
SOA-Driven Business-Software Alignment

Boris Shishkov, Marten van Sinderen and Dick Quartel
Department of Computer Science, University of Twente, The Netherlands

{B.B.Shishkov, M.J.vanSinderen, D.A.C.Quartel}@ewi.utwente.nl

Abstract

The alignment of business processes and their

supporting application software is a major concern
during the initial software design phases. This paper
proposes a design approach addressing this problem
of business-software alignment. The approach takes an
initial business model as a basis in deriving refined
models that target a service-oriented software
implementation. The approach explicitly identifies a
software modeling level at which software modules are
represented as services in a technology-platform-
independent way. This model-driven service-oriented
approach has the following properties: (i) there is a
forced alignment (consistency) between business
processes and supporting applications; (ii) changes in
the business environment can be traced to the
application and vice versa, via model relationships;
(iii) the software modules modeled as services have a
high degree of autonomy; (iv) migration to new
technology platforms can be supported through the
platform independent software model.

1. Introduction

An important concern of application software
projects is to avoid a mismatch between (user)
requirements and (application) functionality [11]. We
thus claim that there is a need for improving the
current business-application alignment practices.

When designing application software, one
inevitably faces the necessity of bridging different
abstraction levels – a high-level business logic and a
technology-driven application functionality. A
business function (corresponding to a unit of business
logic) is specific for a particular business and
necessarily abstracts from technological solutions that
can be used to support it. A technology platform offers
a generic engineering abstraction (hence hides
implementation details) which is nonetheless
technology oriented. It is the role of the application

designer to suggest software solutions that bridge this
gap (Figure 1).

We thus argue that adequate business-application
alignment can only be achieved if the initial business
model (i) is a valid reflection of the relevant real-life
aspects and (ii) is a suitable foundation for the
generation of application models, preferably by using
automated transformations. Nevertheless, the
alignment cannot be accomplished only by prescribing
how to define a business model. An additional demand
should be that (iii) the ‘architectural style’ used for
organizing the application modeling should facilitate
the alignment; it cannot be obtained solely from top-
down, but also requires a bottom-up ‘preparation’.

BF1 … BF2 BFn

PF1 … PF2 PFk

BF1 … BF2 BFn

PF1 … PF2 PFk

Business level

Application level

Platform (technical) level

 (a) (b) BF = Business Function
 PF = Platform Function

(a) Bridging the gap between required support for business functions and offered support from
platform functions using dedicated application solutions;
(b) idem, using two-step application mappings via intermediate abstractions, thus reducing the
number of specific solutions.

Figure 1: Bridging the business-technology
gap

In tackling this, we adopt service-orientation
[1,4,14] as a preferred architectural style, meaning that
at any design step we only consider the external
behavior of entities. In addition, composing services at
high level (thus hiding the technological complexity
concerned with service realization) is a way to speed
up the development of business-aligned application
models, and also to flexibly utilize advanced
technological platforms for their implementation.

Further, we acknowledge that the derivation of a
business model should be rooted in a (business)
situation description reflecting either observed or
desired situations [3]. To be useful, such a description
must exhaustively disclose both structure and behavior

as well as rules that govern the described entities and
behaviors. Such a description would then be used as
input to the design process, taking additional
constraints into account, such as: (i) imposed by
technology platforms to be used; (ii) motivated by
project-driven technical restrictions; (iii) reflecting the
demands of the future users of the application-to-be. In
the current work, we largely ignore these constraints
because they do not immediately concern the
derivation of application models from business models.

This paper focuses thus on consistency and
indirectly on traceability, as two important qualities of
a design process, which help to address business-
application alignment. Consistency is a desired
relationship between models that address separate
concerns, for example business and application
concerns. Traceability allows appropriate reflection of
changes in the business environment to the application
and vice versa.

The outline of the paper is as follows: Section 2
further motivates our proposed design approach and
also introduces the modeling concepts/theories and
techniques that we use. Section 3 introduces a case
study that is elaborated in the following sections to
describe and illustrate the different phases of our
approach. Section 4 and Section 5 present respectively
the business and application modeling milestones and
phases. Finally, Section 6 contains the conclusions.

2. Modeling Approach

The main concepts we consider, with respect to our
approach, are: system, environment, entity and
behavior. They will be further elaborated, together with
some related concepts.

A system is a regularly interacting or interdependent
group of entities forming a unified whole [10]. Thus, a
business system consists of interdependent business
processes, and an application software system consists
of interdependent software components. We assume
that a system is functioning in a (social or technical)
context or environment, as in Bunge’s categorization
[2]. The functionality of a system as observed or
experienced by its environment is often called service.
This is the unified whole view, or external perspective,
of the system. A system has also an internal
perspective that reflects the composition of entities
responsible for providing the system’s service. The
identification of entities of a system may be such that
each entity can again be considered as a system, i.e., it
has an environment consisting of other entities, it
offers a service, and it has internal structure. Each
system or entity has an associated behavior. A
behavior is what a system or entity does, i.e. what

activities it performs. For example, a service behavior
(or service for short) is the external behavior of a
system. We model a behavior as a set of related events,
where each event corresponds to a unit of behavior,
which is indivisible at the abstraction level at which it
is defined. We distinguish two types of events, viz.
action and interaction. An action is performed by a
single entity. An interaction is performed by two or
more entities, in cooperation. An interaction is
expressed as two or more connected interaction
contributions when representing the participation of
the involved entities.

These concepts are to be put in our particular
modeling perspective which concerns the derivation of
service-oriented application models, for the support of
business processes. We envision therefore two
fundamental modeling phases and milestones in the
mentioned perspective, namely business modeling
phase, leading to a business model and application
modeling phase, leading to an application model. An
application modeling phase should be preceded by a
corresponding business modeling phase. This should
enable the alignment of services performed by the
application with its corresponding business
environment. These phases and milestones are
concerned with different levels of abstraction.
However, with respect to the modeling, we claim that
no matter what our particular level of abstraction is, we
need to consider the same types of (meta) models;
otherwise the traceability between the abstraction
levels would be hardly achievable.

We suggest two essential types of models in our
approach, namely structural aspect model (envisioning
the statics of a system) and behavioral aspect model
(envisioning system’s dynamics).

In our modeling approach, we are concerned with
the current de facto standard: MDA – Model Driven
Architecture [9], given particularly the levels of
abstraction that we address. Firstly, we consider
business modeling to be computational independent,
i.e., no decisions are made with respect to the (partial)
automation of business processes. This coincides with
the CIM viewpoint of MDA. Secondly, we consider
application modeling from a platform independent
perspective, i.e., no decisions are made with respect to
the specific technological platform(s) on which the
application components are implemented. This
coincides with the PIM viewpoint of MDA.

Furthermore, we adopt the SOA paradigm [1,4,7], to
address service oriented application modeling: each
application component cooperates with other
application components only through the services of
the latter. We also like to extend the SOA approach to
the business level, meaning that we are only interested
in the service of a business process, i.e. the external

behavior that is relevant to the environment of the
business process in achieving desired results. Only
when a business process is decomposed into smaller
processes, e.g. because some of these smaller processes
can be used in other contexts, then internal behavior is
considered, albeit only in terms of the services of the
identified smaller processes.

With respect to (inter)actions and their capturing,
specification and elaboration at the business level, we
have been inspired by Habermas’ Theory of
Communicative Action [5] according to which
communication among entities is oriented to achieving,
sustaining and reviewing consensus. This has been
acknowledged also by Winograd and Flores in the
Language-Action Perspective (LAP), and further
reflected in the DEMO methodology and the SDBC
approach [3,10]. For this reason, we follow LAP in our
approach. LAP has been established as a theoretically
based approach towards modeling and developing
business processes. The approach recognizes that
actions, as in promises or orders, are to represent the
foundation of communities and organizations, and
must be understood to create valid business models
[13]. In LAP, the inter subject relationships among
(human) entities, brought about and maintained in
communication, constitute the real basis of an
organization’s existence. Business processes then
become structures of commitments and the real
important activity of entities (actors) in these processes
is that they enter into and comply with commitments.

We support LAP’s vision on interaction modeling,
that two types of acts (activities performed by entities)
contribute to an interaction between two entities:
production acts and coordination acts (as such they
can be seen as interaction contributions, mentioned
above). By performing production acts, entities
contribute to delivering the desired result to the
system’s environment. By performing coordination
acts, entities enter into and comply with commitments
and agreements towards each other regarding the
performance of production acts. Hence, coordination
acts should receive adequate attention, given the
coordination-related real-life complexity. Coordination
acts are driven by a proposition consisting of a fact and
an associated time – they concern of course the
(corresponding) production act. Furthermore,
coordination acts concern particular intentions. The
coordination act’s intention represents the ‘social
attitude’ taken by the performer with respect to the
proposition. Examples of intentions in DEMO and
SDBC are ‘request’, promise’, ‘state’ and ‘accept’.
They correspond to the distinct illocutions in the
terminology of Habermas; the ‘decline’ illocution is
added to them, to allow the modeling of unsuccessful
scenarios. Hence, we approach the modeling of

coordination acts through the notions of request,
promise, state (announce), accept and decline, and we
argue that, based on such a view on coordination acts,
a real world business invariance can be defined.

 yes

Phase 1

request
(Initiator)

request
accepted?

promise
(Executor)

no

decline
(Executor)

 yes

no

compromise
found?

 yes

Phase 2

state
(Executor)

result
accepted?

accept
(Initiator)

no

decline
(Initiator)

 yes

no

compromise
found?

1
(Prod.
Act)

2 (no production act has appeared and
the interaction has not been realized)

4 (a production act has appeared but
the interaction has not been realized)

3 (the interaction has been realized)

Figure 2: GIP interaction pattern

We consider hence a generic business interaction
pattern where two entities are involved, driven by
production and coordination acts. Following LAP, we
determine particular roles for the involved entities,
namely Initiator and Executor. The pattern suggests
that the initiator requests something, giving two
options to the executor – to respond either positively or
negatively to the request. The first option means that
the executor takes the responsibility to fulfill the
request and thus promises to realize the requested job.
The second option is that the executor does not take
this responsibility. Then a negotiation may follow as a
result of which the initiator and the executor could
either reach another agreement or fail to reach any
agreement. Once the executor has promised to fulfill a
request, it is his obligation to realize it. The actual
realization of course corresponds to a production act.
However, the realization itself does not mean
completion of the interaction because we do not have
the guarantee that the executor has correctly
understood the request (and has not delivered
something else to the initiator) or that the executor has
fulfilled the request with the adequate quality, and so
on. Since we cannot have objective criteria about this,
we usually acknowledge the right of the party
accepting goods/services to decide whether they are
adequate or not. We reflect this, by considering the
state illocution (no matter if it is explicitly revealed or
not) – this is the actual announcement of what has been
done by the executor. The initiator must have certainly
the options to accept it (modeled through the accept
illocution) or not (modeled through the decline
illocution). Therefore, something may be delivered but

still an interaction is not realized (e.g., a delivered
pizza that is not accepted by the customer).

Figure 2 shows the discussed business interaction
pattern, referred to as Generic Interaction Pattern (GIP
or GI pattern). As seen from the figure, only point 3
corresponds to a successful realization of an interaction
– the executor must have promised to fulfill a request
and then he must realize a production act (point 1),
delivering goods/services; after his announcing the
delivery, it is up to the initiator to accept them or not.
If the initiator accepts them, then the interaction is
complete. We see from the pattern also the two points
of unsuccessful evolvement of an interaction, namely
points 2 and 4.

We apply the GIP pattern in the early business
modeling phase because of its real-life-related LAP-
driven strengths, and also because it usefully allows for
capturing failures at two stages: (i) when the requested
(desired) result is irrelevant with respect to the service
provider and (ii) when a realized result is not accepted
by the requesting party.

As a means to express structural and behavioral
aspects, we use the language ISDL - Interaction
Systems Design Language [6,8] not only because it
supports a GIP-driven business/application modeling,
as it has been studied [12], but also because the
concepts introduced at the beginning of the current
section, are reflected in ISDL. Next to that, we benefit
from the graphical notations of ISDL especially with
respect to the modeling of behavioral aspects.

3. The FM Case

We use the Financial Mediator (FM) case as a basis
for illustrating our design approach; FM is derived
from the real and broader Icomp Case [12].

FM supports registered insurance companies in a
number of ways. In this paper, we address only FM’s
advice provisioning service: a customer can receive
from FM advice which of the insurance products (of
the registered companies) best satisfies a need.

To receive advice from FM, the customer
approaches FM’s Advisor (an entity inside FM, which
is responsible for handling the advice provisioning),
specifying a request: type of insurance (e.g., health or
property insurance), preferences (e.g., highest possible
coverage), and so on. Based on this (and acting
‘through’ the Match-maker (introduced below)), FM’s
Request handler (an entity inside FM, which processes
requests) generates a standardized request
specification, appropriately synthesizing some of the
information provided by the customer. This is then
delivered to FM’s Match-maker (an entity inside FM,
which is responsible for finding a match between the

standardized request and available insurance products).
The Match-maker realizes a match that is driven by a
particular criterion which is chosen by the customer
(and represented in the standardized request), for
instance: a preference for the cheapest or the most
reliable product available. In order to realize such a
criterion-driven match, the Match-maker applies
relevant rules and procedures. However, the Match-
maker needs input from FM’s Data searcher (an entity
inside FM, which is responsible for information
searching). The Data searcher searches through the
information concerning insurance products of
registered companies, and applies procedures to it. This
supports the identification of candidate matches
relevant to the particular customer’s request. The
Match-maker applies its rules and procedures to realize
a final match, passing this information to the Advisor.

4. Business Modeling

We use the following sub-phases to achieve our
first modeling milestone:

1. The Structural modeling sub-phase includes the
identification of: (i) the business system to be studied;
(ii) the relevant entities belonging to the
system/environment; (iii) the relations between entities
(expressed as connections, representing the ability of
the connected entities to interact; here we only
consider interactions between just two entities); (iv) the
entities’ Initiator/Executor roles towards these
interactions. All this builds up a Business entity model
that covers the structural aspects.

2. The Behavior modeling sub-phase adds
information on related behavior aspects, by modeling
entities’ integrated interaction behavior (abstracting
from interaction contributions, and concerned with
different levels of abstraction and elaboration), as
follows: (i) the system’s external behavior is firstly
modeled (considering the system as ‘black box’); (ii)
the system’s internal behavior is disclosed on this
basis. This means that relevant interactions between
entities are modeled as well as the way the interactions
relate to each other, for example: the realization of
interaction ‘a’ is necessary in order for interaction ‘b’
to occur; (iii) then, each interaction is replaced with a
GI pattern, providing in this way adequate means to
model real-life situations. The correctness of behavior
refinement steps (i.e., the consistency of the resulting
models) in this sub-phase, should be verified.

3. The Service identification sub-phase includes: (i)
identifying units of (composite) behaviors, by grouping
of interactions, e.g. by putting together the
coordination acts based on their relations to production
acts, such that each identified behavior can be

considered as a (self-standing) business service; (ii)
modeling the relations of these behaviors, arriving thus
at a simplified representation of the detailed behavior
model of the previous sub-phase.

4.1. Structural modeling sub-phase

We omit the steps leading to a Business entity
model’s derivation not only because the SDBC
approach is exhaustive regarding this, possessing
capabilities to transform unstructured case information
into such a model [10] but also because a consideration
of early business analysis problems would shift the
focus from the business-software alignment issue.

For this reason, we arrive directly at the Business
entity model for the FM case (Figure 3-a). The model
is expressed using a diagramming technique inspired
by DEMO [3]. The identified entities are presented in
named boxes – these are Customer (C), Advisor (A),
Match-maker (MM), Request handler (R), and Data
searcher (D), while the small grey boxes, one at the
end of each connection, indicate the executor role of
the connected entities. The connections indicate the
need for interactions between entities, in order to
achieve the business objective of financial mediation;
with each connection, we associate a single interaction
(as will be seen in the next sub-phase, i1 – i4, as
follows: C-A (i1), A-MM (i2), MM-R (i3) and MM-D
(i4). As for the delimitation, C is positioned in the
environment of the financial mediation system – FM,
and A, MM, R and D together form the FM system.
Through i1, FM is related to its environment
(represented by C). Thus, from the perspective of C,
there is no difference between FM and A.

i3

i4

i1

FM

i2
i

Request r,
Advice a |
F(r,a) = true

C

a) b)

A

MM

R

D

Figure 3: a) Business entity model for the FM
case; b) FM service behavior represented by a
single action

4.2. Behavioral modeling sub-phase

We firstly decide on the external behavior of FM, at
a high level of abstraction, and then we move to the
abstraction level which concerns the internal behavior
of FM.

With respect to the external behavior model, it
should envision the interaction between the customer
(C) and the system (FM), and is represented by a single
action (expressed by an oval) in Figure 3-b. The
depicted action has also attributes (put in a box)
elaborating the result of the action.

This single action i corresponds to the business
objective of the FM system: to serve the request (r) of a
customer, by giving advice (a) that satisfies certain
criteria (F(r,a) = true).

Regarding the internal behavior model, it should
reflect the interactions between the entities of the
system, as exhibited in Figure 4. This model shows
how the interaction i1 between the Customer C and the
Advisor A is made dependent on other interactions (i2,
i3 and i4) in the system. Each interaction between two
entities (e.g., C and A) represents a request (e.g., from
C to A, of type RequestC-A) and advice (e.g., from A
to C, of type AdviceA-C), where the advice satisfies
certain criteria (e.g., as expressed by the truth value of
function FA).

i1 i2

RequestMM-D r4
AdviceD-MM a4
FD(r4,a4) = true

RequestMM-R r3
AdviceR-MM a3
FR(r3,a3) = true

RequestC-A r1
AdviceA-C a1
FA(r1, a1, i2.a2) = true

RequestA-MM r2
AdviceMM-A a2
FMM(a2, r2, i3.a3, i4.a4) = true

i4

i3

Figure 4: Interactions in decomposed FM
system, implementing the FM service behavior

Assuming that the models of Figure 3-b and Figure
4 represent the same request from the customer (r = r1)
and the same advice to the customer (a = a1), it
follows that F(r,a) = true iff (FA(r1, a1, i2.a2) = true
and FMM (a2, r2, i3.a3, i4.a4) = true and FR (r3,a3)
= true and FD (r4,a4) = true).

We now need to further elaborate this model, in
order to achieve a better link to relevant real-life
(business) aspects. We claim that this would allow
modeling of failure-scenarios (not only success-
scenarios). Further, we acknowledge the essential role
of real-life communication and coordination in a
business system.

Expecting it to enrich our behavior model from the
mentioned perspective, we are applying the GI pattern.
We will firstly express the GI pattern using our
notations, inspired by ISDL.

Data types

Request represent the request
Pfact represent the production fact
Statement represent the statement
St(..) function rendering
 statement of some
 production fact

I = interaction
Pa = Production act
r = request
p = promise
d = decline
s = statement
a = accept
In = Initiator
Ex = Executor

IsEx

IdIn IdEx

IpEx IrIn IaIn Pa

I

Request r
Request r
[r = IrIn.r]

Pfact f Statement s
[s = St(Pa.f)]

Statement s
[s = IsEx.s]

Pfact f

Figure 5: GIP in ISDL notation

Figure 5 exhibits the generic process of an
interaction modeled at two different abstraction levels.
At the highest level, the interaction is represented by a
single action which models the production fact that is
established. Characteristics of the production fact are
modeled using the information attribute. At a lower
abstraction level, the interaction’s communication
aspects are modeled conforming to the GI pattern.
Separate actions are used to model the interaction’s
request, promise, state, accept and decline, and the
production act. Observe that actions IdEx and IdIn
correspond to the decline of an interaction followed by
a unsuccessful negotiation; and actions IpEx and IaIn
represent the promise and acceptance, respectively,
which are followed by a successful negotiation.

i1

i2

production
act 1

production
act 2

ri1 pi1

ri2 pi2

si1 ai1

si2 ai2

Figure 6: Illustration of the adequacy of
replacing interactions with GI patterns

Thus, we replace each interaction from the behavior

model (Figure 4) with a GI pattern; nevertheless, we
must firstly prove that replacing any two interactions
(having a simple enabling relation among each other)
by two patterns would actually have the same effect.

According to the consistency criteria we follow, the
results must be preserved, and also the relationships
between the results. This is fulfilled, as seen from
Figure 6, since: The top part of the figure shows an
interaction i1 that, for example, could only appear on
the basis of the realization of another interaction,
namely i2. Said otherwise, the result of i1 depends on
the result of i2. The bottom part of the figure shows a

replacement of these interactions by GI patterns. The
dashed line shows the result correspondence. As it is
known from LAP, the occurrence of an ‘acceptance’
corresponds to the occurrence of the result of an
interaction; thus, we have results consistency because
ai1 (ai2) corresponds to i1 (i2). Further, we have also a
consistency of the results’ relationships because ai2
relates to ai1 in the same way in which i2 relates to i1.
Hence, applying the GIP pattern does not change the
interaction’s result and we can make such a
replacement as shown in Figure 7.

rC pA 1

dA

pMM

dMM

rMM pR

dR

rMM pD

dD

rA

sA

dC sMM
aA

dA

2

sR aMM

dMM

3

sD aMM

dMM

4

 success
aC

 failure

start

Figure 7: Detailed behavior aspect model of
the FM

Observe that the number labels of production acts
(grey ovals in the figure) correspond to the interactions
i1 – i4 (Figure 4). Further, following one instance of
the behavior, we have two possible outcomes, namely
successful and failure outcomes.

4.3. Service identification sub-phase

Based on the detailed behavior model and through

simplification, we arrive at a service-oriented model
(Figure 8): we group together coordination acts based
on their relations to production acts. Furthermore, we
straightforwardly reflect (from the detailed behavior
model) the information on how these groups relate to
each other; we use an alternative way to model the
decline acts: a decline-after-request act and a decline-
after-state act are represented by a special value of an
information attribute (e.g., Result r  r = ‘decline’) of
the promise and accept acts, respectively. Information
attributes of the act and constraints on the values of
these attributes are not represented on the figure. The
model, presented in this way, defines services rooted in
the GI pattern, consistently with the achieved modeling
output.

a1

r4 p4

r3 p3 s3 a3

Service A

r1 p1 s1

r2 p2 s2 a2

Service MM

Service R
s4 a4

Service D

Figure 8: Refined interactions in decomposed
FM system, implementing the FM service
behavior

5. Application Modeling

Our approach applies application modeling, using
the following sub-phases:

1. The Delimitation-requirements sub-phase
concerns decisions as follows: (i) which part of the
business model is addressed by the overall application
service; (ii) what are the user requirements and how are
we reflecting them in the application model. Decision
(ii) is beyond the direct scope of this paper.

2. The SOA decisions sub-phase addresses the
SOA-related decisions on the desired realization of the
(distributed) application service. In particular, these are
decisions concerned with the way in which re-usable
services are addressed and coordinated by application-
specific component(s), in support of the achievement
of the desired functionality of the application.

3. The Application design sub-phase is concerned
with refinement and extension of the models from the
business modeling phase; this is driven by the results
of the previous mentioned sub-phases.

4. The Consistency analysis sub-phase envisions the
consistency between the original business models and
the proposed application models; this analysis would
support the validation of the models derived.

5.1. Delimitation-refinement sub-phase

The case briefing does not provide information on
the intended automation level or criteria helping to
make related choices (e.g., on nonfunctional aspects
such as cost/performance and ease-of-use). Hence, our
decision is rather arbitrary; the refined business models
should be such that the preferred application system

either replaces or supports (provides a service to)
identified business entities.

We assume that the whole business system (FM)
must be automated. Thus, the FM business service is
also the initial specification of the overall application
service.

5.2. SOA decisions sub-phase

The easiest decision to do a one-to-one mapping
between business processes and application
components has the disadvantage that identified
services are tightly coupled. This means that there is a
dependency of the service provided by one entity on
services provided by other entities (as seen from Figure
8). We argue that a solution would be to introduce an
additional application component, called Orchestrator,
that has the task of coordination.

The Orchestrator is an application-specific
component, as the coordination is application-specific.
The (subordinate) services, however, which are
coordinated by the Orchestrator, may be useful for
many different types of applications. Their description
may therefore be published through a public or
corporate registry, such that they can be discovered,
and selected for invocation by an orchestration
component. Related to its coordination tasks, the
Orchestrator could sometimes supply to one service the
result of another service, if this is necessary for the
service to perform its task.

a) b)

MM

A

D

R

O

C

C i1a i1b

i2a i2b

i3a

i4a

i3b

i4b

O

MM

D

R

A

Figure 9: a) Illustrating the desired role of the
Orchestrator; b) The application entity model

Figure 9-a depicts the Orchestrator’s (O) desired
role. It concerns the interactivities between the original
entities as well as coordination. The Orchestrator
mediates not only the interaction between the customer
(C) and the system but also all interactions between
entities inside the system.

5.3. Application design sub-phase

In the application design, we firstly refine the
Business entity model (Figure 3-a), by reflecting there
the Orchestrator entity (colored grey in Figure 9-b) that
mediates interactions between entities.

On this basis, we derive the Application behavior
model (Figure 10), following the same procedure as we
did in the previous section; we reflect only the success-
scenario, for simplicity.

rC pO sO aC

rO pA sA aO

rA pO sO aA

rO sMM aO

rMM pO sO aMM

rO pR sR aO

pMM

1a

1b

2a

2b

3a

3b

4a

4b

rMM pO sO aMM

rO pR sR aO

Figure 10: Detailed application behavior model

Then, analogously to what we did in Section 4, we

could further derive (from the model above) a service-
oriented model; we omit this for brevity.

5.4. Consistency analysis sub-phase

The proposed design refinement is driven by the
orchestration component; we must hence focus on the
Orchestrator in order to explain the consistencies
between business and application models. It leads to
models in which we have two interactions replacing
one corresponding business-level interaction. Referring
to LAP, we can replace an interaction with two other
interactions, keeping the same effect on the
interaction’s environment, only if we have fulfilled the
following: (i) the interaction’s request corresponds to
the one of the triggering interaction (from the two); (ii)
the interaction’s production act corresponds to the one
of the triggered interaction; (iii) the interaction’s accept
corresponds to the one of the triggering interaction.

This is fulfilled in the way we replace an interaction
from our business models with two Orchestrator-
related (application-level) ones: the replacement, for
example, of i1 with i1a and i1b (consider Figure 7 and
Figure 10) shows that rC (i1) corresponds to rC (i1a)
and also aC (i1) corresponds to aC (i1a). Further, the
production act of i1 corresponds to the production act

of i1b because this is actually, in both cases, the advice
delivered by the Advisor.

Therefore, we have done a replacement which does
not change the overall effect to the environment of FM.

6. Conclusions

This paper suggests improvements with respect to
the business-application alignment in the design of
application software. We propose a model-driven
service-oriented approach which is essentially
concerned with consistency as the target quality to
ensure business-application alignment. We show how
different business and application models that
progressively capture more details can be consistently
derived from an initial business model. In support of
the presented approach, is an explicit design decision
to specify applications according to a service-oriented
architecture (SOA). Such a SOA application model
applies an orchestration component responsible for
coordinating the use of subordinate services, such that
the required external behavior is provided to the
application’s environment. The orchestration
component in this model is typically application-
specific, whereas the subordinate services are not: they
could be discovered from a public or corporate
registry, or they can be designed such that they can
later be made available for re-use through a registry.
The SOA application model is still at a high level of
abstraction, and does not depend on any specific
technology platform. In particular, the model uses
integrated interactions, and a next step in the design
would be the distribution of such interactions, i.e.
consider the exchange of information necessary for an
interaction in a distributed environment, using a
communication pattern that is supported by a
commercially available middleware or data transport
platform. The consideration of mappings onto
particular technology platforms (such as Web services,
CORBA or J2EE) is however outside the scope of this
work.

We further claim that this paper makes useful
contributions concerning (i) the proposed use of the
Language-Action Perspective (LAP) in business
modeling, motivated by relevant strengths concerning
possibilities of capturing real-life aspects; (ii) the SOA
focus in our design approach for business-application
alignment. In support of these claims, other related
work has been studied. On the basis of this study, we
identified several approaches/methods which
adequately address the business-software alignment
challenge, notably SDBC, Catalysis and Tropos.

SDBC supports the identification of re-usable
business models that are soundly reflected in UML-

driven software specification models. Catalysis
provides a coherent set of techniques for business
analysis and system development as well as well-
defined consistency rules across models. Tropos
facilitates the specification of an application, by
supporting it with sound goal-driven requirements
analysis. A recent detailed analysis and comparison of
these approaches/methods can be found in [11].

A distinctive feature of our proposed approach
(compared to the mentioned ones) is the combination
of a LAP-based business-capturing, behavior model
consistency and SOA focus. This allows for an
adequate capturing of relevant real-life aspects in
consistency with which we specify our service models,
guaranteeing in this way that the developed services
would adequately function in their environment. This
feature distinguishes the suggested approach also from
currently popular SOA methods, such as Crystal, XP
and DSDM [1].

To further this research, we plan to work on
proposing procedures for an automatic derivation of
the orchestration component. We acknowledge as well
the need of techniques allowing for an automatic
assessment of the consistency between business and
application models.

Acknowledgements

This work is part of the Freeband A-MUSE project
(http://a-muse.freeband.nl). Freeband is sponsored by
the Dutch government under contract BSIK 03025.

References

[1] Alonso, G., F. Casati, H. Kuno, V. Machiraju, Web
Services, Concepts, Architectures and Applications,
Springer-Verlag, Berlin Heidelberg, 2004.

[2] Bunge, M.A., A World of Systems, Treatise on Basic
Philosophy, Vol. 4, Reidel Publ. Company, Dordrecht, 1979.

[3] Dietz, J.L.G., Understanding and modeling business
processes with DEMO, In Proceedings of the 18th Int. Conf.
on Conceptual Modeling (ER), Springer LNCS 1728 (1999).

[4] Dirgahayu, T., Model-driven Engineering of Web Service
Compositions: a Transformation from ISDL to BPEL,
University of Twente – UT Press, Enschede, 2005.

[5] Habermas, J., The Theory of Communicative Action,
Cambridge, 1984.

[6] ISDL. Interaction Systems Design Language,
http://isdl.ctit.utwente.nl, 2005.

[7] Newcomer, E., Understanding Web Services, XML,
WSDL, SOAP and UDDI, Addison-Wesley, Boston, 2002.

[8] Quartel, D., R. Dijkman and M. van Sinderen,
Methodological support for service-oriented design with
ISDL, In Proceedings of the 2nd Int. Conf. on Service
Oriented Computing, Proc – ICSOC Press (2004).

[9] Rational/OMG MDA. Model-Driven Architecture, Object
Management Group, http://www.omg.org/mda, 2006.

[10] Shishkov, B., Software Specification Based on Re-
usable Business Components, Sieca Repro, Delft, 2005.

[11] Shishkov, B., J.L.G. Dietz and K. Liu, Bridging the
Language-Action Perspective and Organizational Semiotics
in SDBC, In Proceedings of the 8th Int. Conf. on Enterprise
Information Systems (ICEIS), Iceis Press (2006).

[12] Shishkov, B. and D. Quartel, Refinement of SDBC
business process models using ISDL, In Proceedings of the
8th Int. Conf. on Enterprise Information Systems (ICEIS),
Iceis Press (2006).

[13] Winograd, T. and F. Flores, Understanding Computers
and Cognition: a Foundation for Design, Ablex, Norwood,
1986.

[14] World Wide Web Consortium. Web Services
Description Language 1.1, W3C Note,
http://www.w3.org/TR/wsdl, 2005.

