
 Controlling Services in a Mobile Context-Aware
Infrastructure 1

Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

Centre for Telematics and Information Technology, University of Twente, The Netherlands
{dockhorn, pires, sinderen, broens}@cs.utwente.nl

Abstract. Context-aware application behaviors can be described as logic rules
following the Event-Control-Action (ECA) pattern. In this pattern, an Event
models an occurrence of interest (e.g., a change in context); Control specifies a
condition that must hold prior to the execution of the action; and an Action
represents the invocation of arbitrary services. We have defined a Controlling
service aiming at facilitating the dynamic configuration of ECA rule
specifications by means of a mobile rule engine and a mechanism that
distributes context reasoning activities to a network of context processing
nodes. In this paper we present a novel context modeling approach that
provides application developers and users with more appropriate means to
define context information and ECA rules. Our approach makes use of
ontologies to model context information and has been developed on top of web
services technology.

1. Introduction

The dynamic nature of context-aware applications, and the increasing integration of
these applications into our daily tasks in a variety of domains (e.g., home, work and
leisure), generate rapid changes in the requirements for the technology to support
these applications. Although it is not possible to fully predict these changes, the
supporting technology can be designed in such a manner that it can be configured to
match changing requirements, preferably at runtime. This calls for a high level of
flexibility. We aim at coping with these issues by means of a shared Context Handling
Infrastructure to support context-aware applications. This infrastructure comprises,
among others, reusable context processing and managing services, which facilitate
context-aware application development. It provides building blocks that can be
combined and specialized to satisfy application-specific requirements. A central
building block in our Context Handling Infrastructure is the Controlling Service. This
service takes application-specific rules and information (context) models as input in
order to carry out application-specific adaptation within the infrastructure, at runtime.

This paper aims at presenting our Controlling service, which facilitates the
configuration of application-specific behaviors. Application requirements, expressed

1 This work is part of the Freeband AWARENESS project (http://awareness.freeband.nl).

Freeband is sponsored by the Dutch government under contract BSIK 03025.

2 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

in terms of pieces of application behaviors, are written in a scripting format following
the Event-Control-Action (ECA) pattern. In this pattern, an Event models an
occurrence of interest (e.g., a change in context); Control specifies a condition that
must hold prior to the execution of the action; and Actions represent the invocation of
arbitrary services. The Controller component facilitates the configuration of the
infrastructure by taking ECA rules and application-specific context models as input to
(i) subscribe to context sources, (ii) perform context reasoning, and (iii) trigger
actions on behalf of applications, in response to context changes. We have developed
a scripting language for the purpose of writing context-aware ECA rules. This
language is composed of an information part, defined by our context models, and a
behavior part, defined by the language metamodel. Since ECA rules are written in a
scripting format, application developers do not need to write programming code.

Furthermore, we propose a generic context model that incorporates a novel context
categorization scheme that classifies context according to its nature, providing
application developers and users with more appropriate means to define context
information and ECA rules. Our approach provides a generic context model that
captures general concepts and allows domain-specific and application-specific
extensions.

We focus on mobile context-aware applications that are widely distributed and are
typically offered by telecommunication providers. Examples of such applications are
healthcare tele-monitoring applications, tourism applications and communication
applications. We ignore sensory issues in this paper, but rather focus on the service
infrastructure that leverages on the sensor network to provide appropriate context
information to a large range of context-aware applications. Since the nature of
applications is diverse, a rich set of context information is exploited by the
infrastructure, including location of people and devices, vital signs and user activity,
amongst others.

The remainder of this paper is structured as follows: Section 2 presents the
Controlling service, and identifies the challenges to realize such services; Section 3
presents our context model; Section 4 discusses our language to describe ECA rules;
Section 5 presents an overview of the infrastructure architecture and our prototyping
activities; Section 6 discusses related work; and Section 7 gives final remarks and
conclusions.

2. The Controlling Service

A Controlling Service accepts ECA rule specifications and activates them within the
infrastructure. ECA rule activation occurs at infrastructure runtime, which requires
runtime discovery and composition of context and action services. Context services
aim at providing context information and action services implement the actions to be
triggered when context conditions are satisfied. Fig. 1 depicts a typical usage flow of
the Controlling Service.

The following phases are identified:
− Phase 1 initiates with end-users defining application behaviors by means of a

graphical interface.

Controlling Services in a Mobile Context-Aware Infrastructure 3

− Phase 2 consists of performing the mapping of an end-user rule specification to a
less abstract specification to be provided to the infrastructure, in a scripting format
(e.g., XML). The translation from users’ inputs to a rule specification in some
notation that can be accepted by the infrastructure is a responsibility of the
application components. It is also possible that application developers specify
application rules, as opposed to end-user rules. End-user and application rules are
equally treated in this paper.

− Phase 3 consists of the actual invocation of the Controlling Service after the rule
specification has been provided to the infrastructure. The Controlling Service
verifies whether the specification is well-formed and separates it into events,
conditions and actions.

− Phase 4 corresponds to the attempt of the Controlling Service to find event sources
capable of providing context event notifications of interest. The Controlling
Service decides whether or not to subscribe to one of more of these Context
Provisioning services.

− Phase 5 consists of the exchange of a subscribe request and eventual event
notifications. The Controlling Service determines whether the conditions are
satisfied by the context event notifications being generated.

− Phase 6 is entered typically when a certain condition is satisfied. At this moment,
an action should be triggered, and, therefore, its actual implementation needs to be
found. For that purpose, the Controlling Service makes use of the Action
Discovery Service.

− Phase 7 emcompasses the actual execution of an Action Service.

Context Handling Infrastructure

Application
components

2

3

5

7

CP Discovery
Service

4 6

1 GUI

Controlling
Service

Action
Discovery

Service

Context
Provisioning

Services

Action
Services

ECA Rule
specification

Fig. 1. Typical usage flow of the Controlling Service

Although much study has been carried out in each of the topics mentioned above, the
following research questions remain open: (i) how expressive should the ECA rule
language be to accommodate user’s and developer’s requirements? (ii) what are the
context abstractions needed to effectively compose application behaviors? (iii) what
elements should be included in ECA rule specifications to provide enough
information to perform infrastructure configuration? (iv) how to dynamically discover
context provisioning services based on ECA rule specifications? and (v) how to

4 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

invoke action services on behalf of application components? This paper provides
answers for the three first questions in terms design solutions.

3. Context Modeling

A shared context model formally defines context information concepts and their
relationships, such that context information can be distributed and unambiguously
interpreted by interacting system parts. Our approach requires a context model to (i)
provide application users and developers with appropriate means to describe context
information and application behaviors; (ii) allow applications, infrastructure and
third-party service providers to agree upon syntax and semantics of context
information, thus enabling interoperation; and (iii) provide context processing
components with proper means to perform context information reasoning. We have
used ontologies to model context information in our infrastructure.

3.1 Characteristics of context information

We use the context modeling abstractions of facts and situations [4][5] to provide
application developers and users with more appropriate means to define context
information. A Fact defines a current “state of affairs” in the user’s environment, such
as “Bob has access to PDA and PC” and “Bob and his PDA are co-located in room
A”. The situation context abstraction allows application developers and users to
leverage on the fact abstraction to derive high-level context information, such as
isOccupied , derived from the fact that Bob is engaged in an activity and
isReachable , derived from the fact that Bob is near to a device that supports a given
communication channel. Situations may be built upon other situations, for example,
isAvailable may be defined as Bob not being isOccupied and being isReachable .
Application behaviors are defined at runtime as ECA rules, using our context models.
Section 5 elaborates on ECA rules.

Since our service infrastructure supports a large number of mobile context-aware
applications, a rich set of context information is exploited. However, it is not possible
to define a complete context model that is accepted by all applications, since each
application may define context information in a different way. For example, the
context information near could mean within 10 meters in one application and mean
within 5 kilometers in another. It may also be possible that certain context information
types are domain-specific, rather than application-specific. For example, heart-rate
and body-temperature are types of context information concepts shared among
applications in the medical domain, but may be useless concepts in other domains.
We suggest in our approach a general context model that contains concepts shared by
applications we deal with. This model should be extended with application-specific
concepts (facts and situations) on demand, at infrastructure runtime.

Controlling Services in a Mobile Context-Aware Infrastructure 5

3.2 Context models

Fig. 2 depicts some parts of our general context model. This model is a context
ontology that captures general concepts and allows domain-specific and application-
specific extensions. We have used OWL-DL [8] to define this ontology.

Fig. 2. Selected concepts of the general context model

We distinguish three fundamental categories of context information, namely intrinsic
context (IntrinsicContext), relational context (RelationalContext) and
environmental context (EnvironmentalContext):
− Intrinsic context defines a type of context information that belongs to the essential

nature of an entity and does not depend on the relationship with other entities. An
example of intrinsic context is the location of a PhysicalEntity , such as a
Person or a Building .

− Relational context defines a type of context information that represents a relation
between distinct entities. An example of relational context is Containment , which
defines a containment relationship between entities, such as an entity Building
contains a set of entity Person s. Another example of relational context is
Distance , which represents the spatial distance between two physical entities.

− Environmental context defines a type of context information that belongs to the
physical environment of an entity. Examples are Light , NoiseLevel , Pressure and
Temperature .

Relational context may be used to relate an entity to the collection of entities that play
a role in the entity’s context. Examples of relational contexts that can be used for this
purpose are DeviceAvailability , and SocialNetwork (Fig. 2). The
DeviceAvailability of a person captures the person’s current accessible devices and
the SocialNetwork of a person captures the collection of persons interacting with that
person by any communication channels.

The main benefit of this general categorization of context is that it explicitly
separates the concepts of entity and context. The relational context type allows us to
traverse from an entity to the entities that are related by the relational context. This

6 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

has enabled us to recursively define the relationship between entity and context,
facilitating navigation in the model.

We have extended the general context model to support a tele-monitoring
application [2]. In this application, patients’ vital signals are processed to detect
abnormalities, such as the possibility of having an epileptic seizure, within seconds.
Several actions may be taken upon an epileptic alarm, such as contacting volunteers
capable of providing first aid and streaming patient’s bio-signals to doctors at real
time.

We have specialized entity person to AidPerson , Patient and HealthCarePerson .
In addition, to accommodate the new types of intrinsic context information presented
by the tele-monitoring scenario, we have included BodyPressure , HeartRate ,
hasSeizure , isOccupied , isAvailable , isReachable , isAtHome and isAtWork . The
first two types of context information (BodyPressure and HeartRate) are facts,
meaning that they are not derived information but can be sensed directly from the
environment. The situation hasSeizure is derived from the persons HeartRate and
BodyPressure by means of a rather complex algorithm. The situations isOccupied ,
isReachable , and isAtHome are defined in OWL-DL (using our ontology) as follows:
− isOccupied ≡ ∀ isContextOf (Person

⊓
 (∃ hasContext Activity))

− isReachable ≡ ∀ isContextOf (Person
⊓

 (∃ hasContext

(DeviceAvailability
⊓

 ((∃ hasContext ChannelAvailability)))))

− isAtHome ≡ ∀ isContextOf (Person
⊓

 (∃ hasContext (Containment
⊓

 (∃
container Home))))

4. ECA Rules

The dynamic aspects of applications, i.e., application behaviors, are defined following
the Event-Control-Action (ECA) pattern mentioned previously. We have developed
an expressive language that enables the specification of ECA rules. These rules carry
enough information to allow the Controller component to autonomously configure the
infrastructure (composition of context and action) with no need for further
intervention from the application developer. The behavior part of the ECA language
we are proposing is based on the situation-based triggering approach presented in
[4][5]. We have extended and adapted this approach to satisfy our infrastructure
requirements. The information part of the ECA language is based on our context
models, which have been presented in the previous sections.

Context changes are described as changes in situation states. There are three
possible states (true, false and unknown) and six state transitions. The unknown state
accommodates uncertainty of context information. Action invocations are enabled by
sequences of transitions and the validation of pre-conditions. The condition part of
ECA rules comprises two parts: an event part that defines a relevant situation change,
and a pre-condition part that defines a logical expression that must hold following the
event and prior to the execution of the action. Both events and pre-conditions are
defined in terms of situations and facts. Each rule is associated with a lifetime, which
can be once, from <start> to <end>, to <end>, <n> times and frequency <n>
times per <period>.

Controlling Services in a Mobile Context-Aware Infrastructure 7

Events, pre-conditions and actions are prefixed by the clauses Upon, When and Do,
respectively. In our approach, we have included the clause scope to parameterize an
ECA rule. A scope clause defines a collection of entities for which the rule should be
applied. We have also included the clause select , which returns a collection of
entities respecting a given filtering expression2. Consider the following ECA rule
partially modeling the tele-monitoring scenario:

Scope (Select (entity.patient.*, pat, isIncluded
 (pat.medConditions, epilepsy)))
{
 Upon EnterTrue(pat.hasSeizure)
 When pat.hasSeizure.Accuracy > 50%
 Do critical
 Foreach (Select (entity.patient.aidPersons, aidP,
 aidP.isAvailable ^ aidP.isNea r(pat)))
 Contact (aidP)
always
}

This ECA rule defines a scope that includes all patients suffering from epilepsy.
The function isIncluded is part of the standard library to manipulate collections. The
Upon clause defines a situation state transitions (EnterTrue) in which the action
should be invoked. The When clause defines a pre-condition for the action to be
invoked, which is the minimum accuracy required (50%) for the seizure alarm. The
Do clause defines that the patient’s designated aid persons who are near and available
(not occupied and reachable) should be contacted on their preferred channel. The term
critical indicates that the rule should be pre-fetched, meaning that no time should
be spent with action lookup requests.

The scope clause defines a dynamic group of epileptic patients. Epileptic patients
may enter and leave the system, and the scope clause maintains the actual list of
patients, creating and removing rules for each patient that enters and leave the system,
respectively.

Conditions are asserted based on information contained in the knowledge base,
which is kept up-to-date with context information events originated from the network
of Context Sources.

Other examples of notification ECA rules are (in a smart home setting):
Notify all family members (except Bob) that Bob is arriving home.

Scope (Select (person.*, person, person.isAtHome & perso n.name <>
“Bob”); p))
{
 Upon EnterTrue (Bob.isAtHome)
 When True
 Do Notify (p, “Bob is home”)
 Always
}

Notify Bob when the average temperature of the house goes beyond 30oC.

Upon EnterTrue(house.temperature > 30)
When True

2 For the sake of readability, the select clause is described in an OQL-like language, instead of OWL-QL

8 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

Do Notify (Bob, “House temperature is beyond 30 oC”)
Always

Without the use of the Controlling service, context-aware application developers
would have to write programming code to implement the behaviors described above
with no automated support for (i) subscribing to context sources, (ii) receiving
context event notifications, (iii) performing context reasoning, (iv) implementing a
monitoring function to check conditions and (v) implementing action invocations. Our
approach facilitates the development process by reducing development efforts and
time. However, application developers using the Controlling service are limited to the
expressiveness of our language when describing application behaviors.

5. Infrastructure Architecture and Prototyping Activities

Fig. 3 depicts an example configuration of the infrastructure services.

Fig. 3. Example configuration of the context handling infrastructure

Application components may either gather context information directly from the
network of context sources or use the service offered by the Controller component. In
the latter, applications provide the infrastructure with an application-specific context
model and ECA rules, and the Controller makes sure action services and notifications
are invoked and delivered appropriately through the reusable action components.
Reusable context sources, application-specific context sources and generic context
sources are components developed by third-party developers, application developers
and the infrastructure, respectively. These components maintain their own specific

Controlling Services in a Mobile Context-Aware Infrastructure 9

extensions of the infrastructure general context model, and therefore their own
knowledge bases. These particular knowledge bases are represented by database
symbols in Fig. 3. The other context processing nodes are dynamically created,
according to the layers of reasoning that are required to execute an ECA Rule.

We have prototyped a previous version of this architecture using Web Services
technologies and the Java programming language. This prototype has been
experimented in various scenarios in the tourism domain [3][11]. It includes a limited
version of the Controller and a number of location-based Reusable Context Sources
(GPS sensors). The Controller interface is offered as a web service end-point,
allowing the operations to be remotely called by the application components.
Application components have also been implemented as a web service end-point to
allow callbacks from the Controller. We have defined an XML Schema that
represents a limited version of the ECA rule language such that application ECA rules
can be written as XML documents and validated using this WSL XML Schema. Our
ECA rule parser reads application rules in XML format and maps them into Java
classes, which are automatically compiled and executed at runtime. We have used an
object-based context model and context reasoning is based on hard-coded algorithms.
For service discovery, we have used the industry standard UDDI.

Our current prototyping activities include developing a Controller component
using the Jess Rule Engine [9]. We are working on the mapping between the ECA
language constructs and Jess constructs. In general, a simple ECA rule needs to be
mapped to a set of fact assertions and rule definitions in Jess. The mapping of the
Scope clause onto Jess rules is particularly complex, since the scope clause requires
runtime rule definitions and deletions for each entity entering and leaving the scope,
respectively.

Furthermore, we are also working on the runtime creation and distribution of
context processing nodes. A newly defined ECA rule may require context reasoning
activities that do not exist at the time the rule has been included. When this occurs,
the Controller needs to create context processing nodes that are capable of performing
the pieces of context reasoning that are required. In order to create such node, the
Controller provides (i) the reasoning algorithm itself (derived from the context
model); (ii) the type of context input(s) and where this information can be gathered
from, and (iii) the type of the expected outputs.

Context processing nodes only exist when they are needed (limited lifetime). There
are two types of context processing nodes, namely the stateless and stateful context
processing nodes. Stateless context processing nodes perform a piece of reasoning
that does not require persistence of context information, while stateful context
processing nodes typically maintain history information. Once context processing
nodes are running properly, the Controller component is regularly fed with (high-
level) context information provided by both pre-defined context sources and
dynamically defined context processing nodes.

10 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

6. Related Work

Various approaches to address ECA services for context-aware systems have been
proposed. The ECA rule matching service [6] proposes an extension to the standard
CORBA Notification services with a composite Event Matching Engine, using CLIPS
to implement event correlation and the aggregation process. This approach does not
address context information representation, therefore being limited to a predefined set
of context types. In addition, there is no support for context information management
activities, such as gathering, processing and distribution.

The work presented in [12] discusses a structured framework to design and
implement context-processing modules. This work uses ontologies for context
information specification and composition. However, as opposed to our approach, no
context categorization is provided. Application developers using this framework need
to (i) provide a description of context in RDF/XML format and (ii) find and/or
implement context processing components. Our approach differs from this work since
we take a top-down strategy to perform configuration of context processing modules,
which is based on ECA rule descriptions. Application developers provide ECA rules
and context models as input, and the Controlling service takes care of dynamically
finding and/or implementing context processing components that are required.

The framework presented in [1] proposes a rule-based sentient object model to
facilitate context-aware development in an ad-hoc environment. The main
functionality is offered in a tool that facilitates the development process by offering
graphical means to specify context aggregation services and rules. Although this
approach introduces useful ideas on how to easily configure rules and aggregation
services on a sentient object, it is based upon a simple model of context that is both
informal and lacks expressive power.

The Context Management framework presented in [7] defines a framework and a
tool for facilitating end-user customization of context-aware features. This work
concentrates on a tool that allows users to combine context and actions in order to
define ECA rules. The context and action options provided by the tool reflect the
concepts defined in a context ontology. Differently from our approach, there is no use
of discovery mechanism to find and match context sources and action providers.
Furthermore, there is no strong support for application rules (as opposed to end-user
rules) and parameterization of rules. The mechanism presented in this paper focuses
on application rules that may be applied to a collection of users. Therefore, as shown
in this paper, the use of parameterization through the scope clause is important.
However, although we present an alternative mechanism to gather context, process
rules and invoke actions, our approach would benefit from a user friendly tool such as
the one presented in [7].

7. Conclusions

We have discussed in this paper our current efforts towards a flexible context
handling infrastructure. A central element of this infrastructure is the Controller
component, which takes application-specific rules and context models as input in

Controlling Services in a Mobile Context-Aware Infrastructure 11

order to carry out runtime application-specific adaptation within the infrastructure.
We have discussed (i) important aspects on context modeling, (ii) a mechanism to
define ECA rules, and (iii) a general overview of the infrastructure services. As
opposed to various related works [4][10][12], our proposal is based on a top-down
approach towards automatic configuration of ECA rules. Based on ECA rules and
models of context, the Controller is capable of autonomously configuring the
infrastructure accordingly. This approach facilitates the development process, since
application developers do not need to write programming code to (i) activate rules;
(ii) find and compose context sources; (iii) implement context reasoning activities;
and (iv) invoke actions.

We have discussed a generic context model that can be specialized with domain
and application specific concepts. This creates application-specific virtual knowledge
bases, permitting specific requirements to be addressed in a general Controller
architecture. In addition, our context categorization allows us to define context
information recursively, which conforms to the recursive nature of context
information. For example, it is possible to define that a device is part of a person’s
context, and that communication channels are part of the device’s context, and so
forth. Our context model allows us to traverse from an entity to the entities that are
related to this entity by the relational context. This has enabled us to recursively
define the relationship between entity and context, facilitating navigation in the
model.

We have defined an ECA language to specify rules that are used by the Controller
to create and compose context processing nodes. This language allows us to specify
ECA rules that consider a scope in which these rules should be applied, as opposed to
cumbersomely defining an individual rule for each entity instance.

By using the Event-Control-Action pattern we have decoupled context concerns
from action concerns, under the control of application-specific rules, enabling
effective distribution of responsibilities among various parties within the
infrastructure. This approach has greatly improved extensibility and flexibility of the
infrastructure’s generic functionality, since rules, actions and context information can
be added on demand, at infrastructure runtime.

As part of our ongoing research, we are developing additional context-aware
applications with the support of the infrastructure’s Controlling service. We are also
investigating effective approaches to distribute Controller components, while tackling
synchronization of rules and potentially conflicting issues.

References

[1] Biegel, G., and Cahill, V.: A Framework for Developing Mobile, Context-Aware
Applications. In: Proc. of the 2nd IEEE Conference on Pervasive Computing and
Communications (Percom2004). USA (2004) 361-365.

[2] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Architectural Patterns for
Context-Aware Services Platforms. In: Proc. of the Second International Workshop on
Ubiquitous Computing (IWUC 2005 at ICEIS 2005). USA (2005) 3-19.

12 Patrícia Dockhorn Costa, Luís Ferreira Pires, Marten van Sinderen, Tom Broens

[3] Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Designing a Configurable
Services Platform for Mobile Context-Aware Applications. In: International Journal of
Pervasive Computing and Communications (JPCC), 2005, Troubador Publishing.

[4] Henricksen, K., and Indulska, I.: A Software Engineering Framework for Context-Aware
Pervasive Computing. In: Proc. of the 2nd IEEE Conference on Pervasive Computing and
Communications (Percom2004). USA (2004) 77-86.

[5] Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applications.
PhD thesis, School of Information Technology and Electrical Engineering, The University
of Queensland (2003).

[6] Ipina, D., and Katsiri, E.: An ECA Rule-Matching Service for Simpler Development of
Reactive Applications. In: Proc. of Middleware 2001 at IEEE Distributed Systems Online,
Vol. 2, No. 7, November 2001.

[7] Korpipää, P., Malm, E., Salminen I., Rantakokko, T.: Context Management for End User
Development of Context-Aware Applications. In: Proc. of the 6th International
Conference on Mobile Data Management. Cyprus (2005) 304-308.

[8] McGuinness, D., and van Harmelen, F.: OWL Web Ontology Language – Overview, W3C
Recommendation (2004). Available at http://www.w3.org/TR/owl-features/.

[9] Jess – the Rule Engine for the Java Platform. Available at herzberg.ca.sandia.gov/jess/
[10] Przybilski, M.: Distributed Context Reasoning for Proactive Systems. In: Floreen, P., et al.

(eds.): Proc. of the Workshop on Context Awareness for Proactive Systems (CAPS 2005).
Finland (2005) 43-54.

[11] Pokraev, S., Koolwaaij, J., van Setten, M., Broens T., Dockhorn Costa, P., Wibbels, M.,
Ebben, P., Strating, P.: Service Platform for Rapid Development and Deployment of
Context-Aware, Mobile Applications. In: Proc. of International Conference on
Webservices (ICWS'05). USA (2005).

[12] Sbodio, M. and Thronicke, W.: Specification and Design of Framework-Based Context
Processing Modules. In: Floreen, P., et al. (eds.): Proc. of the Workshop on Context
Awareness for Proactive Systems (CAPS 2005). Finland (2005) 79-92.

