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ABSTRACT A physically based, macroscale constitutive model has been developed that 
can describe the complex mechanical behavior of metastable austenitic stainless steels. In 
the developed model a generalized model for the mechanically induced martensitic 
transformation is introduced. Mechanical tests have been carried out to verify the model. 
To compute the mechanical response based on the phases present in the material, the 
mean-field homogenization approach is followed. 
 
INTRODUCTION: The complex behavior of metastable austenitic stainless steels stems 
from the mechanically induced martensitic transformation phenomenon. The material is 
initially in fully austenitic state but during the course of deformation gradually transforms 
to the martensitic one. The large constrast between the mechanical properties of the two 
phases reflects itself in the abrupt hardening behavior of the material. In addition to the 
usual plastic strain and hardening that are caused by dislocation activity, the 
transformation strain (TRIP) and the gradual shift to a harder material caused by 
transformation comes into picture. The stress based theories for transformation claim that 
transformation is related to the thermodynamics of the process (see Bhadeshia [1981]) as 
opposed to the strain induced transformation theory where the kinetics plays the 
important role (see Olson and Cohen [1972]). In this study a generalized version of the 
stress based theories is used. It is claimed in this theory that without any stress, the 
thermodynamic forces are not sufficient to cause transformation. The application of stress 
results in a resolved mechanical driving force (see Patel and Cohen [1953]) which can 
take a number of grains above the critical barrier causing them to transform. During 
transformation both the austenite and martensite phases co-exist. The mechanical 
behavior of the material, which can be considered now as a metal-matrix composite, can 
be calculated using a mean-field homogenization approach in which the behavior of 
individual phases and the interaction between them is taken into account in terms of 
averaged quantities. This method has proven to be robust and efficient by previous 
studies, see for instance Doghri and Friebel [2005] and the references therein. 
 
PROCEDURES, RESULTS AND DISCUSSION: In a stress-free configuration the 
only thermodynamic force acting on the system comes from the Gibbs free energy 
difference of the two phases at the prescribed temperature, which is referred to as the 
chemical driving force. In this study for simplicity the free energy difference (but not 
necessarily the free energies of individual phases) will be assumed to vary linearly with 



temperature. Under resolved stress on austenite grains, an additional driving force is 
obtained which is caused by the fact that transformation involves deformation (for more 
details on the microscale mechanism of transformation refer to e.g. Bhadeshia [1987]). 
Using the conventional derivation for the mechanical work, the following result is 
obtained for the maximum work that can be attained during the transformation: 

�=
j

jjU λσ *max where *
jσ are the ordered principal stresses and jλ are the eigenvalues of 

the deformation tensor: ( )snnsT ⊗+⊗= 5.0  and n and s are the habit plane normal and 
the shear directions, respectively. It is assumed that the transformation starts when the 
maximum resolved driving force reaches a critical energy barrier, crG∆ . The evolution of 
the martensite volume fraction is described by the following function, which is 
determined using mesoscale simulations of the presented theory:  
 
 
 
As mentioned, the transformation causes a deformation. The amount of transformation 
strain can be computed analytically using the following formula:  
 
 
 
Having computed the martensite fraction and the transformation strain as a function of 
stress, the next step is to compute the mechanical response of the austenite-martensite 
composite. To achieve this, the Mean-Field homogenization is utilized since it is both 
computationally efficient and provides information on the microscopic averages. Apart 
from the upper (Voigt) and lower (Reuss) bounds most schemes are based on Eshelby’s 
solution of the equivalent inclusion problem (see Eshelby [1957]). Eshelby’s analytical 
solution however is for the idealized case where a single ellipsoidal inclusion resides in 
an infinitely long matrix. Most homogenization schemes differ in the way Eshelby’s 
solution is adapted to find the resulting average fields in a representative volume element 
(RVE). Furthermore, the analytical solution exists only when both materials are elastic. 
To generalize the results to inelastic material response the instantaneous elastoplastic 
moduli of the phases are used as reference. Using the algorithms it is possible to define a 
4th order strain-concentration tensor which relates the strain in the inclusion phase to the 
strain in the matrix or the total strain on the RVE. The algorithms differ in the way the 
strain concentration tensor is defined. In the Mori-Tanaka (MT) scheme, Eshelby’s 
solution is assumed to be valid: ( )[ ] 01 : DD IC:C:SI 10 −+= . The Eshelby tensor S is 
a function of the shape of the inclusions and the elastoplastic modulus, C, of the matrix. 
Thus, it is assumed that the volume fraction of the inclusions is small. In the Self-
Consistent model, the strain concentration is defined as: ( )[ ] DD :1 IC:C:SI 1 −+=  
where the S tensor is now a function of C which is the instantenous modulus of the RVE. 
Since this is an unknown yet to be determined, this scheme is implicit. To overcome this 
problem, the model of Lielens (see Doghri and Friebel [2005]) can be used in which the 
forward and reverse MT schemes are interpolated based on the idea that MT is accurate 
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at both the inclusion and the matrix sides. In the current study, the Lielens model is used 
with an interpolant function that closely fits to the response of the Self-Consistent model. 
The model is implemented in the implicit in-house FE code DiekA and MSC.Marc as a 
user supplied material model. Fig. 1 shows the results of the material model where the 
martensite evolution and the stress-strain response is plotted with changing temperature.  
 

 
 

Figure 1: Calculated martensite fraction and stress vs. strain curves. 
 

CONCLUSIONS: A new physically based model is proposed which can predict the 
kinetics of mechanically induced transformation for different temperature and stress 
states. Using this model an analytical definition of the transformation strain is obtained. 
Combining this with a robust and fast homogenization scheme, the constitutive model is 
built which can be used for simulating the forming of metastable austenitic stainless steel 
products. 
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