
Page 1 of 5

Developing Frameworks for Protocol Implementation
Ciro de Barros Barbosa1, Luís Ferreira Pires

Centre for Telematics and Information Technology 
University of Twente P.O. Box 217, 7500 AE, Enschede, the Netherlands 

e-mail:{barbosa,pires}@cs.utwente.nl

Abstract. This paper presents a method to develop frameworks for protocol implementation. Frame-
works are software structures developed for a specific application domain, which can be reused in 
the implementation of various different concrete systems in this domain. The use of frameworks 
support a protocol implementation process connected with formal design methods and produce an 
implementation code easy to extend and to reuse.

1  Introduction

The scope of our work is the investigation of the use of frameworks for protocol implemen-
taion. Frameworks are software structures developed for a specific application domain, which
can be re-used in the implementation of various different concrete systems in this domain. We
are particularly interested in an implementation method that is connected to formal design
techniques. In this case, the application domain of our frameworks is the design model under-
lying the design process; the concrete systems are the protocol implementations. A design
model consists of the design concepts applied to model the protocol and the rules to combine
such concepts [6]. 

The protocol implementation process consists of mapping the concepts of the chosen design
model onto the concepts of an implementation model. An implementation model consists of
the implementation building blocks available in a specific environment. In this work we use
the term meta-model to generally refer to design models and implementation models. Ideally,
for a precise mapping, both meta-models should have their semantics formally defined and a
couple of tools should support the mapping process. However, implementation models do not
have a formal semantics and the mapping process relies on the knowledge designers have of
the implementation environments and their skills to combine the available building blocks.
Implementations from scratch in these circumstances are not an efficient process. Implemen-
tation conformance usually relies on timing consuming tests without many guarantees.

The use a framework to implement a specific protocol, the final implementation will consist of
the framework complemented with classes that define the specific functions of the protocol. In
this respect a framework resembles a program with a ‘hole’, which has to be ‘filled in’ with
specific functions in order to be executed [7]. 

By using frameworks we intend to give a contribution to the implementation process, provid-
ing an implementation method with a good balance between implementation process effec-
tiveness, maintenability and performance. Such method also allows, to a large extend, the
reuse of the implementation effort. 

The framework development process must be committed with the following goals, in order to
the resulting frameworks efficiently contribute to the protocol implementation process:

• frameworks must have a good balance between code maintenance and performance. 

1.Sponsored by CNPq - Brazil



Page 2 of 5

• frameworks must have a clear and intuitive documentation. 

• there must be a conformance between frameworks and the concepts they implement. 

We have defined a systematic approach to develop frameworks through which we intend to
reach these goals. The analysis and design techniques used here were inspired in [2]. The
modelling techniques follow the UML standard [8]. Our approach consists of four steps:
Domain analysis, Definition of the Software Architecture, Coding and Documentation. The
remaining of this paper describes in detail our method to develop frameworks. 

2  Domain Analysis

In the domain analysis step we strive for a clear definition of the design model we intend to
support. The concepts of the design model and their relationships are analysed and presented.
Such analysis is based on a basic meta-model we have identified. The analysis consists of spe-
cializing the components of the basic meta-models into the specific characteristics of the par-
ticular design model we intend to use.

The modelling techniques we use in order to describe design concepts and their relations are
data dictionaries and class diagrams. The data dictionary consists of one paragraph for each
design concept, describing the semantics of this concept and its associations to other concepts.
Such description is done in natural language. We use class diagrams to help describing the
static relations between concepts. The next subsection presents our basic meta-model and dis-
cuss the specialization of its elements. 

2.1  A Basic Meta-Model

In order to facilitate the analysis of design models, we provide in this sub-section a basic
structure for meta-models. The basic meta-model, as we call it, consists of the fundamental
concepts that can be found in any meta-model. The analysis of a specific meta-model can be
done identifying how this specific meta-model defines each fundamental concept of the basic
meta-model. We have obtained the basic meta-model by analysing the communities between
the concepts present in some architectures for distributed systems, e.g., ISO/OSI [4] and Inter-
net [5]. The same basic meta-model can be found by analysing description techniques which
were conceived to model distributed systems [3]. The concepts identified in the basic meta-
model are:

• Behaviour: is an abstraction which models the functionality of the system, i.e., how the 
system reacts, in each stage of its execution, to stimulus from its environment or the 
absence of them.

• Component: communication system architectures are often structured in layers. These 
layers may be decomposed into different functional parts. In this way we can reason 
about the system through smaller parts that are easier to understand than the whole. We 
use the concept of component to model such a system part. A component encapsulates 
the characteristics of the system part it models, e.g., its behaviour. 

• Interaction: this concept models an instance of common activity between system parts. 

• Interaction means: is an abstraction that represents the mechanisms through which com-
ponents cooperate. The relation between interaction means and interaction is analogous 
to the relation between component and behaviour, i.e., it supplies a place and an identity 
for the interaction being performed. 



Page 3 of 5

For each specific meta-model we specialize the concepts presented above or aggregate new
concepts to support them. Some of the basic meta-model concepts may have a few most com-
mon specializations, while others may rely on definitions that can vary considerably from
meta-model to meta-model. 

3  Software Architecture Definition

A modelling notation has to be used to document the resulting model, i.e., the framework soft-
ware architecture. For the purpose of defining the software architecture, the modelling nota-
tion can still abstract from implementation details like language syntax and communication
sub-systems interface. However, the mapping of the constructs of the modelling notation onto
implementation constructs of an implementation environment should be straightforward. 

The deliverable of this phase consists mainly of data dictionaries and class diagrams. Interac-
tion diagrams [8] are eventually used to represent scenarios that are relevant for the under-
standing of dynamic aspects of the software architecture. In order to deal with more complex
dynamic behaviour, i.e., an object class with a non-trivial number of states, we make use of
state diagrams that offer a complete and precise behaviour description. 

For each class we must also define its boundary conditions, i.e.; initialization, termination and
failure. In the initialization, the system must be brought from a quiencent initial state to a sus-
tainable steady state condition. Termination usually consists of releasing allocated resources.
Failure can arise from user errors or from resources exhaustion. The benefits and drawbacks
of the design decisions taken in the development of the software architecture are documented
in natural language, in order to facilitate the selection among alternative frameworks, when
implementing a specific protocol. The modelling process that defines the software architecture
is mainly a creative process. Nevertheless, some heuristics can be applied to support this task.
We present such heuristics in next sub-section.

3.1  Heuristics for defining the software architecture

By heuristics we mean any actions or procedures whose effectiveness has not been proven but
are accepted based on experience or common sense. In software engineering, such approach
still plays an important role and therefore saving such knowledge is a pragmatic attitude.

The main heuristic for defining software architecture comes from the object-oriented system
development method presented in [2]. In order to reach the framework software architecture,
the class diagram obtained from the domain analysis must be adapted to an implementation
environment. Object classes are excluded or included in the software architecture for imple-
mentation optimization. New responsibilities of object classes must be defined. However,
optimization of the design should not be excessive. 

Another way to apply heuristics is the use of design patterns. A design pattern is a description
of communicating objects that are customized to solve a general design problem in a particu-
lar context [1]. Design patterns are usually the result of a largely applied implementation solu-
tion which became well known and flexible for reuse purposes. The use of design patterns
makes the software architecture definition more systematic. Design patterns represent a com-
promise between an one-class implementation solution, e.g., a linked list, which is reused the
way it is, and a more complex solution which falls in the category of a framework.



Page 4 of 5

For some important issues of protocol implementation, e.g., execution flow control and map-
ping of protocol behaviour, some design patterns can be found in the literature. For example, a
pattern called scheduler can be used to share the opportunity of execution among different
parts of a system; a pattern called event-demultiplexer to supply an event-driven execution
model; the state pattern can be used for mapping a finite state machine. 

4  Coding

In this step we map the framework software architecture onto the constructs of a specific
implementation environment. Some instructions on mapping the object-oriented implementa-
tion model onto implementation code is given is the Object Design phase of the Object Mod-
elling Technique (OMT) development method presented in [2]. 

We apply a prototyping strategy for coding. In this approach, the concepts which have
stronger impact in the implementation are coded first. We start by producing a simplified pro-
totype which allows preliminary tests. An interactive and incremental approach is also advised
in the software development process presented in [9]. The prototyping strategy helps us rea-
soning about different problems separately. When dealing with some improvements in a
framework, we can abstract from other features that are consolidated in previous versions of
the same framework. 

In the coding step we also have to decide about the trade-off between portability and perform-
ance. Building blocks that are intended to improve performance are usually less portable, for
example, multi-thread packages. Some implementation building blocks offer portability, e.g.,
wrappers [10]. 

5  Documentation

Protocols are specified by creating instances of the concepts of a design model and combining
these instances. Modelling techniques have constructs representing the concepts and con-
structs to combine them, as operators of concepts. Frameworks are intended to support more
directly the semantics of design concepts, but it is not our goal to support any particular speci-
fication language. Therefore, in order to use a framework, we have to provide some guidelines
that describe how to create instances of concepts and how to combine them.

Since we are applying object-orientation, instantiation of the constructs supplied by the frame-
work to support design concepts can be done by instantiation of object classes. Some of theses
object classes may need specialization in order to capture protocol specific information. In
order to combine the instantiated concepts, different techniques may be applied, such as:

• template code to be filled in with code for each specific protocol function;

• suggested mappings of behaviour structures of the protocol specification onto implemen-
tation patterns.

The instructions for applying a framework must also contain the information for handling
boundary conditions. Guidelines for using frameworks are formulated in natural language and
illustrated with some examples.



Page 5 of 5

6  Conformance Assessment

Protocol development methods that use formal methods emphasize precision as the basis for
the design activity. An important requirement in our research is the conformance between
design concepts and the way such concepts are supported by the protocol implementation. The
semantics of the design concepts must be preserved in the implementation, otherwise, the
effort done in the design may be compromised.

We have decided for a pragmatical approach to deal with the conformance requirement. We
suggest testing techniques upon each concept implementation whenever the complexity of the
concepts justifies so. We claim that the application of test techniques to basic design concepts
is simple and produce reliable results.

7  Conclusions

We have briefly presented a systematic way to develop frameworks. This approach is an effort
to combine formal design techniques with current practices in software engineering in a inte-
grated protocol development process. We have presented the phases of our method and their
deliverables. We have pointed out the conceptual basis of our work and the techniques
applied. This is an approach that is better applied in environments where the changes in the
required protocol functionalities are frequent. We claim that with this method we have
addressed the cornerstones of an efficient and reliable process for implementing protocols. 

8  References

[1]     E. Gama, R. Helm, R. Jonson, J. Vlissides, Design Patterns: Elements os Reusable-Ori-
ented Software, Addison-Wesley Publishing Company, 1994.

[2]      J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, Object-Oriented Modeling and Design, 
Prentice Hall, New York, 1991, 491p.

[3]     Using Formal Description Techniques: An Introduction to Estelle, LOTOS and SDL, Ed-
ited by Kenneth J. Turner, John Willey & Sons, 1993, 431p.

[4]     ISO, Information Processing Systems - Open Systems Interconection - Basic Reference 
Model, 1984, IS 7498.

[5]     D.D. Clark, The design philosophy of the DARPA Internet protocols. In proceedings of 
the SIGCOMM’88 Symposium (Aug. 1988), pp. 106-114.

[6]     C.A.Vissers et al., The Architectural Design of Distributed Systems, Lecture Notes, Uni-
versity of Twente, Enschede, The Nethedlands, 1995.

[7]     C.B.Barbosa; L.F.Pires; M.Sinderen, Frameworks for Protocol Implementation, Simpo-
sio Brasileiro de Redes de  Computadores 16, 1998,

[8]     M.Fowler, K.Scott, UML Distilled - Applying the Standard Object Modeling Language, 
Addison-Wesley, 1997, 179p.

[9]     G. Booch. Object-oriented analysis and design with applications. The Benjamin/Cum-
mings Publishing Company, Inc., California, USA, 1994.

[10]     D.C. Schmidt, ACE: an Object-Oriented Framework for Developing Distributed Appli-
cations, in Proceedings of the 6 USENIX C++ Technical Conference, (Cambridge, Ma-
sachusetts), USENIX Association, April 1994.


