, the specific conditions that would cause the test case to execute are

identified, and real data values are supplied. The details of the test derivation from
COSMIC-FFP models are described in [28].

5. Discussion

While our proposed solution to measuring the size of NFR makes sense and
sounds intuitive, it is far from being issue-free or straightforward to apply. If its
purpose is to provide estimators with more realistic size and effort estimates, then we

10 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

have to make a fine distinction between the two directions estimators may take in
quantifying NFRs.

Some publications [22, 23] suggest that, in order for estimators to be able to
obtain size and effort numbers for the NFRs in a project, the NFRs must be first
decomposed into a series of corresponding FRs. Once this has been done, a functional
size measurement method is considered to be the suitable vehicle for quantifying the
contribution of NFRs to software size, and, ultimately, to the effort it would take to
build the software project. In these publications, it is assumed that it makes sense to
decompose all NFRs into FRs. Recently, however, this assumption has become a
subject of discussion among some RE researchers [14, 15, 16], who support the
position that not all NFRs should be decomposed into FRs. Clearly, there is
agreement in the literature that the majority of NFRs can and should be decomposed
into FRs, but these RE researchers maintain that there are specific types of NFRs
which cannot be decomposed into FRs. Specifically, the goal-oriented RE community
[14,15,16] considers that NFRs should not be decomposed into FRs if: (i) the NFRs
are normative, that is, if they say how the actor in the system environment shall
behave when interacting with the system [16]; or (ii) the NFRs serve as criteria for
making architectural design choices; that is, the function of these NFRs is to help
evaluate alternatives. Examples of such requirements are the statements “Time zone
information shall be kept together with a local timestamp” [17] and “For all Quebec
users, the system’s language shall be French”. In a typical requirements document,
these NFRs would be stated in textual form and would not be present, for example, in
a requirements diagram (e.g. a use case) which documents the business process and
data flows that the system under development must support. Certainly, we can
decompose the NFR from “The system’s language shall be French” to an FR like
“Each Quebec user is offered the functionality to select a language,” “…to select all
documents that should use this language,” “…to generate reports in this language,”
and so on.

However, it may well make more sense to consider the NFR as a criterion for
exploration and for making choices among alternative architecture options. This
consideration is motivated by the following observations: (1) the above
decomposition into an FR (which is needed for effort estimators and is used for
determining size) refers to functionality that the user did not ask for at the time of RE;
(2) the NFR is a norm to which the user and the system must conform [16], in a
bilingual environment (such as Canada or Belgium), for example, where the choice of
language is not dictated by user request but by corporate standards and national
regulations; and (3) the language of an application tells us about the project context,
hence it may point to a contextual factor that may well be a source of risk [18] in
terms of obtaining realistic size and effort estimates. Moreover, global applications,
like ERP-packaged solutions, which typically produce language-specific reports for
specific user groups, should be able to prepare reports in the language specified by the
user group. The design architects must then choose a way to set up such a multi-
language NFR.

Drawing on this analysis of the RE literature, we incorporated John Mylopolous’
view of NFRs as architectural design selection criteria [14] in our approach to
estimating the size and effort associated with NFRs. Our position is also based on the
recommendations of software measurement practitioners [18], who maintain that we,

Size Measurement of NFRs and their Testing with COSMIC-FFP 11

the estimators, need to know the project context first and then use our knowledge of
that context to arrive at better estimates. It is our understanding, and our position in
this paper, that, if the knowledge of the context of how a system will be used is
reflected, and captured, in the NFRs, then those NFRs that are not decomposable into
FRs should be used as criteria for making design decisions. These decisions are made
at two levels [18]: at the micro level (for example, how to design a particular module
of a system), and at the macro level (for example, which software architecture to
employ). Our position also implies that, whenever we make an architectural design
decision, we can potentially affect the accuracy of the cost estimates, since making
those decisions introduces uncertainty into the estimation process [18]. This issue is
aggravated in the RE phase, where we typically have an incomplete picture of the
project context. As a result, there is much more uncertainty surrounding the effort
required to satisfactorily develop the capabilities to which the NFRs refer. Because
we have to judge how significant these uncertainties (due to NFRs) are, we have to
account for them in reporting the final project size assessment.

Therefore, we take into account that cost estimation needs are expected to vary
based on the nature of the project, a fact which will also be reflected in the NFRs. For
example, a brand-new technology, like implementing a cross-business unit-integrated
Enterprise Resource Planning (ERP) system [19], the users of which do not know
what their NFRs look like, has more sources of uncertainty than an ERP upgrade
project. We can reduce these uncertainties significantly by having the NFR
measurement activity explicitly included in reporting the total project size
measurement value made up of both FR and NFR size. Consequently, we will
establish a more precise estimation of the actual development effort of the system. We
assume that, based on particular estimation needs, we may even consider using
different sizing methods (COSMIC or FP and their variants) to address the NFR issue
in a specific project.

6. Summary and future research plans

This paper reports on an initial solution to deal with the problem of quantitatively
assessing the NFR modeling process early in the project, and of generating test cases
for NFR verification purposes. The NFR Framework approach has been chosen to
illustrate the integration of NFRs into the requirements modeling process, and for
describing NFR quantitative assessment. Our proposal relies on the COSMIC-FFP
functional size measurement method.

To the best of our knowledge, the software industry lacks quantitative effort
estimation methods for NFRs, and would certainly benefit from the precise and
objective size measurement approach proposed in this paper. This is the motivation
for three research activities planned for the near future:

• Determine how the size of NFRs impacts the total project cost.
• Conduct case studies to assess the usefulness of the technique; for example, to

research what happens when models of operationalized NFRs become large.
• Derive guidelines for how to systematically deal with those NFRs that can be

decomposed into FRs up to a certain level.

12 M. Kassab, O. Ormandjieva, M. Daneva, A. Abran

References

1. Lindstorm, D.R., “Five Ways to Destroy a Development Project,” IEEE Software,

September 1993, pp. 55-58.
2. Breitman, K. K, Leite J.C.S.P. and Finkelstein, Anthony, "The World's Stage: A Survey on

Requirements Engineering Using a Real-Life Case Study,” Journal of the Brazilian
Computer Society No 1 Vol. July 6, 1999, pp. 13:37.

3. IEEE Std. 830-1998. “IEEE recommended practice for software requirements
specifications,” IEEE Transactions on Software Engineering, 1998.

4. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Nonfunctional Requirements in
Software Engineering,” Kluwer Academic Publishing, 2000.

5. Andrew, J, “An Approach to Quantitative Non-Functional Requirements in Software
Development,” Proceedings of the 34th Annual Government Electronics and Information
Association Conference, 2000.

6. Paech, B., A. Dutoit, D. Kerkow, A. von Knethen, “Functional requirements, non-
functional requirements and architecture specification cannot be separated -- A position
paper,” REFSQ 2002.

7. Moreira, J. Araujo, and I. Brito, “Crosscutting Quality Attributes for Requirements
Engineering,” In 14th International Conference on Software Engineering and Knowledge
Engineering, pp. 167–174, Ischia, Italy, 2002.

8. D. Park and S. Kand, “Design Phase Analysis of Software Performance Using Aspect-
Oriented Programming,” In 5th Aspect-Oriented Modeling Workshop in Conjunction with
UML 2004, Lisbon, Portugal, 2004.

9. Adelman, L, Donnell, M.L., “Evaluating decision support systems: A General framework
and case study,” In S.J. Andriole (Ed.), Microcomputer Decision Support Systems: Design,
Implementation, and Evaluation (pp. 285-310). Wellesley, MA: QED Information Science
1986.

10. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D. and Symons, C., COSMIC FFP –
Measurement Manual (COSMIC implementation guide to ISO/IEC 19761:2003), École de
technologie supérieure – Université du Québec, Montréal, Canada, 2003, URL:
http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp .

11. ISO/IEC 19761. Software Engineering – “COSMIC-FFP - A functional size measurement
method,” International Organization for Standardization – ISO, Geneva, 2003.

12. ISO 14143-1. “Functional size measurement - Definitions of concepts,” International
Organization for Standardization – ISO, Geneva, 1988.

13. Albrecht, A.J. and Gaffney, J.E., Software Function, “Source Lines of Code, and
Development Effort Prediction: A Software Science Validation,” IEEE Trans. Software
Eng. vol. SE-9, no. 6, pp. 639-648, Nov. 1983.

14. Mylopoulos, J., “Goal-oriented Requirements Engineering,” Keynote speech at the 14th
IEEE International Conference on Requirements Engineering, IEEE Computer Society
Press, 2006.

15. Glinz, M., “Rethinking the Notion of Non-Functional Requirements,” Proc. of the 3rd
World Congress for Software Quality, Munich, Germany, 2005.

16. Wieringa, R., “The Declarative Problem Frame: Designing Systems that Create and Use
Norms,” Proc. of the 10th IEEE International Workshop on Software Specification and
Design, IEEE Computer Society Press, 200, pp. 75-85.

http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp

Size Measurement of NFRs and their Testing with COSMIC-FFP 13

17. Wroblewski, M., “Quality Governance and Production, Software Quality and Service-
oriented Architecture,” Proc of 9th International Conference on Quality Engineering in
Software Technology, Berlin, 2006, DPUNKT Verlag, pp. 333-344.

18. Pfleeger, S. L., F. Wu, R. Lewis, “Software Cost Estimation and Sizing Methods: Issues
and Guidelines,” RAND Corporation, 2005.

19. Daneva M., “ERP Requirements Engineering Practice: Lessons Learnt,” IEEE Software,
21(2), pp. 26-33.

20. Mylopoulos, J., Chung, L., Nixon, B., “Representing and Using Nonfunctional
Requirements: A process Oriented Approach.” IEEE Trans. S.E. 18, 6(1992) 483-497.

21. Rosa, N.S., Cunha, P.R.F., Justo, “G.R.R.: ProcessNFL: A language for Describing Non-
Functional Properties,” Proc. 35th HICSS, IEEE Press (2002).

22. ISBSG, Practical Software Estimation, 2nd Edition, “International Software Benchmarking
Standard Group,” 2006.

23. FISMA, Experience Situation Analysis, Finnish Software Metrics Association, 2001,
http://www.fisma.fi/wp-content/uploads/2006/09/fisma_ situation _
analysis_method_nd21.pdf

24. Alves, C., X. Franch, J.P. Carvallo, A. Finkelstein, “Using Goals and Quality Models to
Support the Matching Analysis During COTS Selection,” Proc. of the IEEE Int. Conf. on
Component-bases Systems (2005), 146-156

25. Jureta, I., S. Faulkner, P.-Y. Schobbens, “A More Expressive Softgoal Conceptualization
for Quality Requirements Analysis,” Proc. of IEEE Int. Conf. on Conceptual Modelling
(RE06), 281-295.

26. Kaiya H. A. Osada, K. Kayjiri, “Identifying Stakeholders and Their Preferences about
NFR by Comparing Use Case Diagrams of Several Existing Systems,” Proc. of the IEEE
Int. Conf. on Requirements Engineering (RE04), 112-121.

27. Norman E. Fenton, Shari Lawrence Pfleeger, Software Metrics: A Rigorous and Practical
Approach, PWS Publishing, 2nd edition, revised printing, 1998, ISBN 0-534-95425-1.

28. Manar Abu Talib, Olga Ormandjieva, Alain Abran, Adel Khelifi, Luigi Buglione.
“Scenario-based Black-Box Testing in COSMIC-FFP: a Case Study.” ASQ Software
Quality Professional Journal 8 (3), June 2006, 23-33.

http://www.fisma.fi/wp-content/uploads/2006/09/fisma_%20situation%20_%20analysis_method_nd21.pdf
http://www.fisma.fi/wp-content/uploads/2006/09/fisma_%20situation%20_%20analysis_method_nd21.pdf

	3.1 The COSMIC_FFP method
	3.2 Size measurement on NFRs

