Controlling Services in a Mobile Context-Aware
Infrastructure :

Patricia Dockhorn Costa, Luis Ferreira Pires, Mavi@n Sinderen, Tom Broens

Centre for Telematics and Information Technologgivérsity of Twente, The Netherlands
{dockhorn, pires, sinderen, broens}@cs.utwente.nl

Abstract. Context-aware application behaviors can be desdrds logic rules
following the Event-Control-Action (ECA) patternn lthis pattern, an Event
models an occurrence of interest (e.g., a changeritext); Control specifies a
condition that must hold prior to the executiontloé¢ action; and an Action
represents the invocation of arbitrary services. hdee defined a Controlling
service aiming at facilitating the dynamic configion of ECA rule

specifications by means of a mobile rule engine andnechanism that
distributes context reasoning activities to a nekwof context processing
nodes. In this paper we present a novel contextefivgd approach that
provides application developers and users with mappropriate means to
define context information and ECA rules. Our apgto makes use of
ontologies to model context information and hasbaéeveloped on top of web
services technology.

1. Introduction

The dynamic nature of context-aware applications| #ne increasing integration of
these applications into our daily tasks in a varigtdomains (e.g., home, work and
leisure), generate rapid changes in the requiresnfamtthe technology to support
these applications. Although it is not possiblefutly predict these changes, the
supporting technology can be designed in such anarathat it can be configured to
match changing requirements, preferably at runtiii@s calls for a high level of
flexibility. We aim at coping with these issuesrbgans of a shared Context Handling
Infrastructure to support context-aware applicationhis infrastructure comprises,
among others, reusable context processing and nmgnagrvices, which facilitate
context-aware application development. It providaslding blocks that can be
combined and specialized to satisfy applicatioreBjme requirements. A central
building block in our Context Handling Infrastruptuis the Controlling Service. This
service takes application-specific rules and infation (context) models as input in
order to carry out application-specific adaptatigthin the infrastructure, at runtime.
This paper aims at presenting our Controlling serviwhich facilitates the
configuration of application-specific behaviors. phipation requirements, expressed

1 This work is part of the Freeband AWARENESS prbjéutp://awareness.freeband.nl).
Freeband is sponsored by the Dutch government waigéract BSIK 03025.

2 Patricia Dockhorn Costa, Luis Ferreira Pires, Marten van Sinderen, Tom Broens

in terms of pieces of application behaviors, ariéten in a scripting format following
the Event-Control-Action (ECA) pattern. In this fmh, an Event models an
occurrence of interest (e.g., a change in cont&aytrol specifies a condition that
must hold prior to the execution of the action; @uwtions represent the invocation of
arbitrary services. The Controller component feaidis the configuration of the
infrastructure by taking ECA rules and applicatgpecific context models as input to
(i) subscribe to context sources, (i) perform eomtreasoning, and (iii) trigger
actions on behalf of applications, in responsectatext changes. We have developed
a scripting language for the purpose of writing teahraware ECA rules. This
language is composed of an information part, ddfing our context models, and a
behavior part, defined by the language metamodeteSECA rules are written in a
scripting format, application developers do notcheewrite programming code.

Furthermore, we propose a generic context modelnkbarporates a novel context
categorization scheme that classifies context aiegrto its nature, providing
application developers and users with more appatgrimeans to define context
information and ECA rules. Our approach providegeameric context model that
captures general concepts and allows domain-speeifid application-specific
extensions.

We focus on mobile context-aware applications #ratwidely distributed and are
typically offered by telecommunication providerscafnples of such applications are
healthcare tele-monitoring applications, tourisnplaations and communication
applications. We ignore sensory issues in this papé rather focus on the service
infrastructure that leverages on the sensor networkrovide appropriate context
information to a large range of context-aware apions. Since the nature of
applications is diverse, a rich set of context infation is exploited by the
infrastructure, including location of people andiides, vital signs and user activity,
amongst others.

The remainder of this paper is structured as fdtoWection 2 presents the
Controlling service, and identifies the challengesealize such services; Section 3
presents our context model; Section 4 discussetaoguage to describe ECA rules;
Section 5 presents an overview of the infrastrectnchitecture and our prototyping
activities; Section 6 discusses related work; aadtiS8n 7 gives final remarks and
conclusions.

2. The Controlling Service

A Controlling Service accepts ECA rule specificaicand activates them within the
infrastructure. ECA rule activation occurs at isfracture runtime, which requires
runtime discovery and composition of context antioacservices. Context services
aim at providing context information and actionvsegs implement the actions to be
triggered when context conditions are satisfiedy. E depicts a typical usage flow of
the Controlling Service.
The following phases are identified:
— Phase 1 initiates with end-users defining applicatbehaviors by means of a
graphical interface.

Controlling Services in a Mobile Context-Aware Infrastructure 3

— Phase 2 consists of performing the mapping of ahuser rule specification to a
less abstract specification to be provided to tifi@structure, in a scripting format
(e.g., XML). The translation from users’ inputs @orule specification in some
notation that can be accepted by the infrastructare responsibility of the
application components. It is also possible thagbliegtion developers specify
application rules, as opposed to end-user ruled:USer and application rules are
equally treated in this paper.

- Phase 3 consists of the actual invocation of theti@ding Service after the rule
specification has been provided to the infrastmgcturhe Controlling Service
verifies whether the specification is well-formeddaseparates it into events,
conditions and actions.

— Phase 4 corresponds to the attempt of the Comigo8iervice to find event sources
capable of providing context event notifications ioterest. The Controlling
Service decides whether or not to subscribe to @henore of these Context
Provisioning services.

— Phase 5 consists of the exchange of a subscribgeseqnd eventual event
notifications. The Controlling Service determinedether the conditions are
satisfied by the context event notifications bejegerated.

- Phase 6 is entered typically when a certain candliis satisfied. At this moment,
an action should be triggered, and, thereforegdteal implementation needs to be
found. For that purpose, the Controlling Servicekesa use of the Action
Discovery Service.

— Phase 7 emcompasses the actual execution of asn/gdrvice.

) Gul
I I
ECA Rule Application
specification components
@ Context Handling Infrastructure

CP Discovery | (@) [controlling ® Action
Service Service Dlscoyery
Service

& ;_..5:_?1, GD\A

Context Action
Provisioning Services

Services

Fig. 1. Typical usage flow of the Controlling Service

Although much study has been carried out in eaghetopics mentioned above, the
following research questions remain open: (i) howressive should the ECA rule
language be to accommodate user’s and developErisrements? (i) what are the
context abstractions needed to effectively commgaication behaviors? (iii) what
elements should be included in ECA rule speciftcadi to provide enough
information to perform infrastructure configurati(iv) how to dynamically discover
context provisioning services based on ECA rulecsjgations? and (v) how to

4 Patricia Dockhorn Costa, Luis Ferreira Pires, Martan van Sinderen, Tom Broens

invoke action services on behalf of application poments? This paper provides
answers for the three first questions in termsgiesolutions.

3. Context Modeling

A shared context model formally defines contextoinfation concepts and their
relationships, such that context information candisributed and unambiguously
interpreted by interacting system parts. Our apgraaquires a context model to (i)
provide application users and developers with gmpeite means to describe context
information and application behaviors; (ii) allowpmications, infrastructure and
third-party service providers to agree upon syntnd semantics of context
information, thus enabling interoperation; and) (iprovide context processing
components with proper means to perform contexirinftion reasoning. We have
used ontologies to model context information in imfirastructure.

3.1 Characteristics of context information

We use the context modeling abstractiondaofs and situations [4][5] to provide
application developers and users with more appatprmeans to define context
information. AFact defines a current “state of affairs” in the usersironment, such
as “Bob has access to PDA and PC” and “Bob and’Bi8 are co-located in room
A”. The situation context abstraction allows application developansl users to
leverage on thdact abstraction to derive high-level context inforroati such as
isOccupied , derived from the fact that Bob is engaged in antivity and
isReachable , derived from the fact that Bob is near to a devttat supports a given
communication channel. Situations may be built uptrer situations, for example,
isAvailable may be defined as Bob not beirgccupied and beingsReachable
Application behaviors are defined at runtime as HGI&s, using our context models.
Section 5 elaborates on ECA rules.

Since our service infrastructure supports a langmber of mobile context-aware
applications, a rich set of context informatioreigloited. However, it is not possible
to define a complete context model that is accepteall applications, since each
application may define context information in afeliént way. For example, the
context informatiomear could mearwithin 10 meters in one application and mean
within 5 kilometers in another. It may also be possible that certaimext information
types are domain-specific, rather than applicasipeeific. For exampleyeart-rate
and body-temperature are types of context information concepts shareargm
applications in the medical domain, but may be esgelconcepts in other domains.
We suggest in our approach a general context nthdetontains concepts shared by
applications we deal with. This model should beseded with application-specific
concepts (facts and situations) on demand, atsinfreture runtime.

Controlling Services in a Mobile Context-Aware Infrastructure 5

3.2 Context models

Fig. 2 depicts some parts of our general contextighoThis model is a context
ontology that captures general concepts and aliwsain-specific and application-
specific extensions. We have used OWL-DL [8] tarmkethis ontology.

sa

isa
sa isa

RelationalContext

IntrinsicContext

sa /‘sa }/v\isa

Temperature Light ‘

Person ‘ EnvironmentalContext

isa(hasAvailableDevices' \persons* ‘“hasSocialNetwork” isa

DeviceAvailability ’//\‘ SocialNetwork

isContextOf*

BateryPower

devices*
4
Device

Fig. 2. Selected concepts of the general context model

We distinguish three fundamental categories of@dnihformation, namely intrinsic
context (ntrinsicContext), relational context RelationalContext) and
environmental contexegvironmentalContext ~):

- Intrinsic context defines a type of context infotioa that belongs to the essential
nature of an entity and does not depend on théaeship with other entities. An
example of intrinsic context is thiecation of a PhysicalEntity , such as a
Person Or aBuilding

- Relational context defines a type of context infation that represents a relation
between distinct entities. An example of relatiooahtext isContainment , which
defines a containment relationship between entiseish as an entitguilding
contains a set of entityerson s. Another example of relational context is
Distance , Which represents the spatial distance betweerptwsical entities.

- Environmental context defines a type of contexbinfation that belongs to the
physical environment of an entity. Examples aggt , NoiseLevel , Pressure and
Temperature .

Relational context may be used to relate an etdithe collection of entities that play

a role in the entity’s context. Examples of relatibcontexts that can be used for this

purpose are DeviceAvailability , and SocialNetwork (Fig. 2). The

DeviceAvailability of a person captures the person’s current acdéesiglvices and

the SocialNetwork Of a person captures the collection of persoreacting with that

person by any communication channels.

The main benefit of this general categorizationcofitext is that it explicitly
separates the concepts of entity and context. &lagiognal context type allows us to
traverse from an entity to the entities that atateel by the relational context. This

6 Patricia Dockhorn Costa, Luis Ferreira Pires, Marten van Sinderen, Tom Broens

has enabled us to recursively define the relatipnglietween entity and context,
facilitating navigation in the model.

We have extended the general context model to stpgotele-monitoring
application [2]. In this application, patients’ alitsignals are processed to detect
abnormalities, such as the possibility of havingepileptic seizure, within seconds.
Several actions may be taken upon an epileptieralatuch as contacting volunteers
capable of providing first aid and streaming patgeio-signals to doctors at real
time.

We have specialized entity personaidPerson , Patient andHealthCarePerson
In addition, to accommodate the new types of istdrcontext information presented
by the tele-monitoring scenario, we have includeglyPressure , HeartRate |,
hasSeizure , isOccupied , isAvailable , isReachable , isAtHome andisAtwork . The
first two types of context informatiomnBddyPressure and HeartRate) are facts,
meaning that they are not derived information ban e sensed directly from the
environment. The situationasSeizure is derived from the persongartRate and
BodyPressure by means of a rather complex algorithm. The sibunatisOccupied
isReachable , andisAtHome are defined in OWL-DL (using our ontology) as ¢olis:

- isOccupied = [isContextOf (Person M (OhasContext Activity))

- isReachable = O isContextOf (Person m (O hasContext
(DeviceAvailability M ((OhasContext ChannelAvailability)))))

- isAtHome = 0O isContextOf (Person M (O hasContext (Containment mn(o

container Home))))

4. ECA Rules

The dynamic aspects of applications, i.e., appticdbehaviors, are defined following
the Event-Control-Action (ECA) pattern mentionec\gously. We have developed
an expressive language that enables the spedificafiECA rules. These rules carry
enough information to allow the Controller companenautonomously configure the
infrastructure (composition of context and actiow)th no need for further
intervention from the application developer. Thé&dsgor part of the ECA language
we are proposing is based on the situation-basgdeting approach presented in
[4][5]. We have extended and adapted this apprdackatisfy our infrastructure
requirements. The information part of the ECA laaqge is based on our context
models, which have been presented in the previectioss.

Context changes are described as changes in situatates. There are three
possible stategriie, false andunknown) and six state transitions. The unknown state
accommodates uncertainty of context informatiortigkcinvocations are enabled by
sequences of transitions and the validation ofgoraditions. The condition part of
ECA rules comprises two parts: an event part tefinds a relevant situation change,
and a pre-condition part that defines a logicalreggion that must hold following the
event and prior to the execution of the action.hBetvents and pre-conditions are
defined in terms of situations and facts. Each isil@ssociated with a lifetime, which

can beonce, from <start> to <end>, to <end>, <n> times andfrequency <n>
times per <period>.

Controlling Services in a Mobile Context-Aware Infrastructure 7

Events, pre-conditions and actions are prefixedhiegyclausespon, When and Do,
respectively. In our approach, we have includedclhesescope to parameterize an
ECA rule. A scope clause defines a collection dgities for which the rule should be
applied. We have also included the cladsect , which returns a collection of
entities respecting a given filtering expressio@onsider the following ECA rule
partially modeling the tele-monitoring scenario:

Scope (Sel ect (entity.patient.*, pat, i sl ncl uded
(pat.medConditions, epilepsy)))

Upon EnterTrue(pat.hasSeizure)
When pat.hasSeizure.Accuracy > 50%
Do critical
For each (Sel ect (entity.patient.aidPersons, aidP,
aidP.isAvailable » aidP.isNea r(pat)))
Contact (aidP)
al ways

}

This ECA rule defines a scope that includes allgpés suffering from epilepsy.
The functionisincluded is part of the standard library to manipulate ections. The
Upon clause defines a situation state transitiobge(True) in which the action
should be invoked. Thavhen clause defines a pre-condition for the action & b
invoked, which is the minimum accuracy required¥%@Cor the seizure alarm. The
Do clause defines that the patient’s designated aigdoms who are near and available
(not occupied and reachable) should be contacteédednpreferred channel. The term
critical indicates that the rule should be pre-fetched,ningathat no time should
be spent with action lookup requests.

The scope clause defines a dynamic group of eflggtients. Epileptic patients
may enter and leave the system, and the scopeectaamtains the actual list of
patients, creating and removing rules for eactepaithat enters and leave the system,
respectively.

Conditions are asserted based on information coedain the knowledge base,
which is kept up-to-date with context informatioreats originated from the network
of Context Sources.

Other examples of notification ECA rules are (isnaart home setting):

Notify all family members (except Bob) that Bob is arriving home.

Scope (Select (person.*, person, person.isAtHome & perso n.name <>
“Bob”); p))

Upon EnterTrue (Bob.isAtHome)
When True
Do Notify (p, “Bob is home”)
Al ways
}

Notify Bob when the average temperature of the house goes beyond 30°C.

Upon EnterTrue(house.temperature > 30)
When True

2 For the sake of readability, the select clauste&ribed in an OQL-like language, instead of OWL-Q

8 Patricia Dockhorn Costa, Luis Ferreira Pires, Marten van Sinderen, Tom Broens

Do Notify (Bob, “House temperature is beyond 30 °Cc"
Al ways

Without the use of the Controlling service, contewtare application developers
would have to write programming code to implemét behaviors described above
with no automated support for (i) subscribing tontext sources, (ii) receiving

context event notifications, (iii) performing cortereasoning, (iv) implementing a

monitoring function to check conditions and (v) iBypenting action invocations. Our
approach facilitates the development process buciad development efforts and
time. However, application developers using thet@dimg service are limited to the

expressiveness of our language when describingcatiph behaviors.

5. Infrastructure Architecture and Prototyping Activities

Fig. 3 depicts an example configuration of theasfructure services.

Appligation
end-uger(s)
application-
application specific
component context
source

context-handling

controller .
infrastructure

¥

reusable
action
component

aggregati

on diff history

nodes ? <
aggregati generic

— I on same \ context

node i source

reusable
context
source

Fig. 3. Example configuration of the context handling asfructure

Application components may either gather contexformation directly from the

network of context sources or use the service efféry the Controller component. In
the latter, applications provide the infrastructwi¢h an application-specific context
model and ECA rules, and the Controller makes aati®n services and notifications
are invoked and delivered appropriately through thesable action components.
Reusable context sources, application-specific eodnsources and generic context
sources are components developed by third-partgldpeers, application developers
and the infrastructure, respectively. These comptneaintain their own specific

Controlling Services in a Mobile Context-Aware Infrastructure 9

extensions of the infrastructure general contexdehoand therefore their own
knowledge bases. These particular knowledge basegsepresented by database
symbols in Fig. 3. The other context processingesodre dynamically created,
according to the layers of reasoning that are reduob execute an ECA Rule.

We have prototyped a previous version of this aechire using Web Services
technologies and the Java programming languages THmototype has been
experimented in various scenarios in the tourismaia [3][11]. It includes a limited
version of the Controller and a number of locatimsed Reusable Context Sources
(GPS sensors). The Controller interface is offeesd a web service end-point,
allowing the operations to be remotely called by tapplication components.
Application components have also been implemenged web service end-point to
allow callbacks from the Controller. We have definan XML Schema that
represents a limited version of the ECA rule lamgusuch that application ECA rules
can be written as XML documents and validated ulimg WSL XML Schema. Our
ECA rule parser reads application rules in XML fatnand maps them into Java
classes, which are automatically compiled and execat runtime. We have used an
object-based context model and context reasonibgged on hard-coded algorithms.
For service discovery, we have used the indusémydstrd UDDI.

Our current prototyping activities include develupia Controller component
using the Jess Rule Engine [9]. We are workinghhenrhapping between the ECA
language constructs and Jess constructs. In gemesiinple ECA rule needs to be
mapped to a set of fact assertions and rule defirsitin Jess. The mapping of the
Scope clause onto Jess rules is particularly comgiace the scope clause requires
runtime rule definitions and deletions for eachitgréntering and leaving the scope,
respectively.

Furthermore, we are also working on the runtimeatio@ and distribution of
context processing nodes. A newly defined ECA rakey require context reasoning
activities that do not exist at the time the ruées lbeen included. When this occurs,
the Controller needs to create context processmagsthat are capable of performing
the pieces of context reasoning that are requiredrder to create such node, the
Controller provides (i) the reasoning algorithmelts(derived from the context
model); (ii) the type of context input(s) and whéhés information can be gathered
from, and (iii) the type of the expected outputs.

Context processing nodes only exist when they aegled (limited lifetime). There
are two types of context processing nodes, nanmaystateless and stateful context
processing nodes. Stateless context processings nmeléorm a piece of reasoning
that does not require persistence of context inftion, while stateful context
processing nodes typically maintain history infotima. Once context processing
nodes are running properly, the Controller compongrregularly fed with (high-
level) context information provided by both preidefli context sources and
dynamically defined context processing nodes.

10 Patricia Dockhorn Costa, Luis Ferreira Pires, Martan van Sinderen, Tom Broens

6. Related Work

Various approaches to address ECA services foregtbatvare systems have been
proposed. The ECA rule matching service [6] propase extension to the standard
CORBA Notification services with a composite Evbtdatching Engine, using CLIPS
to implement event correlation and the aggregapimtess. This approach does not
address context information representation, theedbeing limited to a predefined set
of context types. In addition, there is no supportcontext information management
activities, such as gathering, processing andiloigton.

The work presented in [12] discusses a structurathdwork to design and
implement context-processing modules. This work susatologies for context
information specification and composition. Howewas,opposed to our approach, no
context categorization is provided. Application dieypers using this framework need
to (i) provide a description of context in RDF/XMiormat and (ii) find and/or
implement context processing components. Our agprdédfers from this work since
we take a top-down strategy to perform configuratib context processing modules,
which is based on ECA rule descriptions. Applicatdevelopers provide ECA rules
and context models as input, and the Controllinyise takes care of dynamically
finding and/or implementing context processing comgnts that are required.

The framework presented in [1] proposes a ruledbasmtient object model to
facilitate context-aware development in an ad-hagvirenment. The main
functionality is offered in a tool that facilitatélse development process by offering
graphical means to specify context aggregationicesvand rules. Although this
approach introduces useful ideas on how to easihfigure rules and aggregation
services on a sentient object, it is based upomples model of context that is both
informal and lacks expressive power.

The Context Management framework presented in §fihds a framework and a
tool for facilitating end-user customization of text-aware features. This work
concentrates on a tool that allows users to combargext and actions in order to
define ECA rules. The context and action optionsvigled by the tool reflect the
concepts defined in a context ontology. Differerfitym our approach, there is no use
of discovery mechanism to find and match contextrees and action providers.
Furthermore, there is no strong support for appticarules (as opposed to end-user
rules) and parameterization of rules. The mechamigsented in this paper focuses
on application rules that may be applied to a ctibe of users. Therefore, as shown
in this paper, the use of parameterization throtlghscope clause is important.
However, although we present an alternative meshario gather context, process
rules and invoke actions, our approach would befrefin a user friendly tool such as
the one presented in [7].

7. Conclusions

We have discussed in this paper our current efftogards a flexible context
handling infrastructure. A central element of tlidrastructure is the Controller
component, which takes application-specific rulesl @ontext models as input in

Controlling Services in a Mobile Context-Aware Infrastructure 11

order to carry out runtime application-specific pidgion within the infrastructure.
We have discussed (i) important aspects on commdeling, (i) a mechanism to
define ECA rules, and (iii) a general overview bt tinfrastructure services. As
opposed to various related works [4][10][12], owogmosal is based on a top-down
approach towards automatic configuration of ECAesulBased on ECA rules and
models of context, the Controller is capable ofoanmously configuring the
infrastructure accordingly. This approach faciéatthe development process, since
application developers do not need to write prognimg code to (i) activate rules;
(ii) find and compose context sources; (iii) impksmh context reasoning activities;
and (iv) invoke actions.

We have discussed a generic context model thabeaspecialized with domain
and application specific concepts. This createsdiaion-specific virtual knowledge
bases, permitting specific requirements to be ad@ck in a general Controller
architecture. In addition, our context categormatiallows us to define context
information recursively, which conforms to the rexve nature of context
information. For example, it is possible to defihat a device is part of a person’s
context, and that communication channels are pathe device’s context, and so
forth. Our context model allows us to traverse framentity to the entities that are
related to this entity by the relational contexhisl has enabled us to recursively
define the relationship between entity and contéatilitating navigation in the
model.

We have defined an ECA language to specify rulas dhe used by the Controller
to create and compose context processing nodes.|ldiiguage allows us to specify
ECA rules that consider a scope in which thesesrsitmuld be applied, as opposed to
cumbersomely defining an individual rule for eaciitg instance.

By using the Event-Control-Action pattern we haweralpled context concerns
from action concerns, under the control of appilcaspecific rules, enabling
effective distribution of responsibilities among rieais parties within the
infrastructure. This approach has greatly improgetnsibility and flexibility of the
infrastructure’s generic functionality, since rylastions and context information can
be added on demand, at infrastructure runtime.

As part of our ongoing research, we are develomdditional context-aware
applications with the support of the infrastructsir€ontrolling service. We are also
investigating effective approaches to distributent@aler components, while tackling
synchronization of rules and potentially confligtilssues.

References

[1] Biegel, G., and Cahill, V.: A Framework for Devping Mobile, Context-Aware
Applications. In: Proc. of the 2nd IEEE ConferencePervasive Computing and
CommunicationgPercom2004). USA (2004) 361-365.

[2] Dockhorn Costa, P., Ferreira Pires, L., van Sinudw: Architectural Patterns for
Context-Aware Services Platforms. In: Proc. of $#&eond International Workshop on
Ubiquitous Computing (IWUC 2005 at ICEIS 2005). UE805) 3-19.

12

(6]

[7]

(8]
[9]

Patricia Dockhorn Costa, Luis Ferreira Pires, Martan van Sinderen, Tom Broens

Dockhorn Costa, P., Ferreira Pires, L., van Singdevk: Designing a Configurable
Services Platform for Mobile Context-Aware Applicats. In: International Journal of
Pervasive Computing and Communications (JPCC), ZD@ubador Publishing.
Henricksen, K., and Indulska, I.: A Software Engirieg Framework for Context-Aware
Pervasive Computing. In: Proc. of the 2nd IEEE @ogrice on Pervasive Computing and
Communications (Percom2004). USA (2004) 77-86.

Henricksen, K.: A Framework for Context-Aware Paiva Computing Applications.
PhD thesis, School of Information Technology anelcEical Engineering, The University
of Queensland (2003).

Ipina, D., and Katsiri, E.: An ECA Rule-Matchingr8iee for Simpler Development of
Reactive Applications. In: Proc. of Middleware 2CXIEEE Distributed Systems Online,
Vol. 2, No. 7, November 2001.

Korpipda, P., Malm, E., Salminen |., Rantakokko,Jontext Management for End User
Development of Context-Aware Applications. In: Protthe 6th International
Conference on Mobile Data Management. Cyprus (2608)308.

McGuinness, D., and van Harmelen, F.: OWL Web QmplLanguage — OvervieW3C
Recommendation (2004). Available at http://www.wg/@R/owl-features/.

Jess — the Rule Engine for the Java Platform. Algl at herzberg.ca.sandia.gov/jess/

[10] Przybilski, M.: Distributed Context Reasoning fapBctive Systems. In: Floreen, P., et al.

(eds.): Proc. of the Workshop on Context Awareri@sBroactive Systems (CAPS 2005).
Finland (2005) 43-54.

[11] Pokraev, S., Koolwaaij, J., van Setten, M., BroEndockhorn Costa, P., Wibbels, M.,

Ebben, P., Strating, P.: Service Platform for Rdpételopment and Deployment of
Context-Aware, Mobile Applications. In: Proc. oténnational Conference on
Webservices (ICWS'05). USA (2005).

[12] Sbodio, M. and Thronicke, W.: Specification and iDef Framework-Based Context

Processing Modules. In: Floreen, P., et al. (e@sgc. of the Workshop on Context
Awareness for Proactive Systems (CAPS 2005). Fih(@A05) 79-92.

