
Service Discovery Using Bloom Filters

Patrick Goering Geert Heijenk

Department of Computer Science,
University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
patrick.goering@utwente.nl geert.heijenk@utwente.nl

Keywords: Service Discovery, Bloom filters

Abstract

A protocol to perform service discovery in ad-
hoc networks is introduced in this paper. Attenuated
Bloom filters are used to distribute services to nodes
in the neighborhood and thus enable local service dis-
covery. The protocol has been implemented in a dis-
crete event simulator to investigate the behavior in
case of a multihop mobile ad-hoc network with nodes
that all have services to offer. Methods to optimize the
used bandwidth, which is a scarce resource in wireless
networks, are investigated. Experiments performed
with the simulator suggest that the proposed service
discovery system enables users to find local services
in a multihop ad-hoc network efficiently. The costs
for advertising can be kept low, whereas the additional
costs for queries set due to so-called false positives are
moderate.

1 Introduction

Nowadays small devices are getting more and
more popular. In the near future many people will
carry multiple devices like a phone or a PDA with
connected peripherals. People want to be able to
find and connect these devices together as they may
need information or services from one of their de-
vices. Further people want to be able to find devices
of other users or organizations in the vicinity that of-
fer services to the public that they can make use of.
Several solutions exist for service discovery, but most
have disadvantages and cannot be used as such in the
context of a wireless multihop ad-hoc network as de-
scribed here.

This paper introduces a service discovery protocol
for local ad-hoc networks based on the use of atten-
uated Bloom filters. Our solution focuses on service
discovery in the local area, where a large number of
nodes are mostly connected through a wireless tech-
nology in an ad-hoc multihop fashion. The amount of

bandwidth used by sending advertisements depends
on the number of nodes in the network and the dis-
tance in which services can still be found. Another
important aspect of our protocol is the time it takes for
a service to propagate through the network. Further
we want to reduce the number of advertisement mes-
sages needed to propagate a service change through
the network. Finally we want to know the effect of
changing the Bloom filter width with respect to the
query load caused by so-called false positives in the
network.

This paper is organized as follows. Section 2 de-
scribes other work related to service discovery in ad-
hoc networks. Section 3 provides an overview of
Bloom filters, attenuated Bloom filters, and a method
to use those in our service discovery solution. Section
4 introduces our protocol and discusses some alterna-
tive approaches. Section 6 gives simulation results of
the protocol, and Section 7 presents the conclusions
and future work.

2 Related Work

For service discovery in computer networks sev-
eral protocols have been developed, each with their
own strengths and weaknesses in different areas. We
can distinguish between centralized and distributed
solutions. Centralized protocols use a central node, a
directory, which stores all services available, while in
a distributed system all nodes keep information about
a part of the available services.

Directory based service discovery systems like
SLP [1, 2] most of the time assume a connection
to some infrastructure. Instead of a single directory
server there could be multiple directory servers avail-
able for redundancy. A hierarchy of directory servers
can be used to make the system more scalable. Al-
though this does not need to be a single point of fail-
ure, all devices in the network have to communicate
with a directory server. The communication path and



thus the nodes in the communication path towards a
directory server will likely be loaded more than the
rest of the network. This is undesirable for mobile
devices in ad-hoc networks that have limited network
capacity and power. Moving nodes make it more dif-
ficult to keep a stable communication path, as these
protocols where not designed for these kind of net-
works. Furthermore the directory server itself might
disappear or get out of range for some nodes.

A distributed system has some advantages in a mo-
bile ad-hoc network [3] and can be proactive or re-
active. In a proactive system services are announced
through broadcasts, while in a reactive system queries
for services are propagated through the network.

Zeroconf [4], e.g. implemented as Apple Bonjour,
is an IETF protocol that enables the discovery of ser-
vices on a local area network. A usable IP network
is automatically created without the need for config-
uration or special servers, but it is limited to a single
subnet.

A peer to peer (P2P) based solution has the ad-
vantage of being distributed over a larger number of
nodes in the network. E.g. Chord [5] can be used
to distribute objects evenly over a large number of
nodes, but the location of a service description can
be placed anywhere in the network. It looks more ef-
ficient and robust to have services and descriptions
at least close to each other. When a network clus-
ter gets disconnected from the infrastructure, all local
services should still be available to the nodes in that
cluster. Further a group or cluster of nodes has to be
established before the system can be used. Also when
all nodes have knowledge about all available services
there will be problems with scalability. In the Inten-
tional Naming System (INS) [6, 7] this is solved by
separating sets of nodes in virtual spaces. Nodes are
only aware of all services in their virtual space and
have to rely on a directory server entity to find ser-
vices in other virtual spaces.

In [8] the newscast epidemic protocol is used to
provide a robust overlay network that adapts to large
changes in a dynamic network. It uses quite some
bandwidth to accomplish this, which makes it less
suitable for wireless networks. For service discov-
ery in ad-hoc networks, where we want to discover
services located nearby, we need a fully distributed
system, suitable for multihop networks. Many nodes
in this ad-hoc network will be mobile with a wireless
network interface. Furthermore the system should
work as soon as a new node arrives, without the need
to pre-establish a cluster or group.

Attenuated Bloom filters are used in [9] for context
discovery. There, an analysis is done on the false pos-
itive chance and the size and depth of Bloom filters.

3 Service Discovery Using Attenuated
Bloom Filters

3.1 Overview Bloom Filters

Bloom filters were introduced in [10] as a hash
coding technique that provides a trade-off between
space usage or hash size and time needed to test the
membership of a text string in a given set of strings.
Several strings are represented in one array of bits.
A small chance of false positives is allowed, that is
a string is not a member of the given set while the
system claims it probably is. A Bloom filter consists
of an array ofw bits, initially all set to 0. A number
of b independent hash functions is used to map a text
string to the Bloom filter. For every string represented
by the Bloom filterb bits are set as specified by the
hash functions. A false positive appears when a string
is represented by bits already set by one or more of
the other strings represented in the Bloom filter. For
each hash result, there may be a hash of one or more
other strings that give the same result.

A false positive might not be a big problem as long
as the chance of it occurring is small enough. When
an application tries to contact a resource that does not
exist, because of a false positive, the application will
find out and try another resource that also matches
the query. As we want to use Bloom filters in a dis-
tributed manner, these queries generate network traf-
fic. In wireless ad-hoc networks bandwidth and bat-
tery power are scarce resources, therefore we want to
prevent unneeded traffic in the network as much as
possible. At the same time the delay to receive a re-
sponse back for a query should be small, even when
some nodes are mobile.

Table 1: Bloom filter example
0 1 2 3 4 5 6 7
1 1 0 1 0 1 1 0

In the example Bloom filter given in Table 1 sev-
eral services are represented. When a user wants to
test whether a color printer is one of these services,
a hash function will be used on the string ”Color
Printer”. Suppose this hash function returns (0, 3, 6).
This means the color printer is probably represented
in this filter as the bits 0, 3 and 6 are all enabled.
When the hash function on the string ”Camera” re-
turns (1, 4 ,5) this signifies that the camera service
definitely is not a member of the set of service in the
Bloom filter, as bit number 4 is false. As strings are
added to the Bloom filter, more bits in the filter get
set. Also the possibility of overlap in the bits that are
set for specific services will grow with the number of
strings the filter represents.

There is a trade-off between the probability of false
positives, the size of the filter, and the time needed



to compute the hash values. In our system comput-
ing these hash values is an operation that needs to be
done only once per query in the node that wants to
send the query and once per service in a node that
advertises services. We do not consider this hashing
to be a bottleneck in our system. The bandwidth us-
age can be optimized by choosing an appropriate filter
size, because in case of a false positive more packets
need to be sent for the same query. Bloomfilters have
some interesting properties: they are simple, efficient
in testing whether a string is represented and efficient
with space. The number of bits needed to represent a
string is low, thus allowing for an efficient transmis-
sion of queries. The computation needed to compare
a filter with a query is a comparison whether all bits
are set. Also several filters can be combined in one fil-
ter by using the OR operator on the original filters. As
more services are represented in the Bloom filter the
chance of a false positive gets larger. The intersection
of filters, as a measure of similarity, can be taken by
the AND operator. This can be used to check whether
a service is represented by the Bloom filter.

Although Bloom filters are already quite small,
it is possible to compress them before transmission
[11]. The Bloom filter width can be increased while
the packet size stays the same, thus allowing a lower
false positive probability. Or for the same false posi-
tive probability the bandwidth used can be decreased.
The disadvantage is that it takes time and computing
power to compress and decompress the Bloom filters,
especially on some of the simple devices that also
need to be supported.

3.2 Overview Attenuated Bloom Filters

In [12] attenuated Bloom filters have been intro-
duced as a method to optimize the performance of
location mechanisms especially when objects to be
found are located nearby. An attenuated Bloom fil-
ter is an array of standard Bloom filters of depthd.
Every row in the attenuated Bloom filter represents
objects at different distances. The further away an
object is located the more the respective filter is at-
tenuated. Thus local replicas of an object are given a
higher priority. Every outgoing link will have a sepa-
rate attenuated Bloom filter. This makes it possible to
select a link where an object most likely can be found.

Table 2: Attenuated Bloom filter example
0 1 2 3 4 5 6 7

First Hop 1 1 0 1 0 1 1 0
Second Hop 1 0 0 0 1 0 0 1

Third Hop 1 1 1 1 0 0 1 0

In the attenuated Bloom filter of Table 2 there are
three layers. E.g. the service ”Color Printer” (0, 3, 6)
is available both one and three hops away, while the
service ”speakers” (0, 4, 7) can be found in two hops.

3.3 Service Discovery With Attenuated
Bloom Filters

Every node has an attenuated Bloom filter for each
of its neighbors. In this context a link refers to a di-
rect connection with a neighbor, so there are as many
attenuated Bloom filters as there are neighbors. When
a query arrives at a node, the node will check its at-
tenuated Bloom filters to find an outgoing link that is
a likely direction where the requested service can be
found. The number of layers per attenuated Bloom
filter is the same for all nodes in the network. The
first level of the attenuated Bloom filter contains only
the services that are one hop away. The second filter
can contain services that are two hops away and so
on. This can be used to give an advantage to services
that are nearer in the overlay network. The larger the
distance from a node, the more services will be con-
tained in the corresponding attenuated Bloom filter.
This means a larger chance of false positives. The
Bloom filter can be seen as a way to summarize avail-
able services. This could especially be useful when
many services are available. Closer to the destination
more accurate information will be available to better
match the query. When we have an attenuated Bloom
filter of depthd we can discover services that are lo-
cated up tod hops away.

4 The Protocol

4.1 Overview

There are many nodes in the neighborhood, con-
nected in an ad-hoc manner. Nodes will announce
the services they have to offer through local broadcast
messages, see section 4.2. All nodes will keep infor-
mation about what services can be reached through
their direct neighbors in attenuated Bloom filters. A
node will stored attenuated Bloom filters per node it
receives a broadcast from, which represent the num-
ber of hops away the service might be located. A
broadcast message will contain the Bloom filter that
represents services offered by the node itself and the
d-1 attenuated Bloom filters that represent services
from other nodes. Thedth attenuated Bloom filter
is not sent as it would be discarded by the next hop.
Broadcast messages will be sent in several cases: first
when there is an addition or deletion of a service in a
node. Second when a broadcast packet that contains
new information is received. Third when a node de-
tects a new neighbor we want to announce the services
reachable through that node. Fourth there will be pe-
riodic broadcasts to allow nodes that move into range
to discover the services and to keep the information
up to date. The periodic broadcasts are also used to
clean up services that have not been announced for
several periods, e.g. because the service is no longer
available or the node has moved away.



When a node wants to find a specific service it will
look in the information it has of the neighborhood and
send a query message when the service is likely to be
present, see section 4.3. These query messages will
be forwarded toward the destination as long as every
node on the path has information about the direction
the service can likely be found. Note that there could
be multiple directions with a match for the service.
When a node that has the service receives the query
message, it will send back a response message to the
node that originated the query, see section 4.4.

4.2 Sending broadcasts

Sending of broadcasts will be done at different oc-
casions as explained in Section 4. When there is a
change in the network, it is likely a node receives
broadcast packets from multiple nodes that saw this
change. To limit the amount of broadcast packets,
sending of packets is delayed. We define a broad-
cast window that starts when a broadcast packet is re-
ceived. If during this window more broadcast packets
are received, we collect the information in all of these
packets. The node will send a broadcast packet after
this window only if there where changes with respect
to the previous broadcast sent by this node.

In the case of multiple interfaces in one node we
might be able to prevent some unnecessary traffic. A
node can transmit broadcasts only to nodes that do
not have the updated information yet. In the case of
a fixed network this can be done by sending a broad-
cast further only on other interfaces and exclude the
interface the update was received from. In the case
of ad-hoc networks it is more complicated. There
is one wireless interface through which other nodes
can be reached, but it is unknown whether the nodes
received each others messages. Thus some of those
nodes might be unaware of the updated service infor-
mation received in the broadcast message. This oc-
curs for nodes that are out of reach of the original
node that sent the broadcast. Some nodes might have
more than one wireless interface using different tech-
nologies. When only one node can be reached from
a wireless interface over which a broadcast was re-
ceived it is certainly not necessary to send a broadcast
using that interface.

4.3 Sending queries

There are several methods to send queries. All of
them have advantages and disadvantages for differ-
ent kinds of scenarios. Below we will describe paral-
lel, sequential, and a hybrid form of sending queries.
Queries are uniquely identified with a query identi-
fication (Q ID) to prevent loops. When a node sees
a query it has processed before, it can just drop the
query. A problem present for all three methods is
when a client wants to get a different result back for

the same query, as it is possible that two or more ser-
vices match the query. We define a freshness identi-
fier for every packet to detect whether a client wants
a different result for the same query with the same
Q ID. A client that wants a different result will keep
the QID but increase the freshness. If a node detects
a query with a freshness that is the same as a previous
message with the same query identification, the mes-
sage is a duplicate and can be dropped. If the fresh-
ness in the packet is higher than the freshness of any
previous messages with the same query identification
the client requests a different service. The node will
forward the query to a different path than previously,
when another match exists. We are still investigating
how to select the best alternative path and which node
should select this path. Nodes will have to keep some
state information about queries. For every query that
arrives it has to keep the QID, the freshness, and the
node the query was received from. We also define
a hop count to prevent query messages travelling too
far. From the attenuated Bloom filter we know the
number of hops in which a service can be found and
thus set the hop count accordingly.

4.3.1 Parallel querying

In this alternative all query messages are sent in par-
allel. When a query message arrives at a node, the
node will check all Bloom filters for all directions.
The query message will be forwarded for each direc-
tion where a match is found, as long as the hop count
is not exceeded. This may result in multiple replies to
one query.

4.3.2 Sequential querying

The difference with parallel querying is that a query
message is sent only to the direction with the best /
first match. The best / first match could be determined
by first looking at the top layer in the Bloom filter for
all interfaces. When a match is found in the direction
of one or more interfaces, one link will be selected.
Multiple matches on the same level means the same
service, or better said multiple services that match the
same query where found. We then have to select one,
but we cannot distinguish between them on grounds
of the given query. We could however look at how
close to saturation the Bloom filter is for every match
and take the link with the least saturated Bloom fil-
ter. The chance for a false positive is smaller in this
direction. If nothing is found in the first level, con-
tinue with the second level and apply the same algo-
rithm. This means for every query some state has to
be kept, as it should be possible to also find services
that are not the best match in any intermediate node.
A strategy would be to follow a path of best matches
until a node with a matching service or a dead end



is reached. A dead end can occur in the case of a
false positive in a node. A node further along the path
will not have any matches. To solve the situation we
can use traceback. This means following the path the
original query took to the node where the dead end
was discovered in reverse direction. We go back to
a previous node, which is probably the node with the
false positive, to try a second best match there. We
continue doing tracebacks until we find the final des-
tination or we are back at the client. If we are back
at the client that means there is no service found to
match the query, only false positives. It should be
noted that for a given link there might be multiple
matches in different layers of the Bloom filter for one
specific link. Although the link was already tried, we
might want to try again with a higher maximum num-
ber of hops to forward the query.

4.3.3 Hybrid querying

There is a tradeoff between parallel and sequential
sending of queries. The parallel method will have a
smaller round trip time for a query, it takes less time to
find out whether a service is not available, as all pos-
sible services that match are returned without wait-
ing for previous queries. The downside of the paral-
lel method is the bandwidth usage. It will be higher
even without false positives. One destination might
be reachable over multiple paths with partially over-
lapping nodes. This is also good for robustness as
some paths might not be available all the time. Then
as long as there still is a path the service will be found
quickly. The sequential method could take longer and
eventually use the same amount of bandwidth or even
more. If the false positive rate is small, as it should
be, the first match in every intermediate node should
be correct and a matching service will be found by
following only one path. This results in a reduced
bandwidth usage. In the case of only false positives
there is the same amount of traffic as for the paral-
lel case, with the addition of the traffic for tracebacks
and negative responses. As both methods have some
advantages, we can try to combine them.

We can try layer by layer to follow the best
matches in parallel and allow them to traceback when
the service is not reachable. Each node will keep track
of the links it forwarded a specific query to. Then the
node can try the next best matches as with the sequen-
tial method. In case two queries with the same QID
arrive at one node, they can be merged. A message
has to be sent to the previous node to signal the query
was merged, so the node does not have to wait for a
reply.

4.4 Sending responses

When a service has been found, that is a node re-
ceived a query that matches one of its own services,

the originating node has to be notified. A response
message is sent back to the originating node along
the same path the query has used. We can do this
in two different ways: store the information about the
path taken in the nodes that forwarded the query mes-
sage or store the information in the query message it-
self. When the information is stored in the query mes-
sage, the packet size will increase by the number of
hops away the service is located times the size needed
to describe the node address. This will increase the
cost of a false positive. When all intermediate nodes
store information about the link they first received the
query, they can forward the response message along
this path. Nodes already need to store information
about queries they receive to prevent loops and dupli-
cate sending of queries. Therefor we chose to imple-
ment this last method as there is no additional cost in
terms of bandwidth usage.

When the originating node receives the response
message it can try to contact the service to determine
if it really satisfies its needs. If it does not the node
can try to refine the query to get a better match to the
service it really needs. Note that the path from the
querying node to the service is already known from
the service discovery process. Instead of relying on
a routing protocol to set up routes, we might set up
the route ourselves when the response message is sent
back from the node that contains the service to the
node that originated the query.

4.5 Duplication

There are some problems related to this system of
broadcasting. Multiple nodes will send each other up-
dates of the same services and those services will be
duplicated over multiple layers in the Bloom filter, see
Figure 1. There are three nodes A, B, and C that all
can reach each other and will broadcast all services
they know about to each other. There are four layers
in the attenuated Bloom filter, the first one containing
the nodes own services. The arrows signify where ser-
vice B is broadcasted to. The attenuated Bloom filter
is updated according to:Ai = Bi−1 ∨Ci−1 , ∀ i > 0
The consequence is the exchange of an unneeded
number of broadcasts.

Figure 1: Duplication of service B.

It is possible to prevent this from happening be-
tween two nodes directly, but when there are more
nodes in between this is difficult to avoid. To prevent
all this excessive traffic it might be better to dupli-



cate the service information immediately in all lower
layers, starting from the second layer, as this is the
shortest loop possible.

4.6 Hash function

The hash function used in the Bloom filter service
discovery is very important. It should perform a map-
ping from a string of characters of arbitrary length to
bits in the fixed length Bloom filter. There are families
of universal hash functions, which might give good
results when used for Bloom filters. We are planning
some experiments to verify the dependency on the
hash functions. Nodes that want to exchange service-
broadcasts should use the same set of hash functions
that have to be defined beforehand. We could use dif-
ferent sets of hash functions per group of nodes that
want to communicate. From the bits set in the Bloom
filter it cannot be seen what services are represented.
Any node cannot easily map queries and broadcasts
back to service descriptions. A node that knows the
set of hash functions used can do a bruteforce attack,
but this is also difficult as the hash functions are a
mapping from many to one. Nodes can only check
whether a given service is represented in the Bloom
filter.

5 Analysis

We are interested in the number of broadcast pack-
ets we can expect in the network. We assume the
nodes in the network are structured in a grid, see Fig-
ure 2.

Figure 2: Grid structure

Every node can reach four neighbors, except the
edge nodes. The radiusr of the network is the num-
ber of hops from the center node to an edge node. We
assume all services are uniquely represented, that is
there are no overlapping bits for any of the services
in the network and there is no duplication of services
as discussed in Section 4.5. All nodes have a unique
service, and the center node will start transmitting a
broadcast message. All other nodes will only broad-
cast when they receive a broadcast and there was a
change in their Bloom filter. Because we have a small
delay, a node waits for other broadcast packets, we
can see a pattern in the broadcasting nodes. An ap-

proximation of the total number of broadcast mes-
sagesM sent in the network is given in Equation 1.

M ≈
r+1∑

i=1

i2 + bd
2
cr2 + bd

2
c(r + 1)2 , ∀ d ≥ r (1)

First only the center node will send. After that all
neighbors of nodes that transmitted in the previous
round will send a broadcast message. This will con-
tinue until a node filled all layers of its Bloom filters.
The first term in Equation 1 represents the increas-
ing number of nodes that send the next round until
the edge of the network is reached. Then it will al-
ternate between the nodes that are a even and uneven
number of hops from the center node as expressed in
the second and third term respectively. In Table 3 the
number of broadcast packets for severald and r are
given, scaled by the number of nodes in the network.

Table 3: Broadcast packets per node
Radius d=4 d=5 d=6 d=7 d=8

1 2.2 3 3.2 4 4.2
2 2.4 3.1 3.4 4.1 4.4
3 2.6 3.2 3.6 4.2 4.6
4 2.7 3.3 3.7 4.3 4.7
5 3.5 3.9 4.5 4.9

When not the center node but a node closer to
the edge starts transmitting, the number of broadcast
packets in the network needed to reach a stable situ-
ation will be higher. The worst case will be when an
edge node starts transmitting the broadcast message.

6 Simulation

6.1 Simulation Model

We implemented the protocol as described in Sec-
tion 4 using Opnet modeler [13] as our discrete event
simulator. We implemented a separate module that
can be connected to the UDP module in any Opnet
node. For our experiments we use an ad-hoc wireless
node that uses AODV as a routing protocol, in this
case a MANET node as included in Opnet.

6.2 Experiments

We connect all nodes in a grid structure, without
any mobility. We need 61 nodes to be able fill five
layers of the middle node with unique services. Ev-
ery node announces one unique services to the net-
work. Per node we gather statistics about the num-
ber of packets received and transmitted of all different
message types in our protocol in different situations.
The number of bits set per serviceb = 3 in all experi-
ments. For the first two experiments the Bloom filter
width is fixed atw = 1024 bits.



6.2.1 Experiment 1

In this experiment we try to find the number of broad-
cast packets sent in the entire network for several
depthsd and radiusr of the network. We use the same
assumptions as in Section 5: we have a grid network
where the central node will initialize the sending of
broadcast packets. This is for a startup situation, the
nodes have no information at all about services avail-
able in the neighborhood or neighbors they have. The
number of broadcast packets depending on the net-
work size and depth of the attenuated Bloom filter is
depicted in Table 4. For small networks this is exactly
the same as in Section 5, but from a radius of three
on there is a deviation as the formula does not take
into account how often the nodes closer to the edge
have to broadcast until they reach a stable situation
without further changes. Larger networks still need
broadcasts near the edge of the network while nodes
near the center have all information already. In a real
network the number of broadcasts might be lower as
there can be false positives that cause a node to not
transmit because it thinks there is no new information.

Table 4: Number of broadcast packets
Radius d=4 d=5 d=6 d=7 d=8

1 2.2 3 3.2 4 4.2
2 2.4 3.1 3.4 4.1 4.4
3 2.7 3.6 4.2 4.2 4.6
4 2.9 3.5 3.8 5.1 5.6
5 2.9 3.7 4.5 5.2 5.8

Figures 3 and 4 show the effect of duplication in
the startup phase. At a certain time the center node
receives a broadcast messages. From then on infor-
mation is exchanged between the center node and its
neighbors until a stable situation is reached. This sta-
ble situation is reached when the nodes in the network
have complete information about all neighbors upto
d hops away. After a broadcast packet has been re-
ceived a node waits for a random time between 1 and
1.5 seconds before it sends a packet with updated in-
formation. It can be seen that the number of broad-
cast packets the center node transmits and receives
with duplication is a bit better than without duplica-
tion. For small networks duplicating is a huge im-
provement, but as the network radius is approaching
the depth of the Bloom filter the difference is getting
smaller. This can be explained because in bigger net-
works there is always a neighbor that has new infor-
mation. Therefor in the case of duplication nodes will
be transmitting almost the same amount of broadcast
packets as without duplication.

6.2.2 Experiment 2

This experiment shows the effect of duplication when
the center node in the network starts broadcasting a

Figure 3: Broadcast packets without duplication.

Figure 4: Broadcast packets with duplication.

changed service. All nodes in the network already
know about all their neighbors and the services avail-
able in the vicinity. We use a grid network of 61 nodes
and vary the depth of the filter, both with and with-
out duplication. The effect of a service change can
be seen uptod hops from the node with a new ser-
vice. We consider both the cases where the center
node adds and removes a service. In Tables 5 and 6

Table 5: Sent broadcasts without duplication: add
depth Number of Hops Total

0 1 2 3 4 5
4 2 8 8 12 0 0 30
5 3 8 16 12 16 0 55
6 3 12 16 23 16 20 90
7 4 12 24 24 32 20 116
8 4 16 24 36 32 39 151

Table 6: Sent broadcasts with duplication: add
depth Number of Hops Total

0 1 2 3 4 5
4 2 8 8 12 0 0 30
5 2 8 12 12 16 0 50
6 2 8 12 16 16 20 74
7 2 8 12 16 20 20 78
8 2 8 12 16 20 23 81

we show the number of packets sent a number of hops
from the center node and in total in case of an added
service to the center node. In this case duplication
performs better, as the number of broadcast packets
needed to reach steady state is smaller.

In case a service is removed from a node, it is bet-
ter to not use duplication. Because the old service
is still represented in the network nodes will keep
broadcasting this old information until it is replaced
in all layers. The center node will see some of its
old service appear again in lower layers and sends an-
other broadcast packet because of this change. It is
clear that the larger the depth of the Bloom filter, the
more duplication is an issue. Duplication can prevent



sending of unneeded packets when a service is added.
When a service is removed it does not help, as in-
formation can only be added to Bloom filters and not
removed. For removal the Bloom filter needs to be
changed completely.

6.2.3 Experiment 3

In this experiment the effect of the Bloom filter width
is demonstrated. We vary the width from 512 bits to
2304 bits in steps of 256 bits. We keep the filter depth
constant atd = 4. We have 61 nodes in a grid structure
with 4 unique services per node. On all nodes we gen-
erate randomly 1000 queries per period and exclude
any query that could really be present in the system.
We use parallel querying as described in Section 4.3
and measure how many queries are really sent as a re-
sult of the random query trials. This will only happen
when there was a match in any of the Bloom filters
representing a neighboring node. A local match will
not cause a query packet to be sent. The number of
queries sent from all nodes and the center node sepa-
rately are scaled to the number of queries tried. This
is shown in 5. Note however that we did not optimize
the number of bits representing a serviceb.

Figure 5: Normalized query load.

A query will only be sent in case of a false posi-
tive in the system. There could be a false positive in
the center node as result of a query tried directly on
this node, but there is also a possibility that a query
packet sent by a neighboring node is sent to the center
node and causes a false positive there too. The center
node has a higher false positive probability than nodes
closer to the edge of our grid network. This can be ex-
plained by the density of services present, which is the
hightest in the center node, and gets lower the closer
we get to the edge of the network.

7 Conclusions and Further Work

Attenuated Bloom filters can be used for local ser-
vice discovery in ad-hoc networks. This paper shows
the number of broadcast packets needed to keep all
nodes up-to-date about services in their area when

using our protocol. Further some investigation is
done to try to optimize the number of packets needed
for the broadcasting of services, also when there are
changes in the services offered.

The experiments with the simulator show the
amount of bandwidth used for different network sizes
and Bloom filter depths. As expected the average
number of broadcast packets per node is larger for
networks with more nodes or an increased Bloom fil-
ter depth. As soon as the radius of the network is
approaching the depth of the Bloom filter the aver-
age number of broadcast packets per node converges
to a stable value. In a network without prior knowl-
edge about available services where all nodes start
sending their known services to all neighbors, it is
shown steady state is reached sooner in case we do
use duplication. Changing a service in one node after-
wards gives different results depending on the change.
When a service is added to a node, duplication per-
forms better with respect to the number of broadcast
packets needed to reach steady state. When a ser-
vice is removed from a node however it is shown the
strategy without duplication performs better in this re-
spect. Finally the query load caused by false posi-
tives is significantly lower as the Bloom filter width
increases. Overall the experiments suggest the pro-
posed service discovery system can be used efficiently
in a multihop ad-hoc network. The bandwidth used
by advertisements and queries can be optimized to a
moderate level.

Further work includes charting the effect of se-
quential and hybrid methods for querying, as there
might be many queries in the network and parallel
querying is not the most bandwidth efficient in all
cases. When there is node mobility, we expect the
number of broadcast packets needed to go up com-
pared to a static situation. We want to show this effect
and find some effective methods to limit this. The
hash functions used in this protocol have an influence
on how good the protocol works. We want to find how
much influence they have and how we can find more
optimal hash functions for our protocol.

Acknowledgement

This work is supported by the Dutch Ministry of
Economic Affairs under the Innovation Oriented Re-
search Program (IOP GenCom, QoS for Personal net-
works at Home).

References

[1] J. Veizades, E. Guttman, C. Perkins, and S. Ka-
plan. Service location protocol, rfc 2165, 1997.

[2] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D.
Joseph, and R.H. Katz. An architecture for a se-



cure service discovery service. InMobile Com-
puting and Networking, pages 24–35, 1999.

[3] J. Hoebeke, I. Moerman, and B. Dhoedt. Analy-
sis of decentralized resource and service discov-
ery mechanisms in wireless multi-hop networks.
In Proc. WWIC 2005, Xanthi, Greece, May 11-
13 2005.

[4] S. Cheshire, B. Aboba, and E. Guttman. Dy-
namic configuration of ipv4 link-local ad-
dresses, rfc 3927.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-
Peer lookup service for internet applications. In
Proc. of the 2001 ACM SIGCOMM Conference,
pages 149–160, 2001.

[6] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan,
and J. Lilley. The design and implementation
of an intentional naming system. InProc. 17th
ACM SOSP Conf, 1999.

[7] M. Balazinska, H. Balakrishnan, and D. Karger.
Ins/twine: A scalable peer-to-peer architecture
for intentional resource discovery. InProc. of
Pervasive 2002, 2002.

[8] S. Voulgaris and M. van Steen. An epi-
demic protocol for managing routing tables in
very large peer-to-peer networks. InProc.
14th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management,
(DSOM 2003), 2003.

[9] F. Liu and G. Heijenk. Context discovery using
attenuated bloom filters in ad-hoc networks. to
appear in proceedings WWIC2006, 2006.

[10] B.H. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors.Communications of
the ACM, 13(7):422–426, 1970.

[11] M. Mitzenmacher. Compressed bloom fil-
ters. In Proc. of the 20th Annual ACM Sym-
posium on Principles of Distributed Computing,
IEEE/ACM Trans. on Networking, pages 144–
150, 2001.

[12] S.C. Rhea and J. Kubiatowicz. Probabilistic lo-
cation and routing. InProc. of INFOCOM 2002,
2002.

[13] OPNET modeler software, available:
http://www.opnet.com/products/modeler.


