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ABSTRACT 
Costs associated with traffic externalities such as congestion, air pollution, noise, safety, 
etcetera are becoming unbearable. The Braess paradox shows that combating congestion by 
adding infrastructure may not improve traffic conditions, and geographical and/or financial 
constraints may not allow infrastructure expansion. Road pricing presents an alternative to 
combat traffic externalities. The traditional way of road pricing, namely congestion charging, 
may create negative benefits for society. In this effect, we develop a flexible pricing scheme 
internalizing costs arising from all externalities. Using a game theoretical approach, we 
extend the single authority road pricing scheme to a pricing scheme with multiple 
authorities/regions (with likely contradicting objectives). 
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INTRODUCTION 
Over recent decades, vehicle ownership has increased tremendously. Many people now 
realize that the social cost of owning and driving a vehicle does not only include the purchase, 
fuel, and maintenance fees, but also the cost of time lost due to congestion and road 
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maintenance. The costs of accidents, inhalation of poisonous compounds emitted from vehicle 
exhaust pipes, and exposure to high noise levels from vehicles add to the welfare loss. 
Economists found that when a resource that is vital and scarce is either free or underpriced, 
then demand for such resource will outstrip supply, resulting in shortages. This phenomenon 
can be readily seen in the transportation sector. When the demand or number of vehicles using 
a certain road exceeds the road's capacity, then congestion begins to build up. In 2006, it was 
estimated that there were 41,118 traffic jams and approximately 60 million vehicle lost hours 
on Dutch highways [1]. As road space is a valuable and scarce resource, traffic engineers 
suggest that it ought to be rationed by a price mechanism. Road users should pay for using the 
road network to make optimum allocation decisions between transport and other activities. 
Traffic engineers argue that this will reduce travel time across the entire network. [2-4] 
propose the use of vehicle tax and parking charges to combat congestion. Nowadays, the 
benefits of owing a car generally still outweigh the taxes, and the subsidies received by 
employees from their employers for transportation fares cushion the effect of parking charges, 
thus rendering the taxes/fees less effective. Until now, researchers have mostly focused on 
congestion pricing [6, 10, 11] neglecting the overall effect of such practice. 
Most real life optimization problems require the simultaneous optimization of more than one 
objective. This is because many real life problems are defined in many objectives [7]. In most 
cases, these objectives are in conflict with each other and may or may not be equally 
important [8]. A good road pricing model that maximizes social or economic welfare must 
involve not only the simultaneous minimization of travel time, road accident, road damage, 
noise and air pollution, but also maximization of user benefit. In this paper, we show that 
single objective road pricing can lead to bizarre network situations. We thus develop an 
optimization model which is capable of finding Pareto optimal flow patterns that optimize all 
the mentioned traffic externalities at once. To achieve this ‘optimal’ result in practice, we 
design a flexible tolling scheme capable of steering road users and optimally distributing them 
in the network. This leads to the most efficient use of the network.  
All but few models assume that the transportation system is managed by a single decision 
maker, usually the government. They assume that only one body sets tolls on roads, and this 
they often relate to Stackelberg game. Using game theoretical approach, we extend this one 
leader Stackelberg game to a game of multiple actors (or stakeholders or leaders). The later 
represents a more general and realistic situation where different agencies or stakeholders or 
even regions set tolls on the road network to maximize their selfish interests. Specifically, for 
example, insurance companies may set tolls to minimize road accidents and have little or no 
interest in congestion, whereas the ministry of economics may be interested in minimizing 
man-hour loss in the traffic so as to boost productivity. Furthermore, one region of a country 
may set tolls to optimally distribute traffic on the regional network irrespective of the flow 
pattern and/or tolling scheme of other regions. The problem is formulated as equilibrium 
problem with equilibrium constraints (EPEC) [12]. 

METHODOLOGY, MATHEMATICAL AND ECONOMIC 
THEORY 
The single leader road pricing problem is often formulated as bi-level optimization [11]. The 
upper level solves the leader’s interest and the lower level solves the so called user problem or 
user equilibrium. This problem is analogous to a Stackelberg game [9] where the leader 
moves first following by sequential move of other players. In the single leader road pricing 
game, the leader predicts users’ behavior (that users will always minimize their travel cost) 
and thus, using tolls he steers them to his own interest. The user problem, namely minimizing 
individual travel cost, formulated as an optimization problem can be transformed to a set of 
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inequalities (called equilibrium constraints) such that the bi-level problem transforms to a 
single level optimization problem. This single level problem is called mathematical problem 
with equilibrium constraints (MPEC) [10]. If we assume that different stakeholders are 
allowed to toll the network, then, road users are influenced by decisions of multiple leaders or 
stakeholders. When leaders do not cooperate, we refer to it as a multi-leader-followers game 
or problem. When the followers (road users) perceive these (upper level) decisions, they react 
accordingly, and this reaction may cause the leaders to update their individual decisions 
which also results in lower level players updating their reactions. These updates continue until 
a stable situation is reached. In our road pricing problem, the lower level users are in 
equilibrium or stable state when no user can decrease his cost (or increase his benefit) further 
by unilaterally switching to another route or change their trip decision. In the same way, the 
upper level players with interests in one or more of the traffic externalities are in equilibrium 
state when no stakeholder can further improve his objective by unilaterally switching to 
another toll vector. 
In the above scenario, each leader is continuously solving an MPEC which is influenced by 
other leaders' MPECs. A closer look reveals that we are confronted with an equilibrium 
problem subject to equilibrium constraints (EPEC). In game theory, a Nash equilibrium is 
defined as a state where no player can improve his or her outcome by altering his or her 
decision unilaterally. Hence, in classical game theory, our problem translates to solving two 
Nash problems. Our aim therefore is to find a toll vector (if it exists) for all leaders such that 
the upper level is at Nash equilibrium as well as the lower level. 
When the stakeholders cooperate, then, they pursue one objective, which in our case is to 
keep the system cost as low as possible and the users’ benefit as high as possible. This is 
achieved by aggregating their individual cost and searching for a point on the Pareto frontier 
that maximizes the economic benefit. Then, as seen in the model below (equation (2)), the 
multi-leader model is translated into a single leader model.    
The non-cooperative road pricing model can be stated as: 
  
Maximize economic benefit [EB] with respect to stakeholder’s system cost 
          s.t 
             * flows are in user equilibrium 
             * feasibility conditions are satisfied  
Mathematically: 
 



 

4 

, ,

0

\

\

max User benefit System cost

( ) ( )

.
(1)

( ) ( )

( ) ( )

( , )

cos ,

k k k
w

k
w

v d

d
k

w k
w W

jT k k T k

j K k

jk k k k T k

j K k

k
k

EB

B d C v

s t
k K

t v B d

t v v B d d

v d

C system t for stakeholder k K v li

θ

ε

ε

ε

ς ς

ε
β θ θ

β θ θ

ε
ε

= − 


= −


 ∀ 

Λ + + ≥ Γ  
 
  + + =    

Ω 

 





 
,

, (var )

( ), [1]

,

w w

nk flowvector desired by stakeholder k

B inverse demand function d demand of OD w W

t link travel time function link toll vector iable

link toll vector fixed monetary value of time

arc path incident matrix

ε
θ

θ β
Λ − Γ

 
 

 
  .OD path incident matrix−  

 
The first two constraints ensure user equilibrium, and the last, feasibility conditions.  
For the cooperative model, equation (1) becomes: 
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The model in equation (2) gives the maximum possible societal benefit. The system achieves 
such high societal welfare on the cost of some objectives, and as such, some stakeholders will 
see such coalition to be detrimental. Thus, such model is not stable since some stakeholders 
will be better off if they pull out of the coalition. To stabilize the model, the benefit derived 
from (2) is distributed such that each stakeholder is guaranteed his outcome in (1) and the 
remaining benefit distributed equally or as agreed upon.  

CONTRIBUTIONS 
We designed a flexible tolling scheme that can be used to distribute traffic on the network 
such that traffic externalities such as noise, emission, congestion, accidents, e.t.c. are 
minimized. Our model, formulated as an MPEC is capable of finding a single point on the 
Pareto frontier that optimizes the entire system performance when all links are allowed to be 
tolled. We showed that this result is analogous to the grand coalition game of the actors. 
When stakeholders do not cooperate, we proved that Nash equilibrium can never be reached 
with unbounded link tolls. We also showed that if the tolls are bounded and some conditions 
satisfied, Nash equilibrium always exists. Under non-cooperative game, we proposed a 
benefit sharing strategy that is beneficial to all actors, and thus showing that grand coalition is 
always possible among the stakeholders. 
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CONCLUSIONS 
Since road pricing schemes centred around congestion alone may create negative benefits for 
society, thus defeating its objective (increasing transportation efficiency and social welfare), 
we have designed a flexible framework to determine tolling schemes that will help reduce the 
impacts of most important traffic externalities. The well-structured mathematical models can 
be easily implemented in practice through the flexible tolling scheme. When tolling all links 
is not feasible, we established that the most efficient use of the network may still be achieved.  
Furthermore, due to political and equity reasons, many stakeholders and/or regions may 
partake in toll setting. We studied the system stability under the existence of Nash equilibrium 
among conflicting stakeholders. The paper described an egalitarian sharing rule that lures 
leaders to form grand coalition, and thus achieving system optimal flow pattern. 
Since the models used in this paper are centred on classical optimization formulations, the 
number of variables can grow uncontrollably large for real life networks. This calls for an 
efficient optimisation heuristic which can transform the analytical models into heuristic 
algorithms capable of handling large networks. A time dependent model will be an extension. 

REFERENCES 
[1] Wisman, L. (2008) Multi-objective optimisation of traffic systems: Modelling external effect, 

TRAIL research school, Delft, the Netherlands. 

[2] Armstrong-Wright, A. (1986) Road pricing and user restraint: opportunities and 
constraints in developing countries, in: Transportation Research Part A: General, 
20(2), pp. 123-127. 

[3] Lo, H., M. Hickman, and M. Walstad (1986) An Evaluation Taxonomy for Congestion 
Pricing. 

[4] Morrison, S. (1986) A survey of road pricing, in: Transportation Research Part A: 
General, 20(2), pp. 87-97. 

[5] Aanpassing prijspeil door ECORYS (price adjustment by ECORYS ) from CE Delft 
and VU in De prijs van een reis (The price of a trip) (2004). 

[6] Beckmann, M., C. McGuire, C. Winston (1956) Studies in the Economics of  
Transportation, Yale University Press, New Haven. CT. 

[7] Liu, G.P., J.B. Jang, J.F. Whidborne (2003) Multiobjective optimization and control, 
Research studies press Ltd, Baldock, Hertfordshire, England. 

[8] Miettinen , K.M. (1999) Nonlinear Multiobjective Optimization. Kluwer Academic 
Publishers, Massachusetts, USA. 

[9] Verhoef, E., M. Bliemer, L. Stage, B. van Wee (2008) Pricing in road transport: A  
multi-disciplinary perspective, Edward Elgar , Chelterham, UK, Northampton, MA, 
USA. 

[10] Yang, H., H.J. Huang (2005) Mathematical and Economic Theory of Road Pricing, 
Elsevier, Oxford, UK. 

[11] Yildirim, M.B. (2001) Congestion toll pricing models and methods for variable 
demand networks. Dissertation, Department of Industrial and Systems Engineering, 
University Florida, Gainesville, Florida.   

 [12] Leyffer, S., T. Munson (2009) Solving multi-leader–common-follower games. In: 
Optimization Methods and Software, 00(0), pp. 1-23. 


	Ohazulike


