
Transforming Internal Activities of Business Process
Models to Service Compositions*

Teduh Dirgahayu1, Dick Quartel2, and Marten van Sinderen1

1 Centre for Telematics and Information Technology
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

{t.dirgahayu, m.j.vansinderen}@utwente.nl
2 Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands

dick.quartel@telin.nl

Abstract. As a service composition language, BPEL imposes as constraint that
a business process model should consist only of activities for interacting with
other business processes. BPEL provides limited support for implementing
internal activities, i.e. activities that are performed by a single business process
without involvement of other business processes. BPEL is hence not suitable to
implement internal activities that include complex data manipulation. There are
a number of options to make BPEL able to implement such internal activities.
In this paper we analyse those options based on their feasibility, efficiency,
reusability, portability and merging. The analysis indicates that delegating
internal activities’ functionality to other services is the best option. We
therefore present an approach for transforming internal activities to service
invocations. The application of this approach on a business process model
results in a service composition model that consists only of activities for
interaction.

1 Introduction

Web services [1] has become a popular platform on which many enterprises execute
their business processes [2, 3]. BPEL [4, 5] is a de facto language for implementing a
business process as a composition of Web services. Moreover the approach defined in
Model-Driven Architecture [6, 7], especially regarding automatic transformation, is
widely used and investigated to speed up the implementation of business processes in
BPEL, e.g. in [8, 9, 10, 11, 12].

A business process model of an enterprise may consist of two kinds of activities:
(i) activities that are performed to interact with other business processes, e.g. to send
and receive messages, and (ii) activities that are performed without involvement of
other business processes. We call the latter kind of activities internal activities [13].
Internal activities are not exposed to business processes.

As a service composition language, on the one hand, BPEL (version 1.1 and 2.0)
provides constructs to implement activities for interacting with other business

* This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl) sponsored by

the Dutch government under contract BSIK 03025.

processes, e.g. receive, reply, and invoke. On the other hand, BPEL provides limited
support for implementing internal activities. By default, BPEL uses XPath 1.0 [14] for
data manipulation. XPath is a powerful language for querying the contents of XML
documents; but it provides limited support for data manipulation, e.g. it supports only
simple arithmetic, boolean and string manipulation. Therefore, BPEL and XPath are
not suitable to implement internal activities for complex data manipulation.
Consequently, a business process model which is targeted to be implemented in BPEL
should not contain internal activities for complex data manipulation.

We believe that a business process should not be constrained by such a limitation.
A business process model should be allowed to contain internal activities for simple
and complex data manipulation. To implement such a business process model, a
transformation is required to map the business process model onto a chosen target
platform and implementation language. In our case, the transformation has to be able
to implement the activity in BPEL.

To overcome the aforementioned limitation, a number of options have been
introduced to make BPEL able to implement internal activities with any degree of
complexity. An option can be a non-standard or proprietary extension to BPEL [15,
16, 17] or a design method [8, 11, 12, 18].

The objectives of this paper are (i) to analyse available options for implementing
internal activities in BPEL and (ii) to present an approach for transforming internal
activities to implementation to facilitate the best option. We illustrate this approach
using an example business process that is modelled in a language of our convenience
(i.e., ISDL [19]). We claim however that the approach is generally applicable to other
modelling languages.

The structure of this paper is as follows. Section 2 describes the roles of activities,
constraints and functions in a business process model. Section 3 analyses several
options for implementing internal activities in BPEL. Section 4 presents an approach
for transforming internal activities to facilitate the best option. Finally, section 5
presents our conclusions and indicates future work.

2 Internal Activities, Constraints and Functions

A business process model consists of activities. For each activity, only its result is
considered. The business process model abstracts from the way the activities establish
their results. Constraints are used to specify the possible results that can be or should
be established.

A simple constraint can be easily included in a business process model and leaves
the business process model easy to understand. Inclusion of a complex constraint
potentially makes the business process model difficult to understand. To avoid that,
some details of a complex constraint can be encapsulated in a (parameterised)
function. The details of the function are described or specified in other documents
associated with the business process model. In this way, a complex constraint can be
included in the business process model as a simple constraint calling a function.

Fig. 1(a) shows an example of the behaviour of an (incomplete) business process
model Pricing. The business process receives an order via an activity receiveOrder

and then calculates the total price of the received order by performing an internal
activity calculatePrice. The result of the activity calculatePrice is constrained such
that it must be equal to the result of function calculatePrice() with the received order
as a parameter. Fig. 1(b) shows the specification of the function calculatePrice().

In the figure, a behaviour is represented by a rounded rectangle. An internal
activity is represented by an ellipse. An activity for interaction is represented by a
segmented ellipse located at the border of the behaviour rectangle. An arrow inside
this segmented ellipse indicates the direction in which the message flows. The result
of an activity is specified in a box attached to the activity. If this result is constrained,
its constraint is specified within brackets in the same box. The keyword Accept in the
box attached to an activity for interaction indicates that the text following the
keyword is the message accepted by the activity.

�
=

×
n

k
kk pricequantity

1

(a) Function call in the constraint of activity result (b) function calculatePrice()

Fig. 1. Example of a business process model

Functions can also be called in the constraints of other types of model elements.
For example, Fig. 2 depicts a business process that first receives an order and then
makes a choice between an activity handleOrderFromNewClient or handleOrder
FromExistingClient. The choice is represented by a diamond symbol. This choice is
constrained by the result of a function fromNewClient() that evaluates whether an
order is from a new client. This should not be confused with a “switch” at some
implementation language.

Fig. 2. Function fromNewClient() is called in a choice’s constraints

A function call in the constraint of a model element other than an internal activity
implicitly defines an internal activity whose result is constrained by the result of that
function. This internal activity can be made explicit and the constraint of the model
element refers to the result of this internal activity. For example, the behaviour of the
business process model in Fig. 3 is equivalent to the model in Fig. 2. This style of
modelling is useful, e.g., to allow the result of a function be re-used in multiple model
elements.

Fig. 3. Function fromNewClient() is now called in an internal activity

From a different point of view, the specification of the function can be seen as the
way the internal activity establishes its result. For example, the function specification
in Fig. 1(b) can be seen as the way the activity calculatePrice in Fig. 1(a) establishes
its result. Therefore, the implementation of an internal activity can be done by
implementing the specification of the function.

Since a business process model abstracts from the way the results of its internal
activities are established, a sole transformation from a business process model to a
business process implementation will not result in an executable implementation. To
obtain an executable implementation, the description or specifications of the functions
called in the constraints of the internal activities should also be transformed into
implementations. This transformation results in so-called function implementations.
During execution, the business process implementation uses the function
implementations to establish the results of its internal activities.

3 Options for Implementing Internal Activities

In this section we analyse available options for implementing internal activities based
on a number of evaluation criteria.

3.1 Evaluation Criteria

As mentioned previously, a transformation of a business process model to an
executable implementation should result in two kinds of implementations: (i) a
business process implementation and (ii) function implementations. In our case, the
business process implementation is in BPEL and the function implementations are in
some implementation language that can also be BPEL and XPath.

While the business process implementation can be obtained through an automatic
transformation [9, 10, 11, 12], function implementation is mainly obtained through
manual transformation regardless of the options. To our knowledge, there is not yet an
effective and efficient way to automatically transform a function description or
specification. These kinds of implementations can be in the same or different
implementation artefacts. An additional transformation might be required to merge
those implementation artefacts into a single implementation artefact.

We analyse the options based on the following criteria.
• Feasibility: What support is available for implementing functions?

• Efficiency: What is the execution efficiency of a function call?
• Reusability: Can function implementations be reused by other business processes?
• Portability: Is the business process implementation portable between different

BPEL servers?
• Merging: Is the merging of the business process implementation and function

implementations required?

3.2 Options

We identify the following options for implementing internal activities.

Option 1: BPEL and XPath
A function specification is implemented in BPEL and XPath as part of the business
process implementation. BPEL provides a construct assign for assigning a value to a
variable. This value is created or obtained using XPath expressions. Structured
activity constructs, e.g. while and switch, can also be used in data manipulation. This
option uses the standard BPEL.
• Feasibility: BPEL structured activity constructs and XPath provide limited support

for implementing function specifications, especially the complex ones.
• Efficiency: Function implementations are executed in the same execution instance

as the business process execution instance. Overhead in calling a function is low;
hence the execution efficiency is high.

• Reusability: Function implementations can only be used by the business process in
which the functions are implemented.

• Portability: The business process implementation is in standard languages, i.e.
BPEL and XPath, which are supported by all BPEL-compliant servers. Therefore,
the implementation is portable between different BPEL servers.

• Merging: The business process implementation must provide places into which
function implementations can be placed. A transformation is required to merge
these two kinds of implementations.

Option 2: Embedded code
A function specification is implemented in a general-purpose implementation
language and embedded in the business process implementation. This option is an
extension to the standard BPEL, e.g. BPELJ [15] and Java embedding [16].
• Feasibility: A general-purpose implementation language, e.g. Java, typically

provides full support for implementing complex function specifications.
• Efficiency: Function implementations are executed in the same execution instance

as the business process execution instance. Overhead in calling a function is low;
hence the execution efficiency is high.

• Reusability: Function implementations can only be used by the business process in
which the function implementations are embedded.

• Portability: The business process implementation can only be executed on a BPEL
server that supports the extension.

• Merging: The business process implementation must provide places into which
function implementations can be embedded. A transformation is required to merge
these two kinds of implementations.

Option 3: Server functions
A function specification is implemented in a general-purpose implementation
language. After compilation, the function implementation is deployed in a BPEL
server on which the business process implementation is to be executed. The business
process calls the function using XPath expressions. This option is a proprietary
extension, e.g. custom functions [17].
• Feasibility: A general-purpose implementation language, e.g. Java or C#, typically

provides full support for implementing complex function specifications.
• Efficiency: Function implementations are executed in different execution instances

from the business process execution instance. A function call establishes
interprocess communication between those execution instances. Overhead in
calling a function is higher than the previous options; hence the execution
efficiency is lower.

• Reusability: Function implementations can be used by other business processes on
the same BPEL server. Business processes on different BPEL servers cannot use
the function implementations.

• Portability: The business process implementation can only be executed on a BPEL
server in which the function implementations are deployed. Not every BPEL server
supports this extension.

• Merging: The business process implementation and the function implementations
are deployed separately. No merging is required.

Option 4: Service delegation
A function specification is implemented by an operation of another Web service. A
function call is transformed to an operation invocation. This option transforms a
business process model to a service composition model. A service composition model
consists only of activities for interaction. This option is used, e.g., in [8, 11, 12, 18].
• Feasibility: Function specifications can be implemented in a general-purpose

implementation language, e.g. Java or .NET. Such a language typically provides
full support for implementing complex function specifications.

• Efficiency: A function call establishes interprocess communication between the
business process execution instance and the Web service executing the function
implementations. Potentially they run on different servers. Overhead in calling a
function is higher than all the previous options; hence the execution efficiency is
low.

• Reusability: As function implementations are presented as Web services
operations, they can be used by other business processes on any BPEL servers.

• Portability: The business process implementation is in standard languages, i.e.
BPEL and XPath, which are supported by all BPEL servers. Therefore, the
implementation is portable between different BPEL servers.

• Merging: The business process implementation and the function implementations
are deployed separately. No merging is required.

3.3 Summary

Fig. 4 shows two different paths taken by the options in transforming a business
process model to an implementation. Options 1, 2 and 3 directly implement the
business process model in BPEL (with extensions). Option 4 first refines the business
process model into a service composition model and then implements the service
composition model in BPEL.

Fig. 4. Different paths taken by the options in implementing business process model

The analysis is summarised in Table 1. Assuming that all aspects have the same
weight, we conclude that option 4 is the best. To improve its efficiency, option 4 can
be combined with option 1. Simple arithmetic operations can be implemented in
BPEL and XPath, instead of delegating them to some Web services. For example,
iteration typically uses addition or subtraction operation to increase or decrease the
iteration index. Implementing these arithmetic operations in BPEL and XPath will
improve the execution efficiency.

Table 1. Comparison between the options

Options
Criteria 1. BPEL and

XPath
2. Code

embedding
3. Server
functions

4. Service
delegation

Feasibility limited full full full
Efficiency high high lower low
Reusability no no limited full
Portability yes no no yes
Merging yes yes no no

4 Transformation Approach

Our transformation approach is aimed at facilitating the implementation of internal
activities using the option of service delegation. It refines a business process model
into a service composition model. The approach is defined to be systematic that can
be done programmatically in a transformation language. The approach is based on the
idea that an internal activity can be refined into an interaction [20].

As illustration, we apply our approach to the transformation of a business process
model Invoicing as shown in Fig. 5. This business process starts when it receives an

order from a customer. The business process then checks whether the order can be
fulfilled. If so, the business process creates an invoice, sets the invoice’s payment due
date, and then sends the invoice back to the customer. Otherwise, the business process
creates and sends back a rejection message to the customer. The keyword Invoke in
the box attached to an activity for interaction indicates that the text following the
keyword is the message sent by the activity. The message is sent by invoking some
operation in another business process.

Fig. 5. A business process model to be transformed

Step 1: Make all the internal activities explicit
To make sure that the resulted service composition model consists only of activities
for interaction, any implicit internal activity should be made explicit. Being explicit,
all internal activities can be refined into interactions.

In this step, for each constrained model element other than an internal activity, we
insert a new internal activity such that the inserted internal activity precedes the
model element. We then “shift” function calls in the constraints of the model element
to the constraint of the inserted internal activity. The constraints of the model element
should now refer to the results of the inserted internal activity.

The application of this step results in the business process model shown in Fig. 6.
We insert an internal activity checkFulfillment preceding the choice and “shift” the
function call canBeFulfilled from the choice constraints to the constraint of the
inserted internal activity. The choice constraints now refer to the result of activity
checkFulfillment.

Step 2: Distribute constraints to a set of internal activities
At implementation level, an activity for interaction performs a specific task, e.g.
receiving a message or invoking an operation. To obtain a service composition model
in which each activity for interaction invokes one Web service operation, each
internal activity should be constrained by one function only. If an internal activity is
constrained by several functions, these functions should be distributed over multiple
internal activities.

In this step, we replace an internal activity whose constraints contain multiple
function calls with a set of new internal activities. The number of the new internal
activities should be equal to the number of the function calls. We then distribute the

function calls such that the constraint of each internal activity contains one function
call only.

Fig. 6. Function canBeFulfilled is shifted to the constraint of an inserted internal activity

Fig. 7. Function calls are distributed to a set of internal activities

The new internal activities can be structured in sequence, parallel or combination
of both. To determine the correct structure, the dependency between function calls
should be considered. For example, if the output of a function X becomes the input of
another function Y in the original activity, the new activities should be structured in
sequence such that the activity that calls function X precedes the activity that calls
function Y. If the function calls are independent from each other, the activities can be
structured in parallel.

The application of this step results in the business process model shown in Fig. 7.
The constraints of activity createInvoice of Fig. 6 contains two function calls, i.e.
createInvoiceOnly() and setDueDate(). In Fig. 7, we replace this activity with two
activities createInvoiceOnly and setDueDate; and then distribute the function calls

over the constraints of those activities correspondingly. To maintain the dependency
between the function calls, we structure those activities in sequence.

Step 3: Refine internal activities into interactions
Finally, we structure the business process model into a service composition model by
introducing one or more supporting services and then refining internal activities into
interactions between the business process and the supporting services. The supporting
services can be provided by the enterprise which owns the business process or by
other service providers, e.g. trusted business partners. The supporting services are
responsible for implementing the function specifications. In this way, we delegate
function implementations to the supporting services.

The application of this step results in the service composition model shown in Fig.
8. We introduce a supporting service InvoicingSupport and refine each internal
activity into a request/response interaction between the business process and the
supporting service. An interaction is represented as two segmented ellipses connected
with each other. On the business process’ side, the request and response are indicated
by the keywords Invoke and Return, respectively. On the supporting service’s side,
the request and response are indicated by the keywords Accept and Reply,
respectively. This model can be transformed to a BPEL implementation [21].

Fig. 8. Service composition model

5 Conclusions

We have analysed some available options for implementing internal activities of
business process models in BPEL. The analysis indicates that service delegation is the

best option. To improve its execution efficiency, this option should be combined with
the transformation of simple arithmetic operations to BPEL and XPath expressions.
We have then presented an approach for transforming internal activities to service
delegations. The application of the approach on a business process model results in a
service composition model that consists only of activities for interaction. To be a
complete transformation from business process models to implementation, a
transformation based on the approach should be complemented with a transformation
from service composition models to implementations.

Our approach is originally developed to transform a business process model to a
service composition model that is targeted to be implemented in BPEL. Since the
resulted service composition model does not contain any BPEL-specific information,
the model can be implemented in other service composition languages (not
necessarily on Web services platform), e.g. as listed in [22]. For each service
composition language, however, a similar analysis as presented in this paper might be
necessary to evaluate whether service delegation is the best option among possible
options for that language.

Our transformation approach is systematic and can be done programmatically. We
have implemented the approach in QVT [23] for models that are developed based on
a simple metamodel. Each step is implemented as an individual transformation
specification, namely Step1, Step2 and Step3 that respectively correspond to the steps
in the transformation approach. The Step1 transformation is applied to a given
business process model. The Step2 transformation is applied to the output of the
Step1 transformation. The Step3 transformation is applied to the output of the Step2
transformation. The output of the Step3 transformation is a service composition
model as the final result of our transformation approach. In the future, we will
implement the approach as part of a transformation that we have developed to
transform business process models in ISDL to implementations in BPEL.

References

1. W3C. Web Service Architecture. W3C Working Group Note (2004)
2. Erasala, N., Yen, D.C., Rajkumar, T.M.: Enterprise Application Integration in the

electronic commerce world. Computer Standards and Interface 25 (2002) 69-82
3. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.:

Business-to-business interactions: issues and enabling technologies. VLDB Journal 12
(2003) 59-85

4. BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems: Business Process
Execution Language for Web Services version 1.1 (2003)

5. OASIS: Web Services Business Process Execution Language Version 2.0 (2007)
6. OMG: Model Driven Architecture (MDA). ormsoc/01-07-01 (2001)
7. OMG: MDA Guide Version 1.0.1. omg/03-06-01 (2003).
8. Koehler, J., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S.: A model-driven

transformation method. In Proc. of 7th IEEE Intl. Enterprise Distributed Object Computing
Conf. (2003) 186-197

9. Kath, O., Blazarenas, A., Born, M., Eckert, K.-P., Funabashi, M., Hirai C.: Towards
executable models: transforming EDOC behavior models to CORBA and BPEL. In Proc.
of 8th IEEE Intl. Enterprise Distributed Object Computing Conf. (2004) 267-274

10. Dirgahayu, T.: Model-Driven Engineering of Web Service Compositions: A
Transformation from ISDL to BPEL. MSc. Thesis. University of Twente, Enschede (2005)

11. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
LNCS 3289 (2005) 667-678

12. Korherr, B., List, B.: Extending the UML 2 Activity Diagram with Business Process Goals
and Performance Measures and the Mapping to BPEL, LNCS 4231 (2006) 7-18

13. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological Support for Service-oriented
Design with ISDL. In Proc. of 2nd Intl. Conf. on Service Oriented Computing (2004), 1-10

14. W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation (1999)
15. BEA Systems, Inc., IBM Corp.: BPELJ: BPEL for Java (2004)
16. Oracle Corp.: Oracle BPEL Process Manager. http://www.oracle.com/technology/

products/ias/bpel/index.html
17. Active Endpoints, Inc.: ActiveBPEL Engine 2.0. http://www.active-endpoints.com/active-

bpel-engine-overview.htm
18. OMG: Business Process Modeling Notation Specification. dtc/06-02-01 (2006)
19. ASNA. ISDL Home. http://isdl.ctit.utwente.nl
20. Quartel, D., Ferreira Pires, L., van Sinderen, M.: On Architectural Support for Behaviour

Refinement in Distributed Systems Design. J. Integrated Design and Process Science 6, 1
(2002) 1-30

21. Dirgahayu, T., Quartel, D., and van Sinderen, M.: Development of Transformations from
Business Process Models to Implementations by Reuse. In Proc. of the 3rd Intl. Workshop
on Model-Driven Enterprise Information Systems (2007) 41-50

22. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Web Service Composition
Languages: Old Wine in New Bottles? In Proc. of 29th EUROMICRO Conference (2003)
298-305

23. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Final
Adopted Specification. ptc/07-07-07

