Transforming Internal Activities of Business Process
Modelsto Service Compositions

Teduh Dirgahayl Dick Quartel, and Marten van Sinderen

! Centre for Telematics and Information Technology
University of Twente, P.O. Box 217, 7500 AE Ensahethe Netherlands
{t.dirgahayu, mj.vansinderen} @twente.nl
2 Telematica Instituut, P.O. Box 589, 7500 AN EnsihéThe Netherlands
di ck. quartel @elin.nl

Abstract. As a service composition language, BPEL imposesoastraint that
a business process model should consist only ofitées for interacting with
other business processes. BPEL provides limiteco@tipfor implementing
internal activities, i.e. activities that are pemied by a single business process
without involvement of other business processe£IBB hence not suitable to
implement internal activities that include comptiata manipulation. There are
a number of options to make BPEL able to implensemh internal activities.
In this paper we analyse those options based dn fesibility, efficiency,
reusability, portability and merging. The analysiglicates that delegating
internal activities’ functionality to other servigeis the best option. We
therefore present an approach for transformingrniadeactivities to service
invocations. The application of this approach omusiness process model
results in a service composition model that cosswmtly of activities for
interaction.

1 Introduction

Web services [1] has become a popular platform bithvmany enterprises execute
their business processes [2, 3]. BPEL [4, 5] i® dadto language for implementing a
business process as a composition of Web sernN@gover the approach defined in
Model-Driven Architecture [6, 7], especially regengl automatic transformation, is

widely used and investigated to speed up the impigation of business processes in
BPEL, e.g.in [8, 9, 10, 11, 12].

A business process model of an enterprise may stookiwo kinds of activities:
(i) activities that are performed to interact witther business processes, e.g. to send
and receive messages, and (ii) activities thatparéormed without involvement of
other business processes. We call the latter Kirattivitiesinternal activities [13].
Internal activities are not exposed to businessgsges.

As a service composition language, on the one hBRE&L (version 1.1 and 2.0)
provides constructs to implement activities forenacting with other business

* This work is part of the Freeband A-MUSE projduttig://a-muse.freeband)néponsored by
the Dutch government under contract BSIK 03025.

processes, e.geceive, reply, andinvoke. On the other hand, BPEL provides limited
support for implementing internal activities. Byfalalt, BPEL uses XPath 1.0 [14] for
data manipulation. XPath is a powerful languagedfeerying the contents of XML

documents; but it provides limited support for datanipulation, e.g. it supports only
simple arithmetic, boolean and string manipulatidherefore, BPEL and XPath are
not suitable to implement internal activities foongplex data manipulation.

Consequently, a business process model whichgsteat to be implemented in BPEL
should not contain internal activities for comptiata manipulation.

We believe that a business process should not i&rained by such a limitation.
A business process model should be allowed to goirigernal activities for simple
and complex data manipulation. To implement suchusiness process model, a
transformation is required to map the businessgw®anodel onto a chosen target
platform and implementation language. In our c#se transformation has to be able
to implement the activity in BPEL.

To overcome the aforementioned limitation, a numbéroptions have been
introduced to make BPEL able to implement interaetivities with any degree of
complexity. An option can be a non-standard or pedary extension to BPEL [15,
16, 17] or a design method [8, 11, 12, 18].

The objectives of this paper are (i) to analyselabke options for implementing
internal activities in BPEL and (ii) to present approach for transforming internal
activities to implementation to facilitate the begtion. We illustrate this approach
using an example business process that is modelledanguage of our convenience
(i.e., ISDL [19]). We claim however that the apprbas generally applicable to other
modelling languages.

The structure of this paper is as follows. Secfaescribes the roles of activities,
constraints and functions in a business processein@ection 3 analyses several
options for implementing internal activities in BRESection 4 presents an approach
for transforming internal activities to facilitathe best option. Finally, section 5
presents our conclusions and indicates future work.

2 Internal Activities, Constraints and Functions

A business process model consists of activities. daeh activity, only its result is
considered. The business process model abstraatstifie way the activities establish
their results. Constraints are used to specifypthgsible results that can be or should
be established.

A simple constraint can be easily included in aifess process model and leaves
the business process model easy to understandisioe| of a complex constraint
potentially makes the business process model diffio understand. To avoid that,
some details of a complex constraint can be entatesliin a (parameterised)
function. The details of the function are descrilmedspecified in other documents
associated with the business process model. Inuéys a complex constraint can be
included in the business process model as a siogpistraint calling a function.

Fig. 1(a) shows an example of the behaviour ofiaco(mplete) business process
model Pricing. The business process receives an order via antyaateceiveOrder

and then calculates the total price of the receieter by performing an internal
activity calculatePrice. The result of the activitgalculatePrice is constrained such
that it must be equal to the result of functaahculatePrice() with the received order
as a parameter. Fig. 1(b) shows the specificatiasheofunctioncal culatePrice().

In the figure, a behaviour is represented by a dednrectangle. An internal
activity is represented by an ellipse. An actiViity interaction is represented by a
segmented ellipse located at the border of the etrarectangle. An arrow inside
this segmented ellipse indicates the direction Inctv the message flows. The result
of an activity is specified in a box attached te #ttivity. If this result is constrained,
its constraint is specified within brackets in s@me box. The keyworgccept in the
box attached to an activity for interaction indesmtthat the text following the
keyword is the message accepted by the activity.

Accept: - 1
Order order dauble price . n
[price = calculatePrice(receiveOrder.order)] . .
NS , > quantity, x price,
k=1
Pricing
(a) Function call in the constraint of activity nés (b) functioncalculatePrice()

Fig. 1. Example of a business process model

Functions can also be called in the constraintetiér types of model elements.
For example, Fig. 2 depicts a business processfitsaireceives an order and then
makes a choice between an activitsndleOrderFromNewClient or handleOrder
FromExistingClient. The choice is represented by a diamond symbas d@toice is
constrained by the result of a functifromNewClient() that evaluates whether an
order is from a new client. This should not be csefl with a “switch” at some
implementation language.

Accept:
(Order order

|[frnmNewEIient[re:eiveDrder arder]] | HandleOrder

andleCrder
omMewClie
andlelrder

romE xistingClie

| [lframMewClient(receivelrder.order] | |

Fig. 2. FunctionfromNewClient() is called in a choice’s constraints

A function call in the constraint of a model elemnether than an internal activity
implicitly defines an internal activity whose resid constrained by the result of that
function. This internal activity can be made expland the constraint of the model
element refers to the result of this internal agtiv-or example, the behaviour of the
business process model in Fig. 3 is equivalenhéomodel in Fig. 2. This style of
modelling is useful, e.g., to allow the result diiaction be re-used in multiple model
elements.

HandleOrder1

Accept
boolean new andleDider
/ [ew = fromM ewClientreceivelrder. order]] B romMewilie

receivelrder

andledrder
ramE xistingClie

Fig. 3. FunctionfromNewClient() is now called in an internal activity

From a different point of view, the specificatiohtbe function can be seen as the
way the internal activity establishes its resulir Example, the function specification
in Fig. 1(b) can be seen as the way the actidtgulatePrice in Fig. 1(a) establishes
its result. Therefore, the implementation of areinal activity can be done by
implementing the specification of the function.

Since a business process model abstracts from alyetlve results of its internal
activities are established, a sole transformatiomfa business process model to a
business process implementation will not resubiinexecutable implementation. To
obtain an executable implementation, the descripgiospecifications of the functions
called in the constraints of the internal actidtishould also be transformed into
implementations. This transformation results incatled function implementations.
During execution, the business process implem@amtatuses the function
implementations to establish the results of iterimal activities.

3 Optionsfor Implementing I nternal Activities

In this section we analyse available options foplementing internal activities based
on a number of evaluation criteria.

3.1 Evaluation Criteria

As mentioned previously, a transformation of a bess process model to an
executable implementation should result in two kinaf implementations: (i) a
business process implementation and (ii) functiapléementations. In our case, the
business process implementation is in BPEL anduhetion implementations are in
some implementation language that can also be BRELXPath.

While the business process implementation can keired through an automatic
transformation [9, 10, 11, 12], function implemdita is mainly obtained through
manual transformation regardless of the optionsodroknowledge, there is not yet an
effective and efficient way to automatically tramsh a function description or
specification. These kinds of implementations can ib the same or different
implementation artefacts. An additional transforioratmight be required to merge
those implementation artefacts into a single imgetation artefact.

We analyse the options based on the following rizite
« Feadhility: What support is available for implementing funos?

« Efficiency: What is the execution efficiency of a functiorl2a

¢ Reusability: Can function implementations be reused by othisirtess processes?

e Portability: Is the business process implementation portakkeveden different
BPEL servers?

¢ Merging: Is the merging of the business process implentientaand function
implementations required?

3.2 Options

We identify the following options for implementinmgternal activities.

Option 1: BPEL and XPath

A function specification is implemented in BPEL aXBath as part of the business

process implementation. BPEL provides a consiasggn for assigning a value to a

variable. This value is created or obtained usingatk expressions. Structured

activity constructs, e.gvhile andswitch, can also be used in data manipulation. This
option uses the standard BPEL.

« Feasihility: BPEL structured activity constructs and XPathvje limited support
for implementing function specifications, espegiadhe complex ones.

« Efficiency: Function implementations are executed in the saxeeution instance
as the business process execution instance. Ovkihezlling a function is low;
hence the execution efficiency is high.

¢ Reusability: Function implementations can only be used bybilginess process in
which the functions are implemented.

¢ Portability: The business process implementation is in stanttarguages, i.e.
BPEL and XPath, which are supported by all BPEL-pliamt servers. Therefore,
the implementation is portable between differenEBRervers.

* Merging: The business process implementation must propldees into which
function implementations can be placed. A transtdiom is required to merge
these two kinds of implementations.

Option 2: Embedded code

A function specification is implemented in a gemgnarpose implementation

language and embedded in the business processnieuiation. This option is an

extension to the standard BPEL, e.g. BPELJ [15]Jwh embedding [16].

« Feaghility: A general-purpose implementation language, eaya,J typically
provides full support for implementing complex ftina specifications.

« Efficiency: Function implementations are executed in the sareeution instance
as the business process execution instance. Oehezlling a function is low;
hence the execution efficiency is high.

* Reusability: Function implementations can only be used bybiliness process in
which the function implementations are embedded.

e Portability: The business process implementation can onlkeeuted on a BPEL
server that supports the extension.

* Merging: The business process implementation must propldees into which
function implementations can be embedded. A transdtion is required to merge
these two kinds of implementations.

Option 3: Server functions

A function specification is implemented in a gemgnarpose implementation

language. After compilation, the function implensitn is deployed in a BPEL

server on which the business process implement&itmbe executed. The business
process calls the function using XPath expressiditgs option is a proprietary

extension, e.g. custom functions [17].

¢ Feadhility: A general-purpose implementation language, @ga dr C#, typically
provides full support for implementing complex ftina specifications.

« Efficiency: Function implementations are executed in diffeetecution instances
from the business process execution instance. Actiim call establishes
interprocess communication between those executistances. Overhead in
calling a function is higher than the previous op$i; hence the execution
efficiency is lower.

« Reusability: Function implementations can be used by otheinbas processes on
the same BPEL server. Business processes on diffBREL servers cannot use
the function implementations.

¢ Portability: The business process implementation can onlkeeuted on a BPEL
server in which the function implementations arploged. Not every BPEL server
supports this extension.

¢ Merging: The business process implementation and the ilamanplementations
are deployed separately. No merging is required.

Option 4: Service delegation

A function specification is implemented by an opera of another Web service. A

function call is transformed to an operation in@a This option transforms a

business process model to a service compositioremAdservice composition model

consists only of activities for interaction. Thigtion is used, e.g., in [8, 11, 12, 18].

¢ Feadhility: Function specifications can be implemented in emegal-purpose
implementation language, e.g. Java or .NET. Sutnguage typically provides
full support for implementing complex function sgeations.

« Efficiency: A function call establishes interprocess commaiiinn between the
business process execution instance and the Weltesexxecuting the function
implementations. Potentially they run on differsetvers. Overhead in calling a
function is higher than all the previous optionsnbe the execution efficiency is
low.

¢ Reusability: As function implementations are presented as Wsebvices
operations, they can be used by other businesggses on any BPEL servers.

« Portability: The business process implementation is in stahttarguages, i.e.
BPEL and XPath, which are supported by all BPELvesex. Therefore, the
implementation is portable between different BPELvers.

¢ Merging: The business process implementation and the iltmanplementations
are deployed separately. No merging is required.

33 Summary

Fig. 4 shows two different paths taken by the opién transforming a business
process model to an implementation. Options 1, @ andirectly implement the
business process model in BPEL (with extensionp)iod 4 first refines the business
process model into a service composition model @ueth implements the service
composition model in BPEL.

Business Process
Model

Service Composition
Model

Implementation(s)

options 1,2 and 3 option 4

Fig. 4. Different paths taken by the options in implemegtiusiness process model

The analysis is summarised in Table 1. Assuming) aiaaspects have the same
weight, we conclude that option 4 is the best. Mprove its efficiency, option 4 can
be combined with option 1. Simple arithmetic opers can be implemented in
BPEL and XPath, instead of delegating them to sWved services. For example,
iteration typically uses addition or subtractiorecgion to increase or decrease the
iteration index. Implementing these arithmetic @pens in BPEL and XPath will
improve the execution efficiency.

Table 1. Comparison between the options

Options
Criteria 1. BPEL and 2. Code 3. Server 4. Service
XPath embedding functions delegation
Feasibility limited full full full
Efficiency high high lower low
Reusability no no limited full
Portability yes no no yes
Merging yes yes no no

4 Transformation Approach

Our transformation approach is aimed at faciligtthe implementation of internal
activities using the option of service delegatitirefines a business process model
into a service composition model. The approachefindd to be systematic that can
be done programmatically in a transformation lagguahe approach is based on the
idea that an internal activity can be refined iatointeraction [20].

As illustration, we apply our approach to the tfammation of a business process
modellnvoicing as shown in Fig. 5. This business process stdrenit receives an

order from a customer. The business process theckshwhether the order can be
fulfilled. If so, the business process createsnapitce, sets the invoice’s payment due
date, and then sends the invoice back to the cestddtherwise, the business process
creates and sends back a rejection message tausharer. The keyworthvoke in

the box attached to an activity for interactionidades that the text following the
keyword is the message sent by the activity. Thesange is sent by invoking some
operation in another business process.

Invoicing ﬂ}
Accept: .
(Order arder

o~ | [canBeFulfiled(receivelrder order]] |

b receivellrder ' -

Invaice invoice
[invoice = createl vaice0nlylreceivelider. order);
invoice. dueDate = setDueD atelinvoice]]

createlrvoice

Rejection reject
[reject = createRejection(ieceiveDrder. order|]

Invoke: b — reateR i
Rejection reject - -4} - sendRejection
[reject = createR sjsction.reject] _J

Fig. 5. A business process model to be transformed

Irvoke:
Invoice invoice
[invoice = createl nvoice. invoice]

sendlrvaice

| [leanBeFulfilled[receivelrder.omder]] |

Step 1: Make all theinternal activities explicit

To make sure that the resulted service compositiodel consists only of activities
for interaction, any implicit internal activity shll be made explicit. Being explicit,
all internal activities can be refined into inteians.

In this step, for each constrained model elemdmrathan an internal activity, we
insert a new internal activity such that the insgrinternal activity precedes the
model element. We then “shift” function calls iretbonstraints of the model element
to the constraint of the inserted internal activiifte constraints of the model element
should now refer to the results of the insertedriml activity.

The application of this step results in the busma®cess model shown in Fig. 6.
We insert an internal activitgheckFulfillment preceding the choice and “shift” the
function call canBeFulfilled from the choice constraints to the constraint lué t
inserted internal activity. The choice constraintsv refer to the result of activity
checkFulfillment.

Step 2: Distribute constraintsto a set of internal activities
At implementation level, an activity for interaatigperforms a specific task, e.g.
receiving a message or invoking an operation. Ttaioka service composition model
in which each activity for interaction invokes oNeeb service operation, each
internal activity should be constrained by one fiorconly. If an internal activity is
constrained by several functions, these functidrilsl be distributed over multiple
internal activities.

In this step, we replace an internal activity whasmstraints contain multiple
function calls with a set of new internal activitieThe number of the new internal
activities should be equal to the number of thecfiom calls. We then distribute the

function calls such that the constraint of eaclrimtl activity contains one function
call only.

boolean ok
Iroicing? [ok = canBeFulfiled(receivelrder. order)]

Accept .
Order order

[checkFullilment.ak, == true]

Irrvaice irvvoice
[invoice = createlnvoiceOnlyreceiveOrder.arder];
invoice.dusDate = setDueD atelinvoice]]

Ireeoke:
Irevoice invoice -
[irvoice = createl nvoice. invoice]

createlnvoice

sendinvoice

[checkFulfillment. ok == false]

sendRejection

Rejection reject
[reject = cieateRejection(receivelrder order]]

createR sjection;

Ireeoke:
Rejection reject -
[reject = createR sjection.reject |

)

Fig. 6. FunctioncanBeFulfilled is shifted to the constraint of an inserted indactivity

boolean ok,

Irvaicing2 [ok = canBeFuliiled]receiel der. order]]

h ol
Order order =

receivelider

[checkFulfilment.ok == tue]

Irwsoice irvoice
[invaoice = createlnvaicelnlyreceiveCder. order|]

createlnvoice0

Ireecice invoice
[invoice = createlnvaicelnly.invaice;

Irvvake: invoice. dueD ate = setDueD atefinvoice]]
Irvnice invoice F--IF- o
[invoice = setDusD ate. invoice] - setDueDate
sendlnvoice .
- . Fiejection reject
[checkFulfilment. ok == false] [reject = createR ejection(ieceive0der order] |

Irevoke: - createRejection
Rejection reject - -4f-~ sendRejection
[reject = createR sjection.rsject] _J

Fig. 7. Function calls are distributed to a set of inteawlvities

The new internal activities can be structured igussce, parallel or combination
of both. To determine the correct structure, thpedelency between function calls
should be considered. For example, if the outpwt fafnctionX becomes the input of
another functiony in the original activity, the new activities shdube structured in
sequence such that the activity that calls funcKoprecedes the activity that calls
function. If the function calls are independent from eatifen the activities can be
structured in parallel.

The application of this step results in the busine®cess model shown in Fig. 7.
The constraints of activitgreatelnvoice of Fig. 6 contains two function calls, i.e.
createlnvoiceOnly() and setDueDate(). In Fig. 7, we replace this activity with two
activities createlnvoiceOnly and setDueDate; and then distribute the function calls

over the constraints of those activities correspugig. To maintain the dependency
between the function calls, we structure thosevitiets in sequence.

Step 3: Refineinternal activitiesinto interactions
Finally, we structure the business process modeldarservice composition model by
introducing one or more supporting services and tledining internal activities into
interactions between the business process andiffgwring services. The supporting
services can be provided by the enterprise whichsothie business process or by
other service providers, e.g. trusted businessm@est The supporting services are
responsible for implementing the function specifmas. In this way, we delegate
function implementations to the supporting services

The application of this step results in the serdgomposition model shown in Fig.
8. We introduce a supporting servitevoicingSupport and refine each internal
activity into a request/response interaction betwé#ge business process and the
supporting service. An interaction is representetir segmented ellipses connected
with each other. On the business process’ sidesetipgest and response are indicated
by the keyworddnvoke and Return, respectively. On the supporting service’s side,
the request and response are indicated by the kegwhaccept and Reply,
respectively. This model can be transformed to EIBitnplementation [21].

Invoke:
Order order

Accept:
Order order IrregicingSupport

Irevaicingd [order = receivelrder. order]
Returr: Repl
e boalean ok boolean fulfill

Accept .
Order arder

receivelrder

checkFulfilment

Accept:
Invoke PO arder
FO order Fieply
[order = receivelrder.oder] _{ Invaice invoice
Retum: R .
Invoice invoice createlnvoiceDnly

Accept:
Irevoice irvwoice

s Reply:

7| Invoice invoice

Irvvoke:
Irvoice invoice --
[invaoice = setDuel ate.invoice]

setDueDate

Irvvoke:
Rejection rejsct

- createRejection
[1eject = createR sjection.reject]

Accept

Irwoke: Irvoke: ED T@er J
Irvoice invoice PO order HEP-\"l. ect

[invoice = createlnvoiceOnly.invoice] [arder = receivelrder. arder] Slechnn rejec

RETI Retum

Ireenice ineenice Rejection reject

Fig. 8. Service composition model

5 Conclusions

We have analysed some available options for impheimg internal activities of
business process models in BPEL. The analysisateicdhat service delegation is the

best option. To improve its execution efficiendyistoption should be combined with
the transformation of simple arithmetic operatiddas BPEL and XPath expressions.
We have then presented an approach for transforimiegnal activities to service
delegations. The application of the approach onsngss process model results in a
service composition model that consists only oivites for interaction. To be a
complete transformation from business process model implementation, a
transformation based on the approach should be leonemted with a transformation
from service composition models to implementations.

Our approach is originally developed to transforrauginess process model to a
service composition model that is targeted to bplémented in BPEL. Since the
resulted service composition model does not cordain BPEL-specific information,
the model can be implemented in other service caitipn languages (not
necessarily on Web services platform), e.g. agdisn [22]. For each service
composition language, however, a similar analysiprasented in this paper might be
necessary to evaluate whether service delegatidineidest option among possible
options for that language.

Our transformation approach is systematic and eaddme programmatically. We
have implemented the approach in QVT [23] for medbht are developed based on
a simple metamodel. Each step is implemented asndinidual transformation
specification, namely Stepl, Step2 and Step3 #sgtactively correspond to the steps
in the transformation approach. The Stepl transdtion is applied to a given
business process model. The Step2 transformati@pptied to the output of the
Stepl transformation. The Step3 transformatiorpjdied to the output of the Step2
transformation. The output of the Step3 transfoiomais a service composition
model as the final result of our transformation ragph. In the future, we will
implement the approach as part of a transformatf@at we have developed to
transform business process models in ISDL to impleations in BPEL.

Refer ences

1. WB3C. Web Service Architecture. W3C Working Groupt&(2004)

2. FErasala, N., Yen, D.C., Rajkumar, T.M.: Enterpridpplication Integration in the
electronic commerce world. Computer Standards araiface 25 (2002) 69-82

3. Medjahed, B., Benatallah, B., Bouguettaya, A., NguH.H., Elmagarmid, A.K.:
Business-to-business interactions: issues and iegatdchnologies. VLDB Journal 12
(2003) 59-85

4. BEA Systems, IBM Corp., Microsoft Corp., SAP AGeBel Systems: Business Process
Execution Language for Web Services version 1.0320

5. OASIS: Web Services Business Process ExecutiondageyVersion 2.0 (2007)

6. OMG: Model Driven Architecture (MDA). ormsoc/01-@2- (2001)

7. OMG: MDA Guide Version 1.0.1. omg/03-06-01 (2003).

8. Koehler, J., Hauser, R., Kapoor, S., Wu, F.Y., Kmma S.: A model-driven

transformation method. In Proc. df FEEE Intl. Enterprise Distributed Object Computing
Conf. (2003) 186-197

9. Kath, O., Blazarenas, A., Born, M., Eckert, K.-Pynabashi, M., Hirai C.: Towards
executable models: transforming EDOC behavior moteICORBA and BPEL. In Proc.
of 8" IEEE Intl. Enterprise Distributed Object Computi@ignf. (2004) 267-274

10.
11.
12.
13.
14.
15.
16.
17.
18.

20.

21.

22.

23.

Dirgahayu, T.: Model-Driven Engineering of Web Seev Compositions: A
Transformation from ISDL to BPEL. MSc. Thesis. Uarisity of Twente, Enschede (2005)
Bordbar, B., Staikopoulos, A.: On Behavioural Modeansformation in Web Services.
LNCS 3289 (2005) 667-678

Korherr, B., List, B.: Extending the UML 2 Activitpiagram with Business Process Goals
and Performance Measures and the Mapping to BPECS 4231 (2006) 7-18

Quartel, D., Dijkman, R., van Sinderen, M.: Methlmdfical Support for Service-oriented
Design with ISDL. In Proc. of®¥ Intl. Conf. on Service Oriented Computing (2004)10
W3C. XML Path Language (XPath) Version 1.0. W3C é&emendation (1999)

BEA Systems, Inc., IBM Corp.: BPELJ: BPEL for J42804)

Oracle Corp.: Oracle BPEL Process Managhttp://www.oracle.com/technology/
products/ias/bpel/index.html

Active Endpoints, Inc.: ActiveBPEL Engine 2 l@ttp://www.active-endpoints.com/active-
bpel-engine-overview.htm

OMG: Business Process Modeling Notation Specificatdtc/06-02-01 (2006)

ASNA. ISDL Home http://isdl.ctit.utwente.nl

Quartel, D., Ferreira Pires, L., van Sinderen, ®h: Architectural Support for Behaviour
Refinement in Distributed Systems Design. J. Iratggt Design and Process Science 6, 1
(2002) 1-30

Dirgahayu, T., Quartel, D., and van Sinderen, Mev&lopment of Transformations from
Business Process Models to Implementations by Rémggoc. of the' Intl. Workshop
on Model-Driven Enterprise Information Systems (2081-50

van der Aalst, W.M.P., Dumas, M., ter Hofstede, MH Web Service Composition
Languages: Old Wine in New Bottles? In Proc. of ZLUROMICRO Conference (2003)
298-305

OMG: Meta Object Facility (MOF) 2.0 Query/View/Trsfiormation Specification. Final
Adopted Specification. ptc/07-07-07

