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Abstract— A central debate in visual perception theory is the
argument for indirect versus direct perception; i.e., the use of
intermediate, abstract, and hierarchical representations versus
direct semantic interpretation of images through interaction with
the outside world. We present a content-based representation
that combines both approaches. The previously developed Visual
Alphabet method is extended with a hierarchy of representations,
each level feeding into the next one, but based on features that are
not abstract but directly relevant to the task at hand. Explorative
benchmark experiments are carried out on face images to
investigate and explain the impact of the key parameters such as
pattern size, number of prototypes, and distance measures used.
Results show that adding an additional middle layer improves
results, by encoding the spatial co-occurrence of lower-level
pattern prototypes.

Keywords— Visual perception, visual alphabets, content based
image retrieval.

I. INTRODUCTION

A broad range of attempts have been made to bridge the

semantic gap in multi-media retrieval. Recently, [4] described

this challenge as follows:

. . . narrowing the large disparity between the low-level

descriptors that can be computed automatically from multi-

media content and the richness and subjectivity of semantics in

user queries and human interpretations of audiovisual media

- the so-called Semantic Gap. (p. 137)

This statement did not just address the gap between syntac-

tic and semantics – it also hints at the contrast between low

level features and rich concepts. Should there be a layering of

representations in between?

Humans and animals process the visual world by combining

a rich set of cues such as size, shape, color, lightness, motion,

depth into a useful representation of the natural environ-

ment [17]. Early models from both computer and human vision
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propose a sequence of layers of representation, consisting of

abstract geometrical features of increasing complexity [13]. In

contrast, proponents of direct perception argued that geomet-

rical features and abstract representations are unnecessarily

complex and disconnected from the environmental niche an

animal lives in [7].

The debate of direct versus indirect perception is still

relevant today [1], [20]. Even if the purpose is to develop

multi-media applications rather than model cognitive systems,

it can be useful to refer to cognitive theories of perception for

inspiration. In this article, we present an approach to semantic

image representation and classification that aims to combine

aspects of both views on perception. We introduce a hierarchy

of representations, each level feeding into the next one, with

features derived from and tuned to the environment itself.

Note whilst our method is biologically inspired we claim no

relevance whatsoever to understanding human or animal visual

perception.

The method that will be presented is an extension of our

earlier approach to scene classification: Visual Alphabets [8],

[9]. End users (i.e., domain experts, not image processing

experts) collect examples of image fragment classes (e.g., sky,

grass, or bricks) relevant for recognizing settings at the image

level (e.g., countryside versus city). Subsequently, models are

constructed to classify image fragments as well as the images

itself. We have shown that this is a generic method for building

task specific setting classifiers, without requiring specialist

image processing knowledge, and described successful appli-

cations of our method ranging from television archive search

and navigation, sewage inspection by robots and internet porn

filtering [8], [9].

To enable an extension of the Visual Alphabets method to

other domains (e.g., forensics, homeland security, and deeper

media archive indexing), a drawback of the original Visual

Alphabets method has to be tackled. The main limitation of

the Visual Alphabets method was that it was devoted to scenes,

or in terms of the conceptual distinction introduced by Picard

and Minka: ‘stuff’ rather than ‘things’ [15]. This article will
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Fig. 1. An image and corresponding micro, meso and macro patterns.

outline an extension of the Visual Alphabets method to multi-

level Visual Alphabets. By analogy, we take the step from

letters to letter sequences or words to sentences.

The approach is generalizable to any number of levels, in

this paper we start with a three layer approach, with the first

two levels learnt in an unsupervised manner, using positive

examples only. At the lowest level, groups of pixels form a

micro pattern, and we extract micro pattern prototypes through

clustering. Similarly, one level up images are represented by

meso patterns: areas consisting of patterns of micro pattern

prototypes, extracted through clustering. Finally, macro pat-

terns are constructed from the meso pattern representation,

which can be used for classification. This is modeled as a

supervised item set mining task, for which we have applied a

stochastic approach combining simulated annealing for search

with the diverse density multi instance learning measure for

evaluation [11]. Figure 1 outlines multi level Visual Alphabets

applied to face recognition, with meso pattern prototypes

representing parts of a nose, eye, and hair.

Our original Visual Alphabet representation was mainly

inspired by classical work in scene classification [5], [14],

[15] and visual codebooks in general [10], [20], [22]; see [8],

[9] for full references. The original representation differs from

most related work in that it uses the local patch classifications

solely as input for the classification of the scene as a whole.

Hierarchical representations, using either visual alphabets or

codebooks are rare. One of our main goals is to investigate

whether or not useful salient pattern prototypes can evolve

at intermediate levels. We also compare our method with

approaches that include representations of spatial relationships

across features [2], [12], [21].

The remainder of this paper consists of an overview of our

method (Section II), experimental results (Section III) and a

conclusion (Section IV).

II. MULTI-LEVEL VISUAL ALPHABET REPRESENTATIONS

In this section, we provide an overview of our method, from

the micro level up to the top macro level. The approaches taken

at the micro and meso level are actually quite similar. Although

a single meso level is used, one could envisage adding any

number of meso levels in between; that said, this is out of

scope for this paper.

A. Micro Pattern Discovery

Our approach allows for using feature dimensions of choice,

as this will not change the overarching framework. See for

instance [16], for guidelines on selecting proper feature dimen-

sions. In our experiments, we have primarily settled on hue

(H), intensity (I), and texture dimensions. H is typically used

to represent the main property of the percept color, described

with labels such as yellow and red [18], [19], H is independent

from I and S [19]. We derived H from RGB values as

follows:

H = cos−1

[

[(R − G) + (R − B)]

2 ×
√

(R − G)2 + (G − B) × (R − B)

]

(1)

For I , a single accepted definition exists: the average of the

R, G, and B values, as proposed by [16], [19]. S is disregarded

as it contains little information. For a given pattern, histograms

can be calculated to reflect the distribution of H and I

values. This is done using a smoothed histogram approach,

as introduced in [9]. Note that the H dimension is cyclical;

see also Equation 1. Texture is represented through three

features: i) variance of pixels, computed over a pixel versus

its neighboring values, ii) dominant direction, and iii) strength

of the direction. See [9] for a formal description.

To generate the candidate set of micro patterns, we ran-

domly sample fixed size micro patterns from a given set of im-

ages of a specific image class and calculate the corresponding

feature histograms. For simplicity, this approach was preferred

over other heuristics. For instance, [2] and [21] only extract

patterns with sufficient levels of structure.

In the final step, we extract the relevant patterns from the

candidate set for an image class, as the candidate set of micro

patterns can grow very large. Depending on micro pattern size

and number of images, the need for discriminating patterns

has to be balanced with the objective of reducing ambiguity

and overlap in the representation. We cluster the candidate

patterns found with k-means clustering. Empty clusters get

reinitialized with the pattern of the worst matching pattern.

We experimented with a variety of distance metrics including

Euclidean distance, normalized correlation:

1 −
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and Mahalonobis distance:
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∑

n

(min − mjn), (3)



with a n-dimensional feature space, mx being pattern vector

x, m̄x being the average pattern vector of x, σx as the standard

deviation of x, and S−1 is the inverted covariance-matrix.

B. Meso Pattern Discovery

A meso pattern can be described as a pattern of micro

patterns - or better as a pattern of micro pattern cluster

prototypes. For meso pattern discovery, a process similar

to the process for micro patterns is followed. An image is

reconstructed by its micro patterns, using only the cluster

centers. Next, meso patterns of a given size are sampled

randomly from this micro pattern representation of the image

to encode potentially meaningful spatial relationships. The

feature representation is a normalized histogram of micro

pattern frequencies. Subsequently, these meso patterns are

clustered using k-means clustering, with the distance measure

of choice (see Equations 2 and 3) to extract prototype meso

patterns. In line with the micro patterns, this is only done for

positive images; i.e., images that belong to the image class of

interest.

C. Macro Pattern Discovery

Whilst the procedures used at micro and meso level are

similar, the approach to the macro level deviates from these.

The goal of the macro level is to find macro patterns that

can discriminate between image classes, which can be seen

as a supervised item set mining task. However, this means

we cannot use standard item set mining algorithms such as

APRIORI without modifications [3]. APRIORI exploits the

fact that an item set can never be more frequent than any of its

subsets; however, in our case the item set can be more differ-

entiating. Various search approaches have been introduced for

content-based indexing; e.g., gradient ascent [12] and greedy

search [21]. For this research, however, we chose to apply a

simulated annealing approach to avoid local optima.

We initialize the process by selecting a random meso pattern

from a random positive class image to be a macro pattern.

Then, the simulated annealing cycle starts. First, all candidate

patterns are identified that differ only a single item from the

current pattern. We generate all item sets (i.e., sets of meso

patterns) that both differ on only one meso pattern from the

current pattern and appear in any positive image. We randomly

select one of these patterns. If it is better than the current

best pattern, it replaces this; otherwise, it replaces it with a

certain probability. This probability slowly declines to manage

exploration versus exploitation. This process is repeated by

selecting a new meso pattern from the positive images.

For the evaluation function we have adopted the diverse

density method [12]: a method for multiple instance learning

tasks. In these tasks, the goal is to learn a concept, using

positive and negative bags of instances. A bag is labeled

positive if at least one element is positive and negative if all

elements are negative. This lends itself well to our domain as

a single face meso pattern occurring can be a strong indicator

for a face regardless of non face meso patterns being present.

Let B+

i be a positive bag and B+

ij be the j-th instance in that

bag. Similarly, B−

ij is an instance from a negative bag B−

i . If

the true concept were a single point t, this could be found

through maximizing P (x = t|B+

1 , . . . , B+
n , B−

1 , . . . , B−

m)
over all x in instance space. Assuming an uninformative prior

over the target and conditional independence of the bags given

target t we can apply Bayes rule twofold and prove this is

equivalent of finding x such that

argmaxx

∏

i

P (x = t|B+

i )
∏

i

P (t|B−

i ). (4)

Using the key idea that one element that is positive is

sufficient for the bag to be positive we can model P (x =
t|B+

i ) as the probability that not all points missed the target;

i.e., P (x = t|B+

i ) = 1 −
∏

j(1 − P (x = t|B+

ij)) and equally

P (x = t|B−

i ) = 1−
∏

j(1− P (x = t|B−Sij)). See [12] for

full derivations and details.

III. EXPERIMENTS AND RESULTS

The emphasis of the explorative experiments is on explain-

ing the influence of the parameters on performance: pattern

size, distance measure used and number of clusters, at micro,

meso, and macro level. Consequently, the added value of an

additional meso level is expected to be revealed. Additionally,

the results were compared with those of similar methods [2],

[12], [21]. This served as a minimal test to show that our

method delivers at least reasonable results, rather than aiming

to prove that it is superior, given that our results are based on

different benchmark data.

A. Experimental Set Up

A data set of 400 images (480 × 360 pixels, 24 bit color

depth) was used; 200 positives, consisting of Corel Gallery

images (39), a UK company database with photo IDs for

access control (116), and the VicarVision database for face

recognition (45) and 200 negative from the Corel Gallery. This

data set was randomly divided into a 50% train and test set.

Faces were chosen because it was in line with our application

goal. Moreover, it is a domain that lends itself to qualitative

interpretation of evolving pattern prototypes.

The positive data set is used to discover the micro, meso,

and macro patterns. Next, the positive and negative sets are

used to evaluate the discovered macro patterns through diverse

density and to determine the threshold value for a macro

pattern. The resulting macro patterns are used to classify

images from the test set. We will use accuracy, confusion

matrices, and precision-recall curves to evaluate the quality

of the predictions.

For the representation of micro patterns, we used 16 buckets

for H , 6 buckets for I , and the 3 features for texture; see

also Section II.A. We used a structured approach to determine

the optimal values for sample frequencies, classification algo-

rithms, threshold values, cluster precision, and the simulated



Table 1. Impact of pattern size on performance

Level Size Performance p

Micro 8×8 76% ± 3.5 > 0.1
12×12 71% ± 5.0

Meso 1×1 62% ± 2.0 < 0.05
2×2 75% ± 3.5
3×3 74% ± 2.6
4×4 79% ± 3.5

Macro 2 74% ± 2.9 > 0.1
4 77% ± 3.2
6 73% ± 4.7
8 78% ± 2.0

10 76% ± 4.0

annealing parameters. The simulated annealing parameters

were selected such that they were guaranteed to give the same

results over 10 runs. The following values were determined for

the three parameters: start temperature: 10, end temperature:

0.01, and cooling factor: 0.995. The sampling frequency and

threshold value were increased with steps of respectively 100
and 0.1, until performance was optimal. Because sampling is

non deterministic, we ran all experiments three times and used

Repeated Measures ANOVA to test for significant differences

in performance.

B. Impact of Pattern Size

Table 1 provides an overview of the results for the impact of

pattern size at the various levels. For micro patterns, only at the

larger pattern sizes differences in texture between the micro

pattern prototypes evolve. Figure 2 gives an example of a face

image reconstructed with face micro patterns of different size,

and the reconstruction of a non face image using face micro

patterns. Image areas that exceed the distance threshold for

the closest pattern prototype are not allocated to a cluster -

the transparent areas.

However, there is a tradeoff as smaller pattern sizes lead to

better performance, though not significant. This is in contrast

with the original Visual Alphabet setting classifier results:

16 × 16 patterns outperform 8 × 8 patterns [9]. Such a

result, if significant, could be explained by the differences in

outcome classes in terms of the concepts ‘things’ and ‘stuff’,

as mentioned in the introduction. Things (e.g., objects, people,

faces) consist of stuff; however, settings (e.g., a beach scene,

countryside) typically consist of a small number of relatively

large areas of stuff, whereas things consist of a large number

of small areas of stuff [1], [6], [12], [15], [20].

 

Fig. 2. Impact of pattern size: examples of a positive image (left) and a
negative image (right) represented in terms of the micro pattern prototypes
(cluster centers) with increasing pattern size.

Table 2. Impact of pattern size: meso pattern prototypes

Size Meso Pattern Prototypes

1×1  

2×2  

3×3  

4×4  

We experimented with the size of the meso patterns. Please

recall that meso patterns are patterns of micro level proto-

types. A visual overview of varying pattern sizes is provided

in Table 2. For larger patterns, we can clearly see meso

pattern prototypes evolve, which are specific for faces; i.e.,

nose, mouth, neck, eye, chin, and borders between head

and background. The 3 × 3 and 4 × 4 pattern results are

significantly better than 1 × 1 pattern results (Table 1). This

also demonstrates that classification on the basis of spatial

configurations of micro patterns (size: > 1×1) performs better

than on micro patterns alone. This is a key result as it justifies

the use of the intermediate meso level. Moreover, support for

such an intermediate level can be found in literature [2], [21].

At the macro level, pattern size can be interpreted as the

number of meso pattern prototypes to be used in a macro pat-

tern to optimize classification performance. We experimented

with 2, 4, 6, 8, and 10 meso pattern prototypes. From visual

inspection, we noted that with more than 4 prototypes, features

started to appear that were not unique to faces. However, note

that for classification we only look at the distance to the best

matching meso pattern prototype in the macro pattern.

As is shown in Table 1, no significant differences in

performance for the number of meso pattern prototypes in a

macro pattern were found. However, there are large differences

in computational cost.

C. Impact of the Distance Measure

The distance measure of choice is another key parameter,

with which was experimented. Euclidean, normalized corre-

lation, and Mahalanobis distance were applied at the various

levels; see also Equations 2 and 3 in Section II.A. The results

of each of the distance measures on all levels can be found in

Table 3.

For micro patterns, the difference between Euclidean and

normalized correlation is not significant (p > 0.1); however,

the difference between Mahalanobis and the other measures is

(p < 0.5). Also for meso patterns, using Mahalanobis provided

the best results; however, this is only significant for the



Table 3. Impact of distance measure on performance

Level Distance Performance p

Micro Euclidean 74% ± 2.1 < 0.05
norm. correlation 75% ± 3.2

Mahalanobis 86% ± 2.1

Meso Euclidean 71% ± 5.3 < 0.05
norm. correlation 77 ± 4.4

Mahalanobis 80% ± 1.7

Macro Euclidean 75% ± 6.0 < 0.05
norm. correlation 62% ± 9.5

Mahalanobis -

comparison between Mahalonobis and Euclidean (p < 0.5).

Mahalanobis distance essentially weights the features so the

results indicate this is important for this class of images, and

more important for micro than for meso level. A reason could

be that micro patterns’ H , I , and texture features correlation

among each other, in contrast to the meso pattern, which is a

pattern of micro pattern clusters.

For macro patterns, the results are different. The Maha-

lanobis distance could not be calculated because the feature co-

variance matrix was singular. Euclidean distance outperforms

normalized correlation in this case (p < 0.05). A possible

explanation for this is that macro patterns are essentially

binary, whereas meso and micro patterns contain histogram

and frequency information respectively. So, correlations are

less likely to occur and the value add of normalization is

smaller for macro patterns.

D. Impact of the Number of Pattern Prototypes

The final variable under investigation was the number of

pattern prototypes; i.e., clusters. Table 4 provides the results.

See Figure 3 for examples of reconstructed images with

increasing number of clusters; image representation seems to

improve with larger numbers of clusters. However, the experi-

ments actually show that using 5 clusters gives optimal results

(significant over 10 and 20 clusters at the 0.05 level). So, the

downside of an increase in ambiguity outweighs the benefits

of a closer image representation. For meso patterns, a similar

tradeoff is shown. The results for 5, 10, and 15 clusters are

significantly better than the results for 20 clusters (p < 0.5).

Similar as in the pattern sizes experiments, patterns evolve

that correspond to useful salient features for recognizing faces;

e.g., pieces of noses, hair, and mouth. At the macro level, all

experiments result in a single pattern.

   

Fig. 3. Impact of number of prototypes: examples of a positive image
(left) and a negative image (right) represented in terms of the micro pattern
prototypes (cluster centers) with increasing number of clusters.

Table 4. Impact of the number of pattern prototypes on performance

Level Clusters Performance p

Micro 5 83% ± 2.9 < 0.05
10 73% ± 2.1
15 80% ± 1.7
20 75% ± 4.2

Meso 5 71% ± 5.5 < 0.05
10 77% ± 1.2
15 75% ± 3.8
20 64% ± 3.6

E. Experimental Comparison

Finally, we ran an experiment with the optimal settings

as discussed in the previous sections. Some exceptions were

made: for 8 × 8 pixel size prototypes at the micro level the

covariance matrix was singular; so, we used Euclidean rather

than Mahalanobis distance at the meso level. See Table 5 for a

confusion matrix, presenting the average results over all runs.

The overall accuracy was 86%. The optimal threshold on the

score was determined in training data only.

Our method is in essence an unsupervised, one class learn-

ing technique, only in the final macro stage, information

from negative images is used to create a classifier. Therefore,

we compare it to other similar methods for detecting image

content in images that also exploit spatial information:[2],

[12], [21]. We will summarize their approach and provide

benchmark results. Note that this comparison is for illustration

purposes only, given the differences in data sets across all

methods.

In [21], areas are localized with a lot of structure and

representations of these areas are clustered with a k-means

algorithm. A greedy search algorithm is used to further extract

the best set of prototypes. This results in 90% accuracy for

frontal faces and 87% for car images (taken from behind). In

[2], an approach similar to Weber et al is followed. However,

they also took the geometric relations between patterns into

account. They report 85% accuracy for car images (taken from

the side). In [12], images are classified into a fixed num-

ber of categories and represented image content by average

RGB values. This approach was tested on natural settings

such as mountains, fields, and waterfalls and evaluated using

precision-recall curves. See Figure 4 for a comparison. To ease

the latter comparison, we have downscaled this study’s results

to the precision of [12], at full recall.

IV. CONCLUSION

In this chapter, a hierarchical multi-level Visual Alphabet

approach for image representation and classification has been

introduced. This method is inspired by visual perception theory

Table 5. Confusion matrix

Classification

+ -

Image + 81% 19%
- 10% 90%



 

waterfall 

face 

(visual alphabet) 

mountain 

field 

waterfall 

mountain 

field 

Fig. 4. Precision-recall curve (categories: waterfall, mountains, fields),
adapted from [12] and the Visual Alphabet method (category: faces). Dashed
lines are precision and recall curves on global histogram only for image classes
from [12]. Visual Alphabets results scaled down to a 0.2 precision at 100%
recall, to simplify a fair comparison.

and aims to integrate key concepts from opposing traditions.

The representation is hierarchical; although, abstract, generic,

and computationally complex features are avoided. The micro

and meso level features are derived directly from the positive

examples only. The multi-level Visual Alphabet method is a

well suited, generic, and coarse method for the representation

of image content. It covers most of the continuum between

stuff and things. The aim of the additional meso level is

to primarily capture what micro pattern prototypes co-occur

spatially.

The initial results are encouraging. A high level comparison

is provided with the classification results from [12], among

others. Moreover, the results confirmed that useful, salient

features are being evolved at the intermediate meso level. From

a qualitative point of view, the meso patterns seem to match

with patterns to be expected from a classifier, whose task it

is to recognize faces. From a quantitative point of view, the

pattern size experiments at the meso level have confirmed that

representations that go beyond simple distributions of micro

patterns (i.e., meso patterns larger than a single micro pattern

prototype) provide significantly better results. In other words,

adding the meso level actually adds value over our prior, two

level approach, towards visual alphabets.

Image representation and classification is again successfully

achieved using Visual Alphabets. This article presented a sig-

nificant extension to the original Visual Alphabet method [8],

[9]. It is unique in that it merged two opposing paradigms

in human visual perception. The experiments prove both

quantitatively and qualitatively that the additional middle layer

adds value, and provide guidance for understanding and setting

the main parameters. Given its theoretical framework and these

initial results, this multi-level approach to Visual Alphabets

may be a promising method to narrow the semantic gap [4],

and applicable to a wider set of problems than the original

approach.
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