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ABSTRACT

As amounts of publicly available video data grow, the need to
automatically infer semantics from raw video data becomes
significant, In this paper, we focus on the use of Dynamic
Bayesian Networks (DBNs) for that purpose, and demonstrate
kow they can be effectively applied for fusing the evidence
obtained from different media information sources. The
approach is validated in the particular domain of Formula 1 race
videos. For that specific domain we introduce a robust audio-
visual feature extraction scheme and a text recognition and
detection method. Based on numercus experiments performed
with DBNs, we give some recommendations with respect to the
modeling of temporal and atemporal dependences within the
network. Finally, we present the experimental results for the
detection of excited speech and the extraction of highlights, as
well as the advantageous query capabilities of our system.

1, INTRODUCTION

Numerous approaches presented in literature have shown that is
now becoming possible to extract high-level semantic events
from video. However, the majority of approaches including ocur
previous work [1] uses the individual visual or audio cues, and is
error-prene suffering from robustness problems due to detection
errors. Fusing the evidence obtained from different sources
should result in more robust and accurate systems. Farthermore,
some events are naturally multi-modal demanding the gathering
of evidence from different media sources.

On the other hand, the fusion of the multi-modal cues is
quite challenging, since it has to deal with indications obtained
from different media information sources, which might
contradict each other, Only a few amempts to multi-modal
analysis of audio-visual information have appeared recently.
such as a probabilistic model for event detection in a classroom
lecture environment [2], and a Bayesian approach for topic
segmentation and classification in TV programs [3).

In this paper, we contribute by demonstrating how dynamic
Bayesian networks can be effectively used for content-based
video retrieval by fusing the evidence obtained from different
media information sources. We validate our approach in the
particular domain of Formula 1 race videos. For that specific
domain we introduce a robust audio-visual feature extraction
scheme and a text recognition and detection method. Based on
numerous experiments performed for fusing extracted features in
order to extract highlights, we give some recommendations with
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respect to the modeling of temporal and atemporal dependences
in DBNs.

2. INFORMATION SOURCES

In this section, we briefly describe the extraction of multi-modal
cues obtained from three different media components of the TV
broadcasting Formula 1 program. In particular, we concentrate
on audio, video, and text.

Audio plays a significant role in the detection and
recognition of events in video. in our domain, the importance of
the audio signal is even bigger, since it encapsulates the
reporter's comment, which can be considered as a kind of the on-
line human annotation. Furthermore, whenever something
important happens the announcer raises his voice due to his
exciternent, which is a geod indication for the highlights.

Based on a few experiments we select four audio features to
be used for speech endpoint detection and extraction of excited
speech. We chose Short Time Energy (STE), pitch, Mel-
Frequency Cepstral Coefficients (MFCCs), and pause rate. A
description of methods we developed for excited speech and
speech endpoint detection can be found in [4]. For the
recognition of specific keywords in announcer’s speech we used
a keyword-spotting tool based on a finite state grammar.

In our visual analysis, we use color, shape and motion
features. First, the video is segmented into shots based on the
differences of color histograms among several consecutive
frames, Then, we calculate the amount of motion and apply
semaphore, dust, sand, and replay detectors in order to
characterize passing, start, and fly-out events, as well as to find
replay scenes {for a description of these detectors see [4]).

The third information source we use is the text that is
superimposed on the screen. This is another type of on-line
annotation done by the TV program producer, which is intended
to help viewers to better understand the video content. The
superimposed text often brings some additional information that
is difficult or even impossible to deduce solely by looking at the
video signal. In order to speed up the detection and recognition
of the superimposed text we modified the existing technigue
considering the properties of Formula 1 race videos [4].

3. PROBABILISTIC FUSION

As the majority of techniques for event detection, which relay
solely on the one-media cues, showed to have robustness
problems, we decided to base our analysis on the fusion of the
evidence obtained from the aforementioned information sources.
In order to find the most appropriate technique, we performed



numerous experiments and compare Bayesian Networks (BNs)
versus Dynamic Bayesian Networks (DBNs), different network
structures, temporal dependences, and learning algorithms.

A dynamic Bayesian network is a probabilistic network
which is able to model stochastic temporal processes. It is a
special case of singly connected Bayesian networks specifically
aimed at time series modeling. A time-slice is used to represent
each snapshot of the evolving temporal process. A DBN satisfies
the first order Markov property. So, each state at time r may
depend on one or more states at time £-/ and/or some states in
the same time instant. The conditional probabilities between
time-slices define the state evaluation model.

The parameters of a DBN can be learned from a training
data set. As we work with DBNs that have hidden states, for this
purpose we employ the Expectation Maximization learning
algorithm. In the inferencing process, we use the modified
Boyen-Koller algorithm for approximate inference [5]. For a
detail description of both algorithms see [4].

3.1. Data set and audio-visual features

We digitized three Formula 1 races of the 2001 season, namely,
the German, Belgian, and USA Grand Prix (GP). The average
duration of these Formula 1 races was abont 90 minutes or
135,000 frames for a PAL video. Videos were digitized as a
quarter of the PAL standard resolution {384x288). Audio was
sarnpled at 22kHz with 16 bits per audio sample.

Feature values, extracted from the audio and video signals,
are represented as probabilistic values in range from zero to one.
Since the parameters are calculated for each 0.1s, the length of
feature vectors is ten times longer than the duration of the video
measured in seconds. The features we extracted form a Formula
1 video are: keywords (f;), pause rate {f3), average values of STE
{f;), dynamic range of STE (f;), maximum values of STE {5),
average values of pitch (f;), dynamic range of pitch (),
maximum values of pitch (f), average values of MFCCs (f3),
maximum vaiues of MFCCs (fjp), part of the race (f;;), replay
{f12), color difference (f;;), semaphore (f;,), dust (f;5), sand (f;s),
and motion (f;7). Since we also employed text detection and
recognition algorithms, we were also able to extract text from the
video. We decide to extract the names of Formula | drivers, and
the semantic content of superimposed text (for example if it is a
pit stop, or driver’s classification is shown, etc.).

3.2. Excited speech

We decided to start our experiments by comparing the results
that can be achieved by employing BNs versus DBNs for
processing only audio cues to determine exited speech. We
developed three different structures of BNs and corresponding
DBN structures. The intention was to explore how different
network structures can influence the inference step in this type of
networks. The structures of BNs, which are also used for one
time slice of DBNG, are depicted in Figure 1.

The query node is Excited Announcer {(EA), since we want
to determine if the announcer raises his voice due to an
interesting event that is taking place in the race. The shaded
nodes represent evidence nodes, which receive their values based
on features extracted from the audio signal of the Formula 1
video.
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Figure 1. Different structures for processing of audio features: a)
Fully parameterized structure; b) Structure with direct influence
from evidence to query node; ¢) Input/output BN structure

The temporal dependencies between nodes from two
consecutive time slices of DBNs were defined as in Figure 2. For
learning and inference algorithms we considered all nodes from
one time slice as belonging to the same cluster (“exact” inference
end leaming).

Figure 2. Temporal dependencies for the DBNs

We learned the BN parameters on a sequence of 300s,
consisting of 3000 evidence values, extracted from the audio
signal. For the DBNs, we used the same videc sequence of 300s,
which was divided into 12 segments with 25s duration each. The
inference was performed on audio evidence extracted from the
digitized German GP. For each network structure we computed
precision and recall.

Note that we had to process the results obtained from BNs
since the output values cannot be directly employed to
distinguish the presence and time boundaries of the excited
speech. This is shown in Figure 3a. Therefore, we accumulated
values of a query node over time to make a conclusion whether
the announcer is excited.

The results obtained from a dynamic Bayesian network
were much smoother (see Figure 3b), and we did not have to
process the output. The results from conducted experiments with
previously described networks are shown in Table 1.
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Figure 3. Results of audio BN (a) and DBN (b) inference for 300s long “avi” file

Table 1. BNs and a DBN for detection of excited speech

Network BN BN BN DBN

structure | (Fig. 1a) | (Fig. 1b) | (Fig. 1c) | (Fig. 1a, Fig. 2)

Precision | 60 % 34 % 50 % 85 %
Recall 66 % 61 % 76 % 81 %

By comparing different BN structures we can see that there
is no significant difference in precision and recall obtained from
them (Table 1). The corresponding DBNs perform similarly,
except for the DBN that corresponds to the BN with fully
parameterized structure (Fig. la). It gives much better results
than the other BN/DBN networks (last column in Table 1).

Next, we explored the influence that different temporal
dependencies have on learning and inference procedures in
DBNs. We developed three DBNs with the same structure of one
time slice (Fig. 1a) but different temporal dependencies berween
two consecutive time slices: (1) the structure with emission
query node (Fig. 4a), (2) one with collecting query node (Fig.
4b), and (3) one with dependencies as in Fig. 2. The evaluation
showed that the last one significantly outperforms the first and
slightly the second structure.
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Figure 4. Temporal dependencies: emission (a), collecting (b)

Conclusions from experiments performed are twofold. From
the first group of experiments we conclude that the DBN
learning and inference procedures depend a lot on the selected
DBN structure for one time slice. We can see that this is not the
case when inference and learning are performed with BNs. These
experiments also showed the advantages of the fully
parameterized DBN structure over the other BN/DBN networks.
Secondly, we conclude that chosen temporal dependencies
between nodes of twe consecutive time slices have strong
influence on the results of DBN inference. The best result was
obtained with temporal dependencies depicted in Fig. 2.

Finally, we selected the fully parameterized DBN structure,
with one cluster for nodes in the same time slice, as the most
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powerful DBN structure for detection of the emphasized
announcer speech. To evaluate the chosen network structure we
employed it for detecting the emphasized speech in the audio
signal of all three races (Table 2).

Table 2. Evaluation results for the audio DBN

Race German GP | Belgian GP USA GP
Precision 85 % 77 % 76 %
Recall 81 % 79 % 81 %

3.3. Highlight extraction

The zudio DBN can conly extract the segments of the Formula 1
race where the announcer raises his voice. Other interesting
segments (highlights), which were missed by the announcer,
could not be extracted. Therefore, the employment of the audio
DBN for highlight extraction would lead to high precision, but
low recall (if we count replay scenes, recall is about 50%).

To improve the results obtained solely from audio cues we
developed an audio-visual DBN for highlight detection. The
structure that represents one time slice of this network is
depicted in Figure 5. The Highlight node was chosen to be the
main query node, while we also queried nodes: Start, Fly Out,
and Passing, in our experiments. We used the same kind of
temporal dependencies as for the audio network.
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Figure 5. Audio-visual DBN for one time slice

We employed the learning algorithm on 6 sequences with
50s duration each. The results are shown in Tabie 3. Based on
the value of the main query node (highlight}, the values of the
other query nodes are calculated. We calculated the most
probable candidates during each “highlight” segment, and
pronounce it as a start, fly out, or passing based on values of
corresponding nodes. For segments longer than 155 we
performed this operation every 5s to enable multiple selections.



The supplemental query nodes are incorporated in the
scheme in order to classify different interesting events that take
place in the Formula ! race. We can see from Table 3 that for the
German GP we gained high accuracy for highlights and start,
while the most misclassifications were for fly out and passing
events. Main reason for this is that we used very general and less
powerful video cues for fly out, and especially passing.

Table 3. Evaluation results for audio-visual DBN

Audio/Video DBN German | Belgian | USA!
Highlights {Precision | 84 % 43 % 73 %
Recall 86 % 53 % 76 %
Start Precision 83 % 100 % 100 %
Recall 100 % 67 % 50 %
Fly Out Precision | 64 % 100 % 0’ %
Recall T8 % 36% 0%
Passing Precision 79 % 28%
Recall 30 % 31 %

For the Belgium and the USA GP we had a big decrement
in our results, mostly because of the “passing” part of the
network. Therefore, we simplified the overall audio-visual
network, and excluded the “passing” sub-network. A significant
difference in results obtained with (Belgian) and without the
passing sub-network (USA) is presented in Table 3. The network
with the passing sub-network worked fine in the case of the
German GP, but failed with the other two races. The explanation
for this is a different camera work in the German GP. This just
confirms the fact that general low-level visual features might
yield very poor results in the context of high-level concepis (to
characterize passing we used motion). Qbviously, more domain
dependent features, which characterize the trajectories of
Formula 1 cars, would be much robust and give a better result
for the passing event, which is a direction for our future work.

4. CONTENT-BASED RETRIEVAL

Besides the excited speech, highlights, and the three events
modeled by the DBN, our system can be used to query the
Formula 1 videos based on recognized superimposed text, as
well as based on audio-visual features directly. Results obtained
from text recognition algorithm enable user to ask for the race
winner, the classification in the ith lap, the positien of a driver in
the ith lap, relative positions of two drivers in the ith lap, the
final lap, etc. To give an impression of the system capabilities,
we list some query examples: (1) “Retrieve the video sequences
with Michael Schumacher leading the race™; (2) “Retrieve the
video sequences where Michael Schumacher is first, and Mika
Hakkinen is second”; (3) “Retrieve the video sequences showing
Barrichello in the pit stop”; (4) “Retrieve the sequences with the
race leader crossing the finish line”, etc.

Furthermore, our system benefits of combining the resuits
obtained from Bayesian fusion and text recognition, and is
capable to answer very detailed complex queries, such as: (1)
“Retrieve all highlights showing the car of Michael

! These results are obtained by the audio-visual DBN that
excludes the passing sub-network
? There were no fly-outs in the USA Grand Prix

820

Schumacher”, (2) “Retrieve all fly outs of Mika Hakkinen in this
season”, {3} Retrieve all highlights at the pit line involving Juan
Pablo Montoya, etc.

5. CONCLUSIONS

This paper focuses on DBNs, and their use for content-based
retriecval. 'We have conducted numerous experiments with
different DBN and BN structures and demonstrated the
advantage of DBNs over BNs for our application. Next, the
influence of different atemporal and temporal connections within
a DBN network has been explored. The chosen atemporal, but
also temporal dependencies between nodes of two consecutive
time slices, have strong influence on the results of DBN
inference. The best result was obtained with the fully
parameterized DBN structure and the direct temporal
dependencies depicted in Fig. 1a and Fig. 2, respectively.

The approach has been validated for the extraction of
highlights in the particular domain of the Formula 1 TV
program. We have based our analysis on the fusion of the
evidence obtained from different information sources (audio,
video, and text). Consequently, a robust feature and text
extraction schemes have been introduced for the audio-visual
analysis of our particular domain.

The fusion of cues from the three different media has
resulted in much better characterization of Formula 1 races. The
audio DBN was able to detect a great number of segments where
announcer raised his voice (recall 81%), which correspond to
onty 50% of all interesting segments, i.e. highlights in the race.
The integrated audio-visual DBN was able to correct the result
and detect about 80% of all interesting segments in the race.
However, the audio part is still useful for the detection of the
segments with the excited announcer speech, where it showed
high recognition accuracy. By integrating the superimposed text,
audio and video subsystems we have built a powerful tool for
indexing the Formula 1 races videos, which can answer very
detailed and specific queries.
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