

Development of Transformations from Business
Process Models to Implementations by Reuse1

Teduh Dirgahayu, Dick Quartel, and Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

{t.dirgahayu, d.a.c.quartel, m.j.vansinderen}@utwente.nl

Abstract. This paper presents an approach for developing transformations from
business process models to implementations that facilitates reuse. A
transformation is developed as a composition of three smaller tasks: pattern
recognition, pattern realization and activity transformation. The approach
allows one to reuse the definition and implementation of pattern recognition
and pattern realization in the development of transformations targeting different
business process modeling and implementation languages. In order to decouple
pattern recognition and pattern realization, the approach includes a pattern
language to represent the output of the pattern recognition task, which forms the
input of the pattern realization task.

1 Introduction

The behaviour represented in a business process model is not only determined by its
activities, but also by its structure. This structure defines how the activities are
related, which determines amongst others the order in which the activities are
executed. In general, the structure is composed of generic structures representing
well-known and frequently-used relationships, such as sequence, choice and
concurrency. We use the term pattern to denote these generic structures. A pattern is
an example of a structure concept, as described in [16]. It represents some type of
relationship between activities without determining what activities are related.
Patterns are typically nested to form the structure of a model.

In a transformation from business process models to implementations, two
successive tasks can be identified in transforming patterns: pattern recognition and
pattern realization. Pattern recognition identifies the patterns that form the structure of
a model. Pattern realization translates these patterns into constructs of an
implementation language.

Pattern recognition is not a trivial task. The definition and implementation of
pattern recognition is expensive in terms of effort, cost and time. When one develops
transformations from a modeling language to a set of implementation languages, it
would be efficient if pattern recognition can be developed once and be reused with

1 This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which is

sponsored by the Dutch government under contract BSIK 03025.

different pattern realizations. This is possible because pattern recognition is specific
to the modeling language and independent from implementation languages. If a new
pattern must be recognized, it is only the pattern recognition that needs to be
extended. In our proposal, patterns identified by pattern recognition are documented
in an intermediate model that is defined in a kind of pattern language.

Pattern realization translates elements in the intermediate model to constructs of an
implementation language. When one develops transformations from a set of modeling
languages to an implementation language, it would be efficient if the same pattern
realization can be reused with different pattern recognition. This is possible because
pattern realization is specific to the implementation language and independent form
modeling languages.

To allow reuse, pattern recognition and pattern realization should be decoupled
from each other. This can be achieved by defining the intermediate model in a
language that is independent from any modeling and implementation languages. This
pattern language is used as a standard way for representing patterns found in a model.
Pattern recognition and pattern realization are developed as individual
transformations. In order to keep the definition and implementation of pattern
realization simple, it is preferable that a pattern is represented as a single concept in
an intermediate model.

The objective of this paper is to present an approach that facilitates the reuse of
pattern recognition and pattern realization in transformations from business process
models to implementations. The approach aims at giving transformation development
the benefits of development by reuse, i.e. less development cost, shorter time-to-
market and correctness [9, 19]. The approach includes a pattern language for defining
intermediate models between pattern recognition and pattern realization.

The structure of this paper is as follows. Section 2 discusses our approach in more
detail. Section 3 presents a pattern language for defining intermediate models. Section
4 gives examples of transformations. Section 5 relates our work with other research
activities. Finally, section 6 presents our conclusions and future work.

2 Approach

The idea of our approach is illustrated in Figure 1. Suppose that we develop a UML-
to-BPEL transformation. The transformation is developed as a composition of three
smaller tasks: TA for transforming UML activities into BPEL basic activities, TP1 for
recognizing patterns in UML and TP2 for realizing these patterns into BPEL structured
activities. Patterns recognized in the source model MUML are documented in the
intermediate model Mint. The separation of pattern transformations TP1 and TP2 from
activity transformation TA is to let the intermediate model Mint focus on patterns and
be independent from UML and BPEL. Each activity in the source model is associated
with a unique identifier that is maintained in all the transformations. The results of
transformations TP2 and TA are combined to produce a BPEL model. The identifier of
an activity is used to correctly put a BPEL basic activity associated with that identifier
within a BPEL structured activity in which the BPEL basic activity should be
contained. This example is presented in more detail in Section 4.

�������

��	�
�����

������	����

��	�
�����

��	
 ���

������

��	�
�����

��

�

�������������������

������������������

Fig. 1. Separating pattern transformations TP1 and TP2 from activity transformation TA

Figure 2 shows how this approach facilitates the reuse of pattern recognition and
pattern realization. Activity transformations between source and target models are
omitted for brevity. We have transformations TP1 for recognizing patterns in UML
and TP2 for realizing patterns in BPEL. To have a UML-to-Java transformation, we
reuse transformation TP1 and develop transformation TP4 for realizing patterns in Java.
To have a BPMN-to-Java, we develop transformation TP3 for recognizing patterns in
BPMN and reuse transformation TP4. To have a BPMN-to-BPEL, we reuse
transformations TP3 and TP2.

�������

��	�
�����

������

��	�
�����

�		�����
������������
���

�������

��	�
������

������	����

��	�
�����

���

������

��	�
���
�

��	
 ���

���������������� ���������
������

Fig. 2. Reusing pattern recognition and pattern realization

An activity transformation is not reusable because it is specific to the languages of
the source and target models. Consider, for example, the mapping of a UML
AcceptEventAction to a BPEL receive activity. The UML action may require BPEL-
specific information to be supplied to the BPEL activity, e.g. partnerLink, portType and
operation. A UML-to-BPEL activity transformation must handle this BPEL-specific
information. This makes the transformation is not reusable for transforming a UML
activity to other implementation languages. Obviously the transformation cannot be
used to transform, for instance, BPMN activities to BPEL activities. Therefore, an
activity transformation has to be developed for each pair of modeling and
implementation languages.

2.1 Requirements for a Pattern Language

To facilitate the reuse of pattern recognition, an intermediate model should be defined
in a pattern language that is independent from (i.e., abstracts from distinguishing
features of) any implementation language. An intermediate model that is specific to
an implementation language can only be realized in that implementation language. In
that case, pattern recognition cannot be reused with other implementation languages.

To facilitate the reuse of pattern realization, a pattern language should be
independent from any modeling language. A pattern language that is specific to a
modeling language may not be able to document patterns defined in other modeling
languages. In that case, the pattern realization is useful for that modeling language
only.

In order to define a pattern language, we need a limited set of basic patterns.
Patterns in a business process model will be documented in an intermediate model in
terms of those basic patterns. We investigate patterns that are commonly found in
business processes models and in implementations. We focus on realizing business
process models in an imperative language or in the imperative part of an
implementation language.

We consider workflow patterns as patterns that are commonly found in business
processes. In [1], twenty different workflow patterns have been identified. Our
approach uses workflow patterns as modeling constraints, i.e. any composition in the
model should conform to one of these patterns. Pattern recognition should be able to
identify workflow patterns in a model.

Control patterns [7, 20] are patterns that are found in implementations. A control
pattern defines a certain execution ordering of activities in a structured program. The
patterns are sequence, selection and iteration. Concurrent programming [3] adds
another control pattern called concurrence.

We have three alternatives to determining a limited set of basic patterns for a
pattern language. The alternatives are as the following.
1. Workflow patterns as basic patterns. Many basic patterns will have no direct (1-to-

1) mapping to constructs of an implementation language. Pattern realization must
translate such a basic pattern into a composition of constructs of an implementation
language. A drawback of this alternative is that if a new workflow pattern must be
recognized, the pattern language, pattern recognition and pattern realization must
be extended.

2. Control patterns as basic patterns. Every basic pattern will be able to be mapped
directly to a construct of an implementation language. A workflow pattern must be
represented as a composition of one or more basic patterns in an intermediate
model. If a new workflow pattern must be recognized, only pattern recognition
must be extended.

3. Workflow and control patterns as basic patterns. This alternative combines the
first and second alternatives. It brings the drawback of first alternative.
We took the second alternative to define a pattern language that we call Common

Behavioural Patterns Language (CBPL). We present the language in Section 3.
CBPL can be considered as an abstract platform [2] that offers a large set of
implementation languages to realize an intermediate model. Each CBPL pattern can
be realized in many implementation languages, such as BPEL, Java, C/C++ or VB.

2.2 Documenting Patterns

We can distinguish between workflow patterns that are comparable to CBPL patterns
and workflow patterns that are not comparable (i.e., have no 1-to-1 mappings; see
Table 1). The parallel split and exclusive choice of workflow patterns are comparable

to CBPL concurrence and selection, respectively. A synchronization pattern can be
composed with a parallel split pattern to allow an activity be performed after a CBPL
concurrence. A simple merge pattern can be composed with an exclusive choice
pattern to allow an activity be performed after a CBPL selection.

Table 1. Comparison of workflow patterns and CBPL patterns

Workflow patterns CBPL Patterns
Comparable patterns

Sequence Sequence
Parallel split (+ Synchronization) Concurrence
Exclusive choice (+ Simple merge) Selection
Arbitrary cyclesa, Multiple instances (MI)b Iteration

Incomparable patterns
Implicit termination -
Deferred choice -
Interleaved parallel routing -
Milestone -
Multi-choice -
Synchronizing merge -
Multi-merge -
Discriminator -
Cancel activity -
Cancel case -

a in special cases called structured cycles
b consists of four patterns: MI without synchronization, MI with a priori design
knowledge, MI with a priori runtime knowledge, and MI without a priori runtime
knowledge.

The arbitrary cycles pattern indicates that an activity can be performed repeatedly

without imposing some structure. A special case of this pattern, which is called
structured cycle [1], is comparable to CBPL iteration.

The multiple instances pattern indicates that an activity can have multiple instances
at a same time. This pattern may not be directly supported in some implementation
languages [1]. A work-around solution [21] performs multiple instances of the
activity at different times. This solution is comparable to CBPL iteration.

A workflow pattern that is incomparable to a CBPL pattern should be documented
as a composition of CBPL patterns. When the precise semantics of this workflow
pattern cannot be documented as a composition of CBPL patterns, a work-around
solution [21] can be developed to closely represent the semantics.

3 Common Behavioural Patterns Language

Figure 3 presents the CBPL metamodel. An activity is an abstract concept that
represents an activity with a certain purpose. An activity can be a structure activity or
an action. A structure activity represents an activity whose purpose is to determine the

execution ordering of other activities. This activity is used to define CBPL patterns.
An action represents an activity whose purpose is to perform a certain task. It contains
an identity to relate the action to an activity in activity transformation.

A pattern is a kind of a structure activity. CBPL patterns are represented as
sequence, concurrence, selection and iteration. A sequence contains one or more
activities to be executed in succession. A concurrence contains two or more activities
that can be executed independently. An iteration contains an activity to be executed
repeatedly as long as its condition holds. A selection contains one or more cases to be
selected. A case contains an activity to be executed when its condition holds. A
default case is selected when no other case can be selected.

Fig. 3. CBPL metamodel

A structure activity may define variables. A variable holds an information value
that is required by the execution of the structure activity or the activities contained in
the structure activity. A variable is transformed by activity transformations but its
declaration must be in a proper scope, i.e. a structure activity. A variable contains an
identity to relate the variable to a variable in an activity transformation.

A business process defines the behaviour of a business process in order to provide
its functionality. It contains an activity to be performed. When a business process
consists of many activities, the activity of a business process is a structured activity
containing those activities.

Fig. 4. Representation of CBPL patterns in UML

We do not provide a concrete syntax for CBPL. CBPL patterns should be
expressed using elements of the modeling language of a business process model.

Figure 4 shows the representation of CBPL patterns in UML activities diagram. Join
and merge nodes of the concurrence and the selection patterns, respectively, are
optional.

4 Example

We illustrate the use of our approach in the development of a UML-to-BPEL
transformation. The transformation is developed as a composition of a UML-to-CBPL
transformation as pattern recognition, a CBPL-to-BPEL transformation as pattern
realization and a UML-to-BPEL activity transformation. The example focuses on
pattern recognition and pattern realization.

Figure 5 shows an example of a business process model of an insurance
application. The business process receives an application and determines whether the
application type is collective or individual. The business process then calls another
service according to the application type. When the business process receives a
confirmation from the service, it forwards the confirmation to the applicant.

The structure of the model is formed from two CBPL patterns: sequence and
selection. A CBPL sequence pattern is formed from an AcceptEventAction receive
Application, a composition that conforms to the CBPL selection pattern and a
SendSignalAction replyConfirmation. A CBPL selection pattern is formed from
two CallOperationActions: applyForCollective and applyForIndividual.
Information that is not relevant to pattern transformation is omitted for brevity.

Fig. 5. A business process model of insurance application

The UML-to-CBPL transforms the UML model to an intermediate model depicted
in Figure 6(a). It is a good practice to put the only action of a structure activity in a
sequence pattern. If the pattern realization then transforms the action into a succession
of activity constructs, the activity constructs are already in a sequence. The CBPL-to-
BPEL transformation transforms the intermediate model to a BPEL model depicted in
Figure 6(b). The figure shows only constructs that are relevant to patterns. The

similarity between the models and between their metamodels (see [6, 8] for the BPEL
metamodel) eases the development of a CBPL-to-BPEL transformation.

If we want to develop an UML-to-Java transformation, we can reuse the pattern
recognition that was developed in the UML-to-BPEL transformation. For the example
in Figure 5, the pattern recognition will give the same output as Figure 6(a). The
structure of the intermediate model resembles the structure of a Java method. This
makes the development of a CBPL-to-Java transformation relatively easy. A sequence
is transformed to a scope indicated with a pair of curly brackets {}; a selection is
transformed to a keyword if; and a case within the selection becomes the condition
of the if.

<sequence>
 <action id="1" />
 <selection>
 <case collective>
 <sequence>
 <action id="2" />
 </sequence>
 </case>
 <case individual>
 <sequence>
 <action id="3" />
 </sequence>
 </case>
 </selection>
 <action id="4" />
</sequence>

<sequence>
 <receive .../>
 <switch>
 <case collective>
 <sequence>
 <assign .../>
 <invoke .../>
 <assign .../>
 </sequence>
 </case>
 <case individual>
 <sequence>
 <assign .../>
 <invoke .../>
 <assign .../>
 </sequence>
 </case>
 </switch>
 <reply .../>
</sequence>

(a) intermediate model in CBPL (b) target model in BPEL

Fig. 6. The example in CBPL and BPEL

5 Related Work

The need for transformation (de)composition is studied in [10]. The study addresses
issues that should be considered in transformation decomposition and composition,
such as order of rule execution, tangling and scattering concerns, and additive
changes. The study focuses on the development of a transformation language that can
handle those issues.

(De)composition of a transformation are also studied in the area of aspect
orientation [5, 12, 17]. A transformation is decomposed according to concerns, e.g.
logging, security and transaction. Aspect orientation does not consider the structure
and activities of a business process model as concerns and, hence, does not
decompose a transformation according to them.

Transformations from business process models to implementations can be found in
[6, 11, 15, 18]. None of them indicates how the transformations are (de)composed.
Each develops a transformation directly based on a transformation specification.

Pattern transformation can be considered as an implementation of pattern
application approach [13]. Our approach extends the idea of pattern application such
that pattern application can be developed by reuse.

The UML 2.1.1 StructuredActivities package [14] is to support traditional structured
programming constructs. It provides the concepts of sequence, conditional and loop
nodes, which are similar, respectively, to sequence, selection and iteration patterns in
CBPL. UML has no single concept for concurrence. CBPL allows concurrence be
represented as a single concept.

6 Conclusions and Future Work

In this paper, we present an approach for developing a transformation from business
process models to implementations that facilitates reuse. The approach separates
pattern transformation from activity transformation. Pattern transformation is
developed as a composition of two transformations that are performed in succession:
pattern recognition and pattern realization. Pattern recognition identifies patterns that
form the structure of a model. Pattern realization translates these patterns into
constructs of an implementation language. The results of pattern realization and
activity transformation are combined to produce the implementation of the business
process model. The approach facilitates the reuse of pattern recognition and pattern
realization in transformations from different modeling languages to different
implementation languages.

The approach takes workflow patterns as knowledge for pattern recognition. Thus,
workflow patterns act as modeling constraints. Patterns recognized are documented in
an intermediate model. The approach includes a pattern language, which we call
CBPL, to define this intermediate model. CBPL documents workflow patterns in
terms of CBPL patterns.

We have developed a transformation from business process models in ISDL [4] to
BPEL as a composition of pattern recognition and pattern realization. Activity
transformation is not developed as an individual transformation yet. The activity
transformation is embedded in the pattern recognition and pattern realization.
Currently we are refactoring the pattern recognition and pattern realization such that
the activity transformation part stands as an individual transformation. We will then
compose the pattern recognition, pattern realization and activity transformation as
suggested by the approach described in this paper.

Our future work will investigate how to map workflow patterns that are not
comparable to CBPL patterns onto CBPL. The mapping gives us an opportunity to
evaluate the stability of the CBPL metamodel with regard to addition of new
workflow patterns. To prove the idea of transformation development by reuse, a
transformation from ISDL to Java will be developed by reusing pattern recognition
that has been developed in our ISDL-to-BPEL transformation.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P. Workflow
Patterns. Distributed and Parallel Databases Volume 14 No. 3. Springer (2003) 5-51

2. Almeida, J.P.A. On the Notion of Abstract Platform in MDA Development. Proc. of 8th
IEEE Intl. Enterprise Distributed Object Computing Conference (2004) 253-263

3. Andrews, G.R., Schneider, F.B. Concepts and Notations for Concurrent Programming.
ACM Computing Survey Volume 15 Issue 1 (1983) 3-43

4. ASNA. ISDL Home. http://isdl.ctit.utwente.nl
5. Barbosa, P.A.A, Contreras, C.F.G., Rodriguez, J.M.M. MDA and Separation of Aspects:

An Approach based on Multiple Views and Subject Oriented Design. Proc. of 6th Intl.
Workshop on Aspect Oriented Modeling (2005)

6. Bordbar, B., Staikopoulos, A. On Behavioural Model Transformation in Web Services.
Proc. of ER Workshops 2004. LNCS Volume 3289. Springer, Berlin (2004) 667-67

7. Chapin, N., Denniston, S.P. Characteristic of a Structured Program. SIGPLAN Notices,
Volume 13 Issue 5 (1978) 36-45

8. Dirgahayu, T. Model-Driven Engineering of Web Services Composition: A Transformation
from ISDL to BPEL. MSc thesis. University of Twente, Enschede (2005)

9. Hallsteinsen, S., Paci, M. (eds.) Experiences in Software Evolution and Reuse. Twelve Real
World Projects. Springer, Berlin (1997)

10. Kurtev, I. Adaptability of Model Transformations. PhD thesis. University of Twente,
Enschede (2005)

11. Koehler, J., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S. A Model-Driven
Transformation Method. Proc. of 7th IEEE Intl. Enterprise Distributed Object Computing
Conference (2003) 186-197

12. Kulkarni, V., Reddy, S., Separation of Concerns in Model-Driven Development. IEEE
Software Volume 20 Issue 5 (2003) 64-69

13. OMG. MDA Guide version 1.0.1. omg/2003-06-01 (2003)
14. OMG. Unified Modeling Language: Superstructure version 2.1.1. formal/2007-02-03

(2007)
15. Patrascoiu, O. Mapping EDOC to Web Services using YATL. Proc. of 8th IEEE Intl.

Enterprise Distributed Object Computing Conference (2004) 286-297
16. Quartel, D., Dijkman, R., van Sinderen, M. Extending profiles with stereotypes for

composite concepts. Proc. of 8th ACM/IEEE Intl. Conf. on Model Driven Engineering
Languages and Systems (MoDELS). LNCS Volume 3713. Springer, Berlin (2005) 232-247

17. Solberg, A., Simmonds, D., Reddy, R., Ghosh, S., France, R. Using Aspect Oriented
Techniques to Support Separation of Concerns in Model Driven Development. Proc. of 29th
Annual Intl. Computer Software and Applications Conf. (2005) 121-126

18. Specht, T., Drawehn, J., Thranert, M., Kuhne, S. Modeling Cooperative Business Processes
and Transformation to a Service Oriented Architecture. Proc. of 7th IEEE Intl. Conf. on E-
Commerce Technology. (2005) 249-256

19. Sutcliffe, A. The Domain Theory: Patterns for Knowledge and Software Reuse. Lawrence
Erlbaum Associates, Inc. (2002)

20. Williams, M.H. Generating Structured Flow Diagrams: The Nature of Unstructuredness.
The Computer Journal Volume 20 No. 1 (1977) 45-50

21. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. LNCS Volume 2813. Springer,
Berlin (2003) 200-215

