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Abstract—This paper investigates distributed range-free local-
ization in wireless networks using a communication protocol
called sum-dist which is commonly employed by localization
algorithms. With this protocol, the reference nodes flood the
network in order to estimate the shortest distance between
the reference and blind nodes. Existing localization algorithms
that use this communication protocol only evaluate the shortest
distance. Our approach is somewhat different in that we optimize
the localization performance for this communication protocol.
We present a new algorithm called COM-LOC which exploits
a certain part of the information inherent in the protocol that
other algorithms consider as redundant or false information. We
show that the use of this additional part of information increases
the performance compared to other range-free algorithms by
68% to 206%. Other comparisons with several RSS-based
localization algorithms show that COM-LOC outperforms these
algorithms under a wide range of conditions, while keeping the
communication costs equal.

I. INTRODUCTION AND RELATED WORK

In the last few years, there is a growing interest in locating

devices in wireless communication networks. In this paper, we

focus on RSS-based localization. We distinguish three type

of RSS-based localization algorithms, namely range-based,

proximity-based and range-free localization.

Range-based localization algorithms assume that the signal

strength decay over distance follows a distribution that is a

priori known. This distribution is used for converting signal

strength measurements into distance estimates. These distance

estimates are then used for estimating the position (for exam-

ple [13] and [16]).

Proximity-based localization algorithms assume that the sig-

nal strength decays over distance ([6] and [14]). The main

difference with range-based algorithms is that they only use

the order of RSS measurements. Therefore, proximity-based

localization algorithms are not dependent on the goodness-of-

fit of the RSS over distance distribution.

Range-free localization approaches use connectivity informa-

tion ([5], [9], [11] and [12]). Existing localization algorithms

based on connectivity assume that the transmission range

is constant ([11]) or the deployment distribution is uniform

and known a priori ([5], [9] and [12]). This means that the

performance depends on the difference between the expected

and real values of the transmission range and deployment

distribution.

Most existing localization algorithms in wireless networks

are designed with the assumption that certain localization

specific information is available. Afterwards, a communication

protocol is designed to obtain this information. In this paper,

we do it the other way around. We design a distributed range-

free localization algorithm on the basis of sum-dist which is a

communication protocol commonly employed by localization

algorithms (as in [5], [9], [11], [12] and [15]). This means

that we construct the Maximum Likelihood Estimator (MLE)

for localization on the basis of the communication protocol.

Theoretically, this maximum likelihood estimator should pro-

vide the best localization results for a given communication

protocol. We present a new algorithm called COM-LOC using

this new approach. Compared to other algorithms that use

sum-dist, COM-LOC evaluates all information instead of only

evaluating the shortest distance (as in [5], [9], [11], [12]

and [15]). COM-LOC is a distributed range-free algorithm

that adapts a grid-based Monte Carlo Localization (MCL)

method, which has been successfully implemented in robotics

localization (for example [3]) and in range-free and range-

based localization in wireless sensor networks ([11] and [15]).

This paper is organized as follows: after the problem formu-

lation in Section II, Section III describes the model used for

simulating the connectivity. Section IV shows how COM-LOC

converts the information, obtained during the communication

phase, into distance estimates and associated probabilities.

Section V provides a description of COM-LOC. Section

VI analyzes the localization performance of COM-LOC. In

addition, this section also compares COM-LOC with DV-

HOP([5]), ecolocation ([14]) and a modified version of the

MLE described in [13]. Section VII presents the conclusion

and future work.

II. PROBLEM FORMULATION

This section provides a formal description of the range-free

localization problem. First consider a wireless network that
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Fig. 1. Communication phase
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Fig. 2. Packet delivery rate as a function of the distance using the Log-Normal
Shadowing Model

consists of two type of nodes:

• Reference nodes: Reference nodes know their position in

advance.

• Blind nodes: Blind nodes do not know their location in

advance.

We address the problem of blind node localization on the

basis of connectivity measurements using the following com-

munication protocol (as in [11]). First, each reference node

sends one message with its position and a hop distance set to

one. Each receiving blind node stores the received reference

position and hop count. Then the hop distance is increased by

one and the message is forwarded. This is also the end of the

communication phase. In general, this communication protocol

is similar to sum-dist ([7]) with a time-to-live of two. We limit

the time-to-live in order to keep the communication costs at

the minimum and to allow localization functionality for mobile

wireless networks. At the end of the communication phase,

blind nodes have the following information components:

1 The blind nodes store a set of reference node positions

that are one-hop-away. We represent this set by: S ⊆ R.

2 The blind nodes store a set of reference node positions

that are two-hops-away. We represent this set by: T ⊆ R.

3 The blind nodes store the number of received messages

from other blind nodes per reference node. We represent

this number by: nr ∈ r, here r ∈ R.

Throughout this work, we abbreviate these information com-

ponents by numbering them as in the previous enumeration

({1},{2},{3}).

Most existing distributed range-free localization algorithms

use this communication protocol and only evaluate the shortest

hop count for localization ([5], [9], [11] and [12]). This means

that many received messages during the communication phase

are considered useless and discarded. We use Figure 1 as an

illustrative example in order to show this. Figure 1 represents

a part of a wireless communication network. The black circles

represent the nodes; r1 represents a reference node and b1 . . .b4

represent the blind nodes. The solid and striped lines indicate

that the nodes can communicate with each other. The text

above the communication lines shows whether the received

messages are processed by the existing algorithms:

• “1 hop” indicates that the blind node is one-hop-away

from the reference node (r1 ∈ S).

• “2 hops” indicates that the blind node is two-hops-away

from the reference node (r1 ∈ T ).

We distinguish two type of messages that are not used by the

existing algorithms:

• “redundant information”: The message from b3 to b4

indicate that b4 is two-hops-away from reference node

r1 (r1 ∈ T , information component 2). The messages

from {b1,b2} to b4 also indicate this and are considered

as redundant information. This means that information

component 3 (if nr > 1) is considered as “redundant

information” for reference nodes that are two-hops-away.

• “false information”: The message from r1 to b3 indicate

that b3 is one-hop-away from reference node r1 (r1 ∈ S,

information component 1). The messages from {b1,b2} to

b3 indicate that b3 is two-hops-away from reference node

r1 and are considered as false information. This means

that information component 3 (if nr > 1) is considered as

“false information” for reference nodes that are one-hop-

away.

The main differences with the existing distributed range-free

localization algorithms is that COM-LOC processes these mes-

sages in order to increase the localization performance without

increasing the communication costs. Section IV describes how

this information is processed.

III. SIMULATION MODEL

This section describes the used model of the signal strength

over distance distribution. We base COM-LOC on this model.



Moreover, the simulations at the end of this paper use this

model (see Section VI).

Connectivity is defined by whether two nodes can communi-

cate with each other or not. Existing literature on range-free

localization models connectivity by using propagation models.

Examples of used propagation models are [6] (Degree Of

Irregularity) and [1] (Log-Normal Shadowing Model). In this

study, we adopt the Log-Normal Shadowing Model (LNSM)

for modeling the signal strength over distance distribution

([1]), because both theoretical and measurement-based studies

support this model in indoor and outdoor environments ([2]).

The LNSM describes the signal power decay over distance that

suffers from shadowing effects. A log-normal distribution is a

continuous distribution in which the logarithm of the variable

follows a normal distribution. This means that:

• The average received signal strength decreases logarith-

mically over distance.

• The received signal power follows a normal distribution

at a certain distance.

The following formula represents the LNSM:

Pd = Pd0
−10 ·n · log10(

d

d0
)+XσdBm

= N(Pd ,σ
2
dBm) (1)

Here:

• Pd represents the received signal power in dBm at distance

d.

• Pd0
represents the received signal power in dBm at

reference distance d0. In general distance d0 is relatively

small. For simplicity, we assume that distance d0 is 1

meter (see [2]).

• n represents the path loss exponent. The path loss expo-

nent represents the rate at which the path loss increases

with distance.

• Xσ represents the standard deviation of the received

signal power due to shadowing effects invariant with the

distance ([2]). X follows a zero-mean normal distribution

with variance σ2
dBm:

X ∼ N(0,σ2
dBm) (2)

• N(Pd ,σ
2
dBm) indicates that the received signal strength can

also be represented as a normal distribution with mean Pd

and variance σ2
dBm.

In this paper, we use the LNSM for estimating the connectivity

probability as a function of the sender/receiver distance. We

assume that the connectivity is determined by a RSS threshold

(like in [13]). The following formula computes the connectiv-

ity probability as a function of the distance:

P(A hears B|d) = 1−F(RSS ≤ thres|d) =

1− cdf(thres,Pd ,σ
2
dBm) (3)

Here:

• P(A hears B|d) represents the probability that receiver A

receives a message from sender B at distance d.

• F(RSS ≤ thres|d) represents the probability that receiver

A measures a signal strength below threshold thres at

distance d.

• cdf(thres,Pd ,σ
2
dBm) represents the cumulative distribu-

tion function of the normal distribution that computes

F(RSS ≤ thres|d).

Figure 2 shows the connectivity as a function of the distance

using the LNSM with different parameters settings for n =
N = 3,3.5, σdBm = V = 4,8 and Pd0

= P = −40,−30. Note

that all parameters influence the connectivity. For simplicity,

we assume that these parameters are known a priori (as in

most range-free localization algorithms, for example [8], [11]

and [13]). The values of these parameters can be determined

by performing calibration measurements (as in [13]).

IV. ESTIMATING DISTANCES AND PROBABILITIES

This section shows how COM-LOC converts the informa-

tion, obtained during the communication phase (see Section

II), into distance estimates and associated probabilities using

the model described in Section III.

A. One-Hop-Away Reference Nodes

The probability that reference node a communicates directly

with blind node b as a function of the distance between

reference node a and blind node b is defined as:

P(b hears a|da,b). (4)

This equation is equal to Equation 3 and is shown in Figure

2.

B. Two-Hops-Away Reference Nodes

The probability that blind node b did not receive a message

from reference node a as a function of the distance between

reference node a and blind node b is defined as:

1−P(b hears a|da,b) (5)

C. Communication via Blind Nodes

The probability that reference node a can communicate

indirectly with blind node b via nr blind nodes as a function

of the distance between reference node a and blind node b is

defined as:

P(b hears a via nr nodes|da,b) (6)

Before we provide a solution for Equation 6, we first solve

Equation 6 for one blind node:

P(b hears a via 1 blind node|da,b) (7)

We approximate this probability by using Monte Carlo Sim-

ulations (MCS). The MCS first represents the position and

distance distribution by drawing samples. We implement a

grid-based sampling approach in order to ensure a uniform

distribution.

• The blind node that forwards the message to node b lies

within transmission range distance from node a. There-

fore, we draw samples that lie within the transmission
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range from node a. We represent this set of possible

positions by: C.

• The distance between node a and node b lies in the fol-

lowing interval: [0 . . .2 · tr]. Therefore, we draw samples

in a line that starts at a and has a length of 2 · tr. We

represent this set of possible positions and distances by:

B.

We use Equation 3 for estimating the probabilities between

individual samples:

P(b ∈ B hears a via c ∈C|da,b) =

P(c ∈C hears a|da,c) ·P(b ∈ B hears c ∈C|dc,b) (8)

We use Equation 8 for estimating the probability that blind

node b hears reference node a via one blind node (Equation

7):

P(b ∈ B hears a via C|da,b) =

∑
c∈C

P(b ∈ B hears a via c ∈C|da,b) (9)

Figure 3 shows Equation 9 as a function of the distance

between the reference node a and blind node b for parameter

settings: n = {3,3.5}, σdBm = {4,8} and Pd0 = {−40,−30}.

We use Equation 9 for estimating the probability that blind

node b hears reference node a via nr blind nodes (Equation

6):

P(b hears a via nr nodes|da,b) =
nr

∏
i=1

P(b ∈ B hears a via C|da,b) (10)

D. Final Probability over Distance Distribution

In this subsection, we are interested in the probability over

distance distribution between one reference node and one blind

node using the estimated probabilities in the previous sections.

We distinguish the probabilities in either one-hop-away or two-

hops-away reference nodes:

• one-hop-away reference nodes (s ∈ S):

P(b hears s|ds,b) ·P(b hears s via nr nodes|ds,b) (11)

• two-hops-away reference nodes (t ∈ T ):

(1−P(b hears t|dt,b)) ·P(b hears t via nr nodes|dt,b)
(12)

Figure 4 shows the probabilities associated with Equations 11

and 12 using the following LNSM parameter settings: n = 3.5,

σdBm = 8 and Pd0
= −40. “bn” is an abbreviation for blind

node and “rn” is an abbreviation for reference node.

E. Implementation and Computational costs

The computations described in the previous subsections are

too expensive to run on a blind node. Therefore, we compute

the outcome of the following equations before deployment:

• Equation 4 for distances in the interval [0 . . .dsu f ].
• Equation 9 for distances in the interval [0 . . .2 ·dsu f ].

Here dsu f represents the distance that provides a sufficient

packet delivery rate. The sufficient packet delivery rate is set

by the user. Throughout this paper, we set the sufficient packet

delivery rate to 1%. Blind nodes store the results of Equation

4 and 9 in a table with a user defined distance resolution.

We represent the distance resolution by dres. Throughout

this paper, we implement a distance resolution of one meter

(dres = 1 meter). The stored results are later used for estimating

Equation 11 and Equation 12. We interpolate probabilities

associated with distance values that are not stored in the tables.

The packet delivery rate at distances greater than dsu f are set to

the probability associated with dsu f . The computational costs

of estimating Equation 11 and Equation 12 are equal to:

nr ·
dsu f

dres

multiplications per reference node (13)
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Equation 13 shows that the computational complexity is lin-

ear.

V. RANGE-FREE LOCALIZATION ALGORITHM

This section provides a description of COM-LOC for wire-

less networks using the results in Section IV. COM-LOC

implements a grid-based Monte Carlo Localization approach.

An overview of Sequential Monte Carlo methods can be found

in [4]. For an example of a range-free MCL implementation,

we refer to [11]. As in [11], COM-LOC consists of two phases:

• The “prediction phase” draws samples that represent the

position distribution.

• The “filtering phase” weighs the samples drawn in the

prediction phase according to the observations.

COM-LOC limits the x- and y-coordinates of the position

distribution on the basis of the most dominant one-hop and

two-hops-away reference nodes. We use this information to

make a bounding box (as in [7]) and to keep the computational

costs as low as possible. Throughout this paper we represent

the position distribution by POS, an individual sample is

represented by p (p ∈ POS). After the prediction phase we

filter the samples by the MLE:

MAXp∈POS
(

∏
s∈S

P(p hears s|ds,p)·

P(p hears s via nr nodes|ds,p)
)

·
(

∏
t∈T

(1−P(p hears t|dt,p))·

P(p hears t via nr nodes|dt,p)
)

(14)

Here POS represents the position distribution. p represents the

position estimate that maximizes the probability.

Section II indicates that COM-LOC also evaluates “redundant

information” and “false information” in comparison with other

work in this field. This means that COM-LOC increases the

computational costs by the number of computations defined

in Equation 13.

VI. SIMULATIONS

This section analyzes the localization performance of COM-

LOC. In addition, we compare COM-LOC with DV-HOP([5]),

ecolocation ([14]) and a modified version of the MLE de-

scribed in [13].

A. Set-up

Throughout this paper we use the same set-up, except when

stated otherwise. The set-up parameters are:

• The surface area is 100×100 m.

• The simulations simulate the RSS by using the model

described in Equation 1. In general, the following parame-

ter values are used: {Pd0
=−40 dBm,n = 3.5,σdBm = 4}.

See Figure 2 for the packet delivery rate over distance.

• 36 reference nodes are placed in a 6 × 6 grid over

the surface area. This means that the distance between

consecutive reference nodes are 20 meters.

• 200 blind nodes are randomly and uniformly placed over

the surface area.

• The localization performance is given as the mean over

10 runs.

B. Influence of Information Components

This section analyzes the localization performance of

the individual and combined information components (men-

tioned in Section II) as a function of the number

of blind nodes. Section II includes three individual in-

formation components, this means that there are seven

individual and combinations of information components

({1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}). Figure 5 shows the

localization performance of these individual and combined

information components. This figure shows that:



• The performance of component {3} increases with the

number of blind nodes. This is logical because component

{3} processes the number of heard blind nodes. More

heard blind nodes means more localization information.

• Individual component {3} provides the best localization

results compared to other individual components (see {1}
and {2}). Component {3} provides 3.4% to 70% better

results than component {1} and provides 122% to 449%

better results than component {2}.

• Processing one extra information component (see {1,3}
and {2,3}) with information component {3} increases

the performance by 11% to 16%. The difference in

performance decreases as the number of nodes increases.

• Processing one extra information component (see

{1,2,3}) with information components {1,3} or {2,3}
increases the performance only by 3% to 5%. The dif-

ference in performance decreases as the number of nodes

increases.

• Processing information component {3} (see {1,2,3})

increases the performance by 31% to 101% (compared

to {1,2}). The difference in performance increases as the

number of nodes increases.

The simulations and Figure 5 show that information compo-

nent {3} provides the most information about the blind node

position and increases the performance by 31% to 101%.

C. Comparison with Other Localization Algorithms

This section compares COM-LOC with the following local-

ization algorithms:

• DV-HOP is a range-free localization algorithm ([5]).

• A proximity based localization algorithm named “Ecolo-

cation” ([14]), which only uses one-hop information.

• A range- and RSS-based localization algorithm described

in [13]. We use the MLE described by [13] and the RSS

obtained by the shortest distance (as in [7]). The MLE

is estimated by a conjugate gradient method (as in [13]).

We name this distributed algorithm DV-PAT.

It is known that the value of σdBm defines the performance of

RSS-based localization algorithms (see [13]). Typical values

of σdBm are between 6 and 12 dBm ([2]). Figure 6 shows the

mean localization error as a function of these typical values of

σdBm. This figure shows that COM-LOC always outperforms

Ecolocation and DV-HOP. This figure also shows that COM-

LOC outperforms DV-PAT with σdBm values higher than six.

This implies that COM-LOC provides better results in most

typical cases. Note that both Ecolocation and DV-PAT use

RSS measurements, while COM-LOC only uses connectivity

information like DV-HOP.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel localization design

approach. This approach bases the MLE for localization on

the used communication protocol. Theoretically, this maxi-

mum likelihood estimator should provide the best localization

results given a communication protocol. We present a new

distributed range-free localization algorithm using this new

approach: DRF-MCL. DRF-MCL optimizes the localization

performance for a communication protocol commonly em-

ployed by localization algorithms. Simulations show that the

use of this new approach increases the performance by 68%

to 206% compared to other range-free algorithms using the

same communication protocol. The comparative simulations

of DRF-MCL with two RSS-based localization algorithms

show that DRF-MCL performs better than other localization

algorithms over a wide range of conditions.

In the future we would like to decrease the computational

costs by implementing a smarter MCL algorithm or a iterative

gradient search algorithm. We also plan to study the effect of

wrongly guessing the parameters of the Log-Normal Shadow-

ing Model on the localization performance.
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