Data Exchange over Web-based Applications with DXL

Roelof van Zwol V. Jeronimus M. Fokkinga Peter M.G. Apers

University of Twente,Department of Computer Science
P.O.box 217, 7500 AE, the Netherlands

{zwol, jeronimu, fokkinga, apers}@cs.utwente.nl

Abstract

With large volumes of data being exchanged on the Internet, query languages are needed to bridge
the gap between databases and the web. Furthermore, the differentiation in data types used by web-
based applications is ever growing, despite all standardization efforts. The Data eXchange Language
(DXL) provides an extensible base language designed to exchange data from heterogeneous sources into
a single target.

One application of DXL, the focus in this article, is to retrieve data from databases, and yield the
result in an XML document. However, the real application area of DXL is much broader since DXL
provides a framework which allows data of a particular source to be queried and/or constructed by its
original query language. This is achieved by DXL’s extensibility mechanism which allows other query
languages to be embedded into a DXL query.

The scope of this article is to compare DXL to other related query languages, discuss DXL’s features
and architecture, and present the base language definition of DXL. Furthermore we will discuss two
extensions of DXL which allows us to query and construct databases and XML documents. Finally we
will use these extensions in a newsgroup example, to illustrate DXL’s main features, with respect to
querying heterogeneous sources, and its recursive behavior.

1 Introduction

The need to exchange information on the Internet is growing, like the Internet itself. Due to the diversity in
data formats one or more conversions are needed to exchange data between web-based applications, since a
commonly accepted data exchange standard is lacking. The eXtensible Markup language (XML), a W3C!
standard, is developed over the past few years to provide a universal format for structured documents
and data on the web. A collection of related standards is defined around XML which (in general) aim to
support the transformation of one XML-document into another.

When it comes to data exchange over web-based applications, these standards, like XQuery [CFR101],
XSL-T [WWWC99a], but also other query languages proposed by the various research groups involved,
can be invoked to do the job. Provided of course that the applications are capable to handle their input
and output in XML.

However, the majority of todays (web-based) applications are not using XML as their exchange for-
mat. Unfortunately, this complicates the exchange of data over the web. The Data eXchange Language
(DXL) provides a framework for data exchange over (web-based) applications. More precise, DXL allows
heterogeneous sources to be queried, and the results to be integrated into a single target. To achieve this,
DXL uses an extensible mechanism which allows other query languages to be embedded into a single DXL
query. A DXL extension is a plugin which allows DXL to query and/or construct a single data type.

!The World Wide Web Consortium, home-page: http://www.w3.org/

State of the art

The Data eXchange Language (DXL) described in this article, depends heavily on XML related technology.
However, it cannot be compared with XML query languages, such as XQuery [CFR101], Quilt [CRF00],
XML-QL [DFF199] and others [BC00, CCD199, MFKO01]. There are similarities, but most of them are
more related to the use of XML, rather than to the functionality offered by those languages. The main
reason for this is that data-type dependent query functionality is kept out of the DXL control language.
The DXL control language itself only provides the functionality needed to connect to, and exchange data
between, heterogeneous sources and targets.

More closely related is RXL [FST00, FMTO01]. RXL stands for Relational to XML transformation
Language, and is a declarative query language that aims at querying a relational DBMS, and viewing the
results in XML. RXL forms the main source of inspiration for DXL. However, the scope of DXL is larger,
since it does not aim at a specific data-type, like RXL does. Furthermore, RXL has a more limited power
when it comes to constructing structures with an arbitrary level of nesting (recursion). This is caused by
the explicit definition of the target structure in the RXL query, while DXL follows a more data-driven
approach, where based on templates the target structure can be defined recursively. Also interesting is the
reverse transformation of RXL, i.e. transformations of XML into a relational database. This is done in
STORED [AFS99].

A second source of inspiration is XSL-T [WWWC99a], the W3C standard for XML Style-sheet Lan-
guages. XSL-T uses, like DXL, a template-based approach. But unlike DXL, XSL-T templates are called
based on the input XML document. Again XSL-T can be seen as a subset of DXL, since it allows any
XML document to be transformed into any data-type. The DXL extension for XML even borrows some
of the instructions from XSL-T to construct new XML documents.

Stored
SQL . RXL . XQuery
oQL DBMS < XML XSL-T

()

O

Figure 1: DXL transformations.

A,

The arrows drawn in Figure 1 show possible transformations, supported by DXL, under the condition
of course that a DXL extension for that particular data-type is available. For some transformations the
related query languages are positioned around the arrows, indicating their relation to DXL, as discussed
above.

Organization of this article

We will start the remainder of this article by discussing DXL’s features and applications, DXL’s architecture
and a simple DXL example in Section 2. Section 3 provides insight into the control language. The
extensibility of DXL is presented in Section 4. In that section, two extensions of DXL are discussed: the
Postgres plug-in, and the XML plug-in. A case-study, based on Newsgroups, is presented in Section 5.
It illustrates the power of DXL, when it comes to building recursive target structures, and querying
heterogeneous sources. We will conclude this article in Section 6 with the conclusions.

2 Data eXchange Language

One of the biggest problems for general data exchange is the flexibility needed to deal with all kinds of
different data-types. In fact, each data-type has its own specific characteristics. To exploit these character-
istics in the best way possible, query languages are needed that solely target a specific data-type. When
defining just one query language that targets heterogeneous sources (data-types), compromises will have
to be made which will result in a less powerful query language. Therefore DXL does not incorporate all
kinds of functionality that target a specific data-type directly.

The goal is to provide a flexible and extensible framework that allows other query languages to be
embedded. Besides that, DXL needs to be capable of transporting any data from its sources into the
target of a DXL query.

In Section 2.1 the features supported by the DXL framework, and some applications of DXL are
discussed. A trivial example is presented in Section 2.2, to give a first impression of DXL. The system
architecture that implements DXL is presented in Section 2.3.

2.1 Features and applications of DXL

DXL explores the following four main features:

e Heterogeneity. The main contribution of DXL is that it offers a data-type independent approach
for data exchange over multiple sources. To achieve this, all data obtained from the sources is stored
internally, in the form of a set of XML elements, as the parameters of a DXL query.

e Extensibility. To embed other query languages in DXL, extensibility is crucial. The DXL control
language has two instructions (query and construct) for this purpose. These instructions must be
defined for each data-type in a plug-in (extension). The query instruction connects to and retrieves
the requested information from the source, and stores the intermediate result in parameters. The
construct instruction retrieves information from DXL‘s parameters and uses it to construct the desired
target data-type.

e Templates. The behaviour of a DXL query is specified in one or more templates. Each template
defines a part of the query. The body of a template often contains a sequence of instructions that
defines the template’s behaviour. Within a template it is only possible to query one source. Thus if
multiple sources need to be queried, there are at least as many templates.

e Recursion. DXL has a recursive behaviour, i.e. templates can be called recursively which allows
source/target data-types to be queried/constructed recursively. As a result, arbitrarily deeply nested
structures can be queried and constructed. In case of newsgroups, where messages can have any
number of follow ups, such a property is essential. The recursive behaviour of DXL will beillustrated
in the example of Section 5.

In practise, DXL queries have the intention to grow relatively large which will make it unlikely that
inexperienced users will formulate queries by hand. However, due to its XML-based nature, it is fairly
easy to generate DXL queries. The Webspace Query Tool [vZ02] uses DXL internally to construct complex
queries over web-based document collections. It fetches meta-data from the webspace object server and
integrates these results with XML fragments that are obtained from several XML documents. As a result,
the generated DXL query constructs an XML document which yields the requested information. In another
application, DXL is used in combination with the Feature Grammar Engine [WSK99, dVWAKO00] developed
at CWI for the automatic reconstruction of web-sites, and multimedia retrieval in combination with the
Webspace Method [BvZW™T01, vZA00].

2.2 ‘Hello World! example

Before presenting the architecture and language definition, the ‘Hello world’ example will be discussed
to give a first impression of DXL. The code fragment of Figure 2.a shows a DXL query that consists of
a single template. Line 2 of this query specifies that the plug-in defined in the driver ‘dxl.client.xml’ is
used to create the target XML document ‘result.xml’. To construct this document all child instructions
embedded in the body of the template with name ‘main’ are executed sequentially. The precise syntaxes
and semantics of DXL are explained in Sections 3 and 4.

The execution starts with the definition of a parameter with the name ‘param1’ and value ‘Hello World!’
in line 5. Next the construct instruction of lines 6 — 10 is called. The construct, which is implemented by
the plug-in ‘dxl.client.xml’, allows the instruction element to be embedded in its body. The element defines
the root element ‘message’ of the target document. Within the element instruction an attribute instruction
is called, which defines the attribute with the name ‘text’ for the XML element ‘message’. The value ‘Hello
World!” stored in the parameter $paraml is passed into the value of the attribute. The result of the query
is a simple XML document, as shown in Figure 2.b.

01. <7?xml version=’1.0’ encoding=’UTF-8’7>
02. <dxl_query driver=’dxl.client.xml’ target=’result.xml’>

03.

04. <template name=’main’>

05. <param name=’paraml’ select=’Hello World!’/>
06. <construct>

07. <element name=’message’>

08. <attribute name=’text’ value=’$paraml’/>
09. </element>

10. </construct>

11. </template>

12.

13. </dxl_query>

(a) DXL query

01. <?xml version=’1.0’ encoding=’UTF-8’7>
02. <message text=’Hello world!’/>

(b) DXL Target: result.xml

Figure 2: ‘Hello World’ example.

2.3 DXL’s system architecture

DXL’s implementation is based on the system architecture presented in Figure 3. The architecture consists
of three components: a kernel, a control language, and one or more plug-ins. The current implementation
is based on Java which allows DXL to be used on various platforms. The kernel contains four classes:
DzlEngine, DxlDriver, DxlInterface, DxlInstruction. The process starts by initiating the DxzlEngine with
the DxlDrivers, which refer to the available plug-ins. Next a DXL query is validated by the DzlEngine,
and a connection is made with the target of the query.

The DxlEngine is then ready to process the query. Each query should at least contain one template
with the name ‘main’. The DzlEngine will start executing the DXL instructions that are found in the body

DxIEngine

_ DxIDriver(s)

g DxInterface

(]

~

DxlInstruction
o Axl_query query
2 template _ construct
o

3 cal_template = ot
g param I element
3 2 ib XML
5 new_scope z attribute
= instance of
o)
O

{ statements} Postgres

Figure 3: DXL system architecture

of that template. All instructions, both the control language instructions, and the instructions defined in
the DXL plug-ins, obey the DxlInterface, and use the DzlInstruction as the abstract implementation of all
instructions.

Each plug-in requires that at least the construct and query instructions are implemented. All instructions
base their implementation on the pre-defined abstract DzlInstruction, and only have to implement their
own process()-method, which specifies the behaviour of an instruction.

The control language component of Figure 3 contains the instructions that form the DXL framework.
The plug-in component shows the instructions, that are defined for the two extensions discussed in Section 4:
the XML plug-in and the Postgres plug-in.

3 Control language

The goal of this section is to present the syntaxes and informal semantics of the DXL control language.
The grammar used to describe the control language is based on the following notational conventions:

Iteration is denoted by .

Sequencing is denoted by juxtaposition.

Optionality is denoted by underlining.

Literal text is denoted by sans serif font.

Non-terminals are denoted by identifiers in italics.

Meta-notation is denoted by (Roman font with double angle brackets).

The grammar of the control language uses the following non-terminals, which are explained during the
discussion of the semantics of DXL:

tname = (la—2][[A=2Z]|[0—9])*

dname = tname(.tname)x*

location = (string (preferably a URI))

pname = (subset of the XPath standard)
expression = $pname | (text, not beginning with $)

Below the first two rules of the grammar for the control language are given:

dxl_query ::= <dxl_query driver=dname target=location>
template templatex
</dxl_query>

template = <template name=tname> instructionx </template>

A dxl_query is a query on one or more data sources, producing the answer in one target. The target of a
dxl_query, together with the corresponding driver, are defined as attributes of the root tag of a dxl_query.
A driver is of the form dname which forms a textual string separated by dots. Since the implementation is
based on Java, the driver always refers to a specific Java package that implements the plug-in. The value
of the optional target attribute points to a location, which can be interpreted by the plug-in. If no target
is specified, the output will be send to standard out. It is preferred that a location is specified as a valid
Uniform Resource Identifier (URT)[WWWC93].

The body of a dxl_query contains at least one template. Each template is uniquely identified by a
name attribute of the form tname (a simple textual string). The semantics of DXL also prescribe that
there should be a template with the name ‘main’. The execution of a dxl_query will start with processing
the instructions that are found in the body of this template in a sequential order.

The grammar of an instruction is expressed by the following rule:

instruction = param | call_template | new_scope | query construct

Within the body of a template, the following instructions can be found: param, call_template,
new_scope, and construct, which can be directly preceded by a query instruction. The query and construct
instructions provide the means to embed foreign languages in DXL. By one or more constructs the struc-
ture of the target data-type is defined. Each query instruction, however, uses its own driver and source
attribute, to connect to and to query a particular source. Furthermore, only one query instruction is
allowed in the body of a template.

Internally, a query instruction generates a result set which contains the results of the queries executed
on the source of that query. Instead of calling the following construct from the body of the (parent)
template, the construct is then called from within the query instruction, for each item in the result set.

Below, the ‘general’ grammar rules for query and construct are given:

query = <query driver=dname source=location>
(this.driver —query)
</query>
construct = <construct>

(dzl_query.driver —construct)
</construct>

The particular plug-in that should be used for the execution of a query instruction is determined at
run-time by the driver attribute of the query. Also at run-time, the dxl_query tries to connect to that
source, and starts executing the instructions that are embedded in the body of the query. Each plug-in
defines what instructions are allowed in the body of a query or construct instruction. Section 4 describes
the different implementation strategies that can be followed by a plug-in to address a particular data-type.
At the end of that section, two plug-ins are described that follow different approaches.

Crucial for the success of DXL is its parameter mechanism. All data exchange from heterogeneous
sources to the target of a dxl_query is carried out by the parameter mechanism. Each dxl_query starts
with an empty parameter stack. Whenever a particular source is queried, the intermediate results from
that source are pushed on top of the parameter stack. When executing the following construct instruction,
the required information is taken from the parameter stack and transferred to the target.

The grammar of the control language is extended by the following rules, which describe the instructions
that can influence the state of the parameter stack:

param = <param name=pname select=expression/>
call template::= <call_template select=tname/>
new_scope = <new_scope/>

With param, a new parameter with the name pname is pushed on top of the parameter stack. The
value of this parameter is defined by the attribute select and is of the form expression. An expression
can either be the reference to a parameter, using the notation $pname or a text fragment.

Each parameter in the stack is referred to by its name. Internally, the value of a parameter in DXL is
represented by an XML document fragment. A document fragment has a hierarchical structure onto which
(complex) structures of the source data-type that is queried, are mapped. Mappings from relational, object
oriented or many other structures to a hierarchical structure have been described in literature [EN94] and
should be used to transfer the data from the external source to the internal parameter stack of DXL.

Another advantage of using XML for the internal representation of data is that XPath [WWWC99b]
expressions (pname) can be used to traverse through the document fragment of a parameter. With XPath
expressions the relevant fragments of data can be fetched directly from the document fragment, and be
transferred into the result of the dxl_query.

With the call_template other templates, embedded in the body of dzl_query, are called (recursively).
For that purpose, the attribute select is used, referring to the unique name (tname) of a template.

dxl_query

construct

element

attribute

Figure 4: DXL execution tree for the ‘Hello world’ example.

While processing a dzl_query, a dynamic execution tree is built and executed, following a (left-to-
right) depth-first approach. The level of nesting in the execution tree is equal to the number of nested
DXL instructions. In Figure 4 the execution tree is given for the ‘Hello world’ example of Figure 2. The
maximum level of nesting for that DXL query is five. When the execution tree is entering a deeper level,

a new scope is pushed on top of the parameter stack. As soon as all instructions are carried out for
a particular branch of the execution tree, a higher level is addressed and the top-most scope is popped
from parameter stack. Figure 5 shows the state of the parameter stack, while processing the attribute
instruction. At that point, the (top-most) value of ‘paraml’ is fetched from the parameter stack.

| attribute

| element

I
I
| | construct
{ paraml ="HelloworldI" }{ template
I

| dxl_query

Figure 5: DXL parameter stack for the ‘Hello World!” example

The last instruction defined in the DXL control language is new_scope. The effect of invoking this
instruction is that the parameter stack will become temporarily inaccessible for all instructions, that belong
to the branch of the execution tree underneath the instruction, from which the new_scope is called. Lets
return to the ‘Hello World!” example again. Inserting a new_scope in between lines 6 and 7 of the query
(Figure 2), will cause the grey shaded part of the parameter stack as presented in Figure 5 to become
inaccessible for all instructions underneath the construct instruction. As a result, the execution of the
example will fail, because the attribute instruction can no longer access the parameter ‘paraml’.

4 Extending DXL

From the control language definition, it might be clear that DXL really is a framework for data exchange,
since it contains no instructions that target a specific data-type directly. For that purpose DXL’s extensi-
bility mechanism is used. At run-time, when executing a DXL query, a connection is made to the source or
target, using the driver that points to a specific DXL plug-in. Le., such a driver string refers to the name
of a Java package implementing the plug-in for a single data-type. Each plug-in should at least contain an
implementation of the instructions (classes) query and construct, which are responsible for querying and
constructing a certain data-type.

query—>process() iterate result
connect to replace process push result
™ source > parameters > [¢

instructions [on stack

o

construct
construct—>process()
connect to replace process
> taget > parameters —”instructions

Figure 6: General procedure for creating DXL plug-ins.

In Figure 6 a general procedure for defining DXL plug-ins is presented. Each plug-in should implement
at least two classes, to allow a specific data-type to be queried and constructed. The process()-method
is reserved for this purpose, and is the only method that should be implemented by a class, defining

an instruction. For both the query and construct instructions a general procedure can be followed, as
proposed in the figure.

Both procedures start by connecting to the source or target. Next, parameters are replaced, and the
child-instructions, encapsulated in the body of the instruction, are executed. This ends the procedure for
the construct. For the query instruction two extra steps are required. While iterating over the result set,
intermediate results are stored on top of the parameter stack, and the related construct is called to process
the results of the query.

Although each plug-in has its own characteristics, three categories are distinguished based on the
syntax of a plug-in: (1) XML-based extensions, (2) plain-text extensions, and (3) mized plain-text / XML
extensions.

Defining a pure XML-based extension requires more effort to be put in the creation of the plug-in.
Usually this means that more classes need to be implemented. The bright side of defining an XML-based
extension is that instructions defined by the control language, or even by other already existing plug-ins,
can be easily integrated.

On the other hand, a plain-text extension can be realised really quickly, but will not fully benefit from
DXL’s extensibility. The third category of extensions, consisting of mixed plain-text / XML extensions,
often are a good compromise. They integrate the best of the before-mentioned categories.

In the remainder of this section two DXL plug-ins are presented: the Postgres plug-in, which is an
example of a plain-text extension, and the XML plug-in, an example of an XML-based extension.

4.0.1 The Postgres plug-in

Although the DXL control language is specified using XML as its syntax, any DXL extension is free to use
its own syntax. The Postgres plug-in embeds the Postgres statements directly as plain-text into the body
of the query and construct instructions. As a result, a simple DXL extension is created.

query = <query driver="dxl.client.db.postgres’
source=location> (PostgreSQL
Statement) </query>

construct = <construct> (PostgreSQL statement) </construct>

The driver of this plug-in is defined in the package dxl.client.db.postgres, and uses the JDBC? standard
(URI) to connect to the Postgres database server.

The Postgres plug-in follows the steps of the procedure, as described in Figure 6. During the first step,
the plug-in connects to the source or target database. Secondly, it replaces all parameters found in the
PostgreSQL statements by the values, obtained from the parameter stack. I.e., to be able to distinguish the
DXL parameters from the regular PostgreSQL statement, the parameters are of the form: ${pname}. The
statements are executed on the database server, and the results obtained in a result set. During the iteration
steps, a row is fetch from the result set, and stored as a parameter of the form: tablenameQ@attributename.
The related construct is called for each row of the result set.

4.0.2 The XML plug-in

Contrary to the Postgres plug-in, the XML plug-in follows an XML-based approach. Many XML query
languages have been proposed, that can be used to realise the XML extension. The implementation of the
XML plug-in is based on a mixture of the XPath and XSL-T standards [WWWC99b, WWWC99a].

The grammar of the query-side of the XML plug-in is based on the following rules:

2JDBC stands for Java Database Connectivity

xpath_expr == (expression, according to the XPath standard)

query = <query driver="dxl.client.xml" source=location>
get*
</query>
get n= <get from=xpath_expr select=xpath_expr/>

The query instruction is defined in the package dxl.client.xml. The body of query contains a sequence of
get instructions, which builds a result set containing the results of the (get-)queries on an XML document.
The get instruction uses the select attribute to fetch the requested data from the document. The
optional from is used to jump to a particular node in the XML document, from which point the select will
operate. Both attributes use XPath expressions to traverse through the XML document. The result of a
get instruction is always a result set, containing zero or more XML document fragments. Each document
fragment is stored in DXL, and is referred to by the name of the root element of the document fragment.
The construct-side is partially based on the grammar below:

construct = <construct> XM L_instr* </construct>

XML_instr ::= element | attribute | instance_of | call_template |
param | new_scope

The body of construct, as defined in X M L _instr uses three XML specific instructions to create an
XML document: element, attribute, and instance_of. Furthermore, it allows three instructions of the
DXL control language to be called from the body of a construct: call_template, param, and new_scope.
The result is a tight integration of the plug-in with the DXL framework which allows a more flexible
definition of DXL queries.

Below, the grammar for the XML-specific instructions needed to construct an XML document is given:

element = <element name=expression> XM L _instrx
</element>

attribute = <attribute name=expression value=expression/>

instance_of = <instance_of select=expression/>

The element instruction is used to add an element to the result of the query. To be able to create the
hierarchical structure of an XML document, a sequence of X M L_instr can be called from the body of an
element instruction. The name of the element is the value returned by the expression.

The attribute instruction is used to add an attribute definition to the current element. Both name and
value are required attributes of this instruction, and its values are defined in an expression.

The last instruction is instance_of. This instruction is mostly used to add text fragments to the body
of an XML element. The select evaluates an expression. The result can be a textual string, or even an
entire XML document fragment, copied directly from the parameter stack into the result of the DXL query.

5 The ‘Newsgroup’ case study

The power of DXL will be illustrated by two example queries. Both queries are based on the ‘Newsgroup’
case. On a newsgroup, messages are posted which can be characterised by an author, a subject, and a
message body. For each particular message one or more follow-ups can be posted. As a result a tree-like
structure is created, having an arbitrary level of nesting. The first query shows how DXL’s recursion mech-

anism is used to generate the tree structure of a newsgroup from a flat database table. The second query
illustrates how heterogeneous sources are queried, and the results obtained from those sources combined
in a single target.

5.1 Query 1: Recursion

The data of the first query is fetched from a Postgres database with the name ‘newsgroups’. This database
contains various newsgroups, one of which contains the messages posted on the newsgroup ‘utwente.music’.
These newsgroup tables all contain the attributes: id, parent, sender, subject and message. In Appendix A.1
the definitions of these database tables are given.

The goal of the first query is to reconstruct the tree structure of this newsgroup from the (flattened)
relational table. This requires a recursive operation, because for each message, it will have to be determined,
whether the newsgroup contains some follow-up messages. The DXL query that reconstructs the newsgroup
tree in an XML document is given in Figures 7, 8, and 9.

Figure 7 shows the ‘main’ template which indicates the beginning of the query. Line 2 indicates that
the result of the query is an XML document, and that the result is stored in the target ‘result.xml’. The
body of this template only consists of a construct instruction (lines 4-8), where the root element of the
XML document is set, and a call is made to the template with name ‘groups’ (line 6).

01. <?xml version=’1.0’ encoding=’UTF-8’7>
02. <dxl_query driver=’dxl.client.xml’ target=’result.xml’>

03. <template name=’main’>

04. <construct>

05. <element name=’newsgroups’>

06. <call_template select=’groups’/>
07. </element>

08. </construct>

09. </template>

Figure 7: DXL Newsgroup example: ‘main’ template.

Figure 8 shows the ‘groups’ template. The body of this template consists of four instructions that have
to be executed sequentially. Starting with the two param instructions of lines 12 and 13, a new parameter
node ‘newsgroup’ is created, containing the attributes ‘name’ and ‘table’ with their values. An additional
parameter (line 15) is needed for the initialisation of the instructions in the ‘news’ template. The parameter
‘n@id‘ is set to —1, to find the root messages of the newsgroup.

At the end of this template, the construct instruction is evaluated. The instruction starts with the
element declaration ‘newsgroup’, after which an attribute is added to this element (line 18). Next, A
call_template is executed to call the news template (line 19).

The ‘news’ template, shown in Figure 9, is the most interesting template of the entire query, since its
task is to obtain the data from the newsgroup table, and to perform the recursive operation that creates
the tree structure.

The body of this template consists of two instructions. The first instruction is a query instruction (lines
24-27), directly followed by a construct instruction (lines 28-38). Starting with the query instruction, a
connection is made to the database, and the statement in line 27 is executed, following the replacement of
the parameters by their corresponding values. In the next step an iteration is performed over the result
set, and for each result the construct instruction of lines 28-38 is executed.

This construct instruction starts with adding a ‘message’ element to the result of the query (lines 29-37),
followed by some attribute declarations, defined in the body of the element instruction, see lines 30-32.
Lines 33-35 contain an element instruction, which adds the XML element ‘body’ as a child element to

10. <template name=’groups’>

11.

12. <param name=’newsgroup@name’ select=’utwente.music’/>
13. <param name=’newsgroup@table’ select=’utwente_music’/>
14.

15. <param name=’n@id’ select=’-1’/>

16. <construct>

17. <element name=’newsgroup’>

18. <attribute name=’name’ value=’$newsgroup@name’/>
19. <call_template select=’news’/>

20. </element>

21. </construct>

22. </template>

Figure 8: DXL Newsgroup example: ‘groups’ template.

‘message’. Within the XML ‘body’ element the value of ‘Sn@message’ is added, using the instance_of
instruction on line 34. The parameter ‘$n@message’ contains the text of the current message. Finally, a
recursive call to the ‘news’ template is made by the call_template instruction on line 36. This template
will be called, as long as there are follow-up messages on the current message.

5.2 Query2: Heterogenity

The second query elaborates on the first query. Instead of just reconstructing one newsgroup, the goal is
to reconstruct several newsgroups. This illustrates DXL’s power with respect to querying heterogeneous
sources, and integrating the result into a single target. The target is again an XML document, with the
name ‘result.xml’. For this query, we can reuse the templates ‘main’ and ‘news’, shown in Figures 7, and 9,
respectively. The ‘groups’ template needs to be altered, as is shown in Figure 10. Lines 11-14 show a query
instruction, instead of the earlier parameter definitions of ‘newsgroup’. The query connects to the XML
document ‘newsgroups.xml’® which contains information about newsgroups, i.e., for each newsgroup, its
name and the corresponding table name.

Instead of just declaring the ‘newsgroup’ parameter, the get instruction fetches all newsgroup nodes
under the root newsgroups, and iterates over the result set of this query, More precise, for each item (XML
node) in the result set of the query, a ‘newsgroup’ parameter is stored in the DXL framework, and the
construct of lines 17-22 is executed.

The result of the second query is shown in Appendix A.3. A screen shot is taken from Mozilla, which
shows a visualisation of the XML document. For that purpose, an XSL-T stylesheet is used in combination

with Cocoon?.

6 Conclusions

The need to open database technology for communication over the Internet is growing. The lack of a
commonly accepted standard for data exchange is complicating this job. Specialised query languages are
introduced to exchange two or more data sources.

The intention of DXL is to provide a more general framework that is capable of querying heterogeneous
sources and of combining the intermediate results, through the intervention of XML, into a single target.
‘Unwilling’ to make compromises all functionality that addresses a specific data-type is left out of the DXL

3The content of XML document ‘newsgroups.xml’ is shown in Appendix A.2
‘http://xml.apache.org/cocoon/

23. <template name=’news’>

24. <query driver=’dxl.client.db.postgres’

25. source="jdbc:postgresql://pub/newsgroups’>
26. select * from ${newsgroup@table} n where n.parent=’${n0id}’;
27. </query>

28. <construct>

29. <element name=’message’>

30. <attribute name=’id’ value=’$n@id’/>

31. <attribute name=’subject’ value=’$n@subject’/>
32. <attribute name=’sender’ value=’$n@sender’/>
33. <element name=’body’>

34. <instance_of select=’$nOmessage’/>

35. </element>

36. <call_template select=’news’/>

37. </element>

38. </construct>

39. </template>

40. </dxl_query>

Figure 9: DXL Newsgroup example: ‘news’ template.

control language. Through the definition of DXL extensions, any query language can be embedded in a
DXL query. This allows DXL to optimally exploit the characteristics of a specific data-type, while, if the
functionality would have been offered by DXL directly, compromises would have to be made, reducing the
power of the query language.

Two extensions of DXL have been described and illustrated in an example, to show the power of
DXL in this field. Recently proposed query languages, such as XQuery, also claim to support this kind
of functionality (directly). Further research is needed to investigate the similarities and differences in
this field. Contrary to XQuery, DXL’s template-based nature allows a recursive definition of the target
structure which is especially useful when creating XML targets with a nested structure.

10. <template name=’groups’>

11. <query driver=’dxl.client.xml’

12. source=’newsgroups.xml’>

13. <get from=’newsgroups’ select=’newsgroup’/>
14. </query>

15. <param name=’n@id’ select=’-1’/>

17. <construct>

18. <element name=’newsgroup’>

19. <attribute name=’name’ value=’$newsgroup@name’/>
20. <call_template select=’news’/>

21. </element>

22. </construct>

23. </template>

Figure 10: DXL Newsgroup example: revised ‘newsgroups’ template.

References

[AFS99]

[BCOO]

[BvZW01]

[CCD*99]

[CFR*01]

[CRF00]

[DFF*99]

[AVWAKOO]

[ENO4]

[FMTO01]

[FSTOO]

[MFKO1]

[vZ02]

[VZA0O]

[WSK99]

A.Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. In
proceedings of the ACM SIGMOD International Conference on Management of Data, 1999.

A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIGMOD
record, 29(1):68-79, 2000.

H.E. Blok, R. van Zwol, M. Windhouwer, M. Petkovic, P.M.G. Apers, M.L. Kersten, and
W. Jonker. Flexible and scalable digital library search. In proceedings of the twenty-seventh
International Conference on Very large Data Bases (VLDB’01), Rome, Italy, September
2001.

S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a
graphical language for querying and restructuring XML documents. In proceedings of the
International World Wide Web Conference (WWW, pages 1171-1187, Canada, 1999.

D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery: A query
language for XML. Technical report, World Wide Web Consortium (W3C), http://wuw.
w3.org/TR/xquery, Februari 2001.

D. Chamberlin, J. Robie, and D. Florescu. Quilt: an XML query language for heterogeneous
data sources. Lecture Notes in Computer Science, December 2000.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu. Querying XML
data. IEEE Data Engineering Bulletin, 22(3):10-18, 1999. XML-QL.

A. P. de Vries, M. A. Windhouwer, P. M. G. Apers, and M. L. Kersten. Information access in
multimedia databases based on feature models. New Generation Computing, 18(4):323-339,
October 200.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems: Second Edition. Cali-
fornia: Addison-Wesley, 1994.

M. Fernandez, A. Morishima, and W.C. Tan. Publishing relational data in xml: the silkroute
approach. IEEE Data Engineering Bulletin, 24(2):12-19, 2001.

M. Fernandez, D. Suciu, and W.-C. Tan. SilkRoute: trading between relations and XML.
In proceeding of WW W9, 2000.

I. Manolescu, D. Florescu, and D. Kossmann. Answering xml queries over heterogeneous
data sources. In proceedings on the International Conference on Very Large Data Bases
(VLDB), Rome, Italy, September 2001.

R. van Zwol. Modelling and searching web-based document collections. PhD thesis, Centre
for Telematics and Information technology, Enschede, the Netherland, April 2002.

R. van Zwol and P.M.G. Apers. The webspace method: On the integration of database
technology with information retrieval. In proceedings of Ninth International Conference on
Information and Knowledge Management (CIKM’00), Washington DC., USA, November
2000.

M.A. Windhouwer, A.R. Schmidt, and M.L. Kersten. Acoi: A system for indexing multi-
media objects. In proceedings of International Workshop on Information Integration and
Web-based Applications and Services, Yogyakarta, Indonesia, November 1999.

[WWWC93] (W3C) World Wide Web Consortium. Uniform resource identifier (URI). http://www.w3.
org/Adressing/, 1993.

[WWWC99a] (W3C) World Wide Web Consortium. The extensible stylesheet language (xsl). http:
//www.w3.org/Style/XSL/, November 1999. W3C Recommendation.

[WWWC99b] (W3C) World Wide Web Consortium. W3c - xpath. http://www.w3.org/TR/xpath,
November 1999. W3C recommendation.

A ‘Newsgroups’ case-study

Abstract
This appendix contains the background material for the ‘Newsgroup’ case-study, which is used to
illustrate DXL’s capabilities, with respect to querying heterogeneous sources, and the recursive definition
of a target data-type.
A.1 Newsgroup table definitions

The table definitions, presented in Figure 11, are used by the Newsgroups database.

Utwente_music ‘
Id :: serial ‘ parent :: int4 ‘ sender :: text ‘ subject :: text ‘ message :: text ’

Utwente_markt]
Id :: serial ‘ parent :: int4 ‘ sender :: text ‘ subject :: text ‘ message :: text ’

Figure 11: Table definitions for the Newsgroups database.

A.2 XML document ‘newsgroup.xml’

In Figure 12 the content of the XML document ‘newsgroups.xml’ is shown. This document is used in the
case study of Section 5.2.

<?7xml version="1.0" encoding="UTF-8"7>
<newsgroups>
<newsgroup name="utwente.markt" table="utwente_markt"/>
<newsgroup name="utwente.music" table="utwente_music"/>
</newsgroups>

Figure 12: XML document: ‘newsgroup.zml’.

A.3 Screen shot of ‘newsgroup.xml’

Figure 13 shows a screen shot of the result of the DXL query discussed in Section 5.2. The visualisation is
realised, using an XSL-T stylesheet, and Cocoon.

File Edit View Search Go Bookmarks Tasks Help

g, = i Aol Stop |\g,hrlpffluca\husvresu\l.xml

7 14% Home ﬁ Fostgres L‘.’ Search ['_|" Java &An’iba H1 & vawl.org

utwenie.marki B
« ID=1, SUBJECT ::= 18 G en 40 (v HD te koop
Sender = mark@hce.nl
10 Gb, 7200 rpm, ATA 66, Western Digital WD102BA: £ 225~ 40 Gb, 5400 rpm, ATA 66, Samsung 3V4084: 350~
Ophalen in Duiven of Zeist Gr Mark
o ID=2, SUBJECT ::= Re: 18 Gb ent 40 Gb HD te koop
Sender = mark@hce.nl
>10 Gb, 7200 rpm, ATA 66, Western Digital WD10ZBA: £ 225~ >40 Gb, 5400 rpm, ATA 66, Samsung 3V4084: £
350,~ »Ophalen in Duiven of Zeist >Gr Mark Wel nieuss toch, want jouw prijzen liggen maar £15,~ onder de
winkelprijs.
o ID=5, SUBJECT ::= Re: 10 Gb en 40 Gb HD te koap
Sender = joeri@umutliiweb.nl
=10 Gb, 7200 rpm, ATA 66, Western Digital WD102BA: £ 225 - 240 Gb, 5400 rpm, ATA 6, Samsung 3V4084: f
350,- »QOphalen in Duiven of Zeist »Gr Mark [dit een nisuwe, want voor die prijs haal ik hem bij de Funprice,
a ID=3, SUBJECT ::= Vrugg voor Linux-kenners!f
Sender = bart@homen!
“Waarom linuz? Pak dos, werkt bij mij perfect met een p75 met 32mb
o ID=4, SUBJECT ::= Re: Vraag voeor Linux- kenners!!
Sender = harmen@digivakker demon.ni
>Waarom linux? Pak dos, werkt bij mij perfect met een p75 met 32mb URL?7?
u [D=6, SUBJECT ::= Re: Vradag voor Linux- Kenners!!
Sender = moneyp@reinorg
>Waarom linux? Pak dos, werkt bij mij perfact met een p75 met 32mb omdat onder linux de netwerk support
veel relager is dan in dos. Omdat linux beter remote te besturen {5, Omdat er voor linug veel meer software te
vinden is woor een dergelijk project. Omdat linux stabieleris, C'mdat linux sneller is, enz.....
utwente.music
= ID=1, SUBJECT ::= Lutest album of Cranberries
Sender = misterX@vzwol.org
Does anyone have the latest album of the Cranberries in mp3, so that I can download them?
o ID=2, SUBJECT ::= Re: Latest album of Cranberries
Sender = bg@microsoft com =
Read jarresourcex/chromesclassic jarliskin/classiciglohaliscrallbar-slider- bo.gif =

Figure 13: Screen shot containing result of Query 2.

