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Abstract:

Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a
rather restrictive use of the available resources. This makes current HRT scheduling techniques
inadequate for use in a multimedia environment where we can make a considerable profit by a
better and more flexible use of the resources. We will show that we can improve the flexibility
and efficiency of multimedia kernels. Therefore we introduce Real Time Transactions (RTT)
with Deadline Inheritance policies for a small class of scheduling algorithms and we will evalu-
ate these algorithms for use in a multimedia environment

1 INTRODUCTION
Recent developments in the field of multimedia and communication architec-
tures, open an exciting range of new applications. This is particularly true when
combining them with new powerful systems that deal with vision, sound and
control. In the field of multimedia we have the possibility of manipulating sound
and vision, robotics deals with control, while recent developments on computer
and communication architectures open the possibility to distribute these func-
tions. This opens a range of new architectures among which we find TV com-
puters, Set Top Boxes and network computers. Typical applications for these
architectures are shopping, games, (tele-) education, travel services, dating,
(video-) conferencing, etc. Moreover, multimedia can and will also be used in
other than these typical applications. For instance, in the process control envi-
ronment we see the deployment of the combination of remote viewing, remote
hearing and remote control, mainly composed of “off the shelf” components.
Furthermore the deployment of Asynchronous Transfer Mode (ATM) networks
allows for real-time transmission of data.

A multimedia application tries to establish a contract between several parties,
such as a producer, a network and a consumer for the delivery of multimedia
services. These services, such as recording, transport, processing, displaying or
broadcasting of sound or video, are agreed to be delivered with a certain Quality
of Service (QoS). QoS is measured with different parameters for each service.
For video recording and displaying these are for instance frame rates, window
surface, resolution and number of colours. For sound the sample frequency, the
jitter and the number of bits have to be considered.

Processing power is supplied under the responsibility of a scheduler. The QoS
parameters here are the period, run length, deadline, release time and resource



usage. A difficult issue in QoS is that it is not always clear how to relate QoS
parameters of the different services to each other. A possibility that we would
like to support is to vary the requested QoS in order to adapt to the latest re-
quirements of an end-user who would like to add, delete or change a multimedia
application. In these cases a QoS manager has to arrange the new or changed
setup by acting as a dealer for services.

Among others, the task of a QoS manager is to derive a QoS specification for
the scheduler. These specifications include process period, arrival time, release
time, computation time and deadline, thereby taking into account the use of re-
sources. With this information the scheduler could start a schedulability analy-
sis. It might be that the QoS manager is satisfied with an average QoS schedula-
bility analysis of the scheduler. However, under circumstances a hard guarantee
may be needed. In both cases a positive scheduling analysis from the scheduler
to the QoS manager implies that a contract can be concluded. This paper pres-
ents scheduling algorithms that allow for QoS analysis. The analyses itself is not
presented here. It is however ready for publication but not published yet.

Multimedia applications require some degree of timeliness ranging from Soft
Real-Time (SRT) for most multimedia applications to Hard Real-Time (HRT) in
embedded systems. For these environments we will consider scheduling tech-
niques delivered by (RT) kernels that offer RT precision when needed and flexi-
bility when possible.

There are already numerous RT kernels on the market. They can be found in a
general-purpose “time sharing” environment or in a dedicated “real-time” envi-
ronment. General-purpose operating systems (GPOSs) sometimes have some
kind of RT provisions such as (fixed) priorities associated with tasks. For em-
bedded systems these kernels offer superfluous non-RT provisions such as pag-
ing and windowing systems. On the other hand they mostly lack provisions such
as priority inheritance which is needed to avoid phenomena like priority inver-
sion, late reactions and unnecessary reservation of resources. Examples of such
systems are OS/2, Solaris and NT.

It is also possible to adapt GPOSs to RT needs by incorporating full preemption
of the kernel -- needed to serve RT request timely -- and by introducing suitable
process scheduling techniques. Typical examples are RT Mach (Nakajima,
1993) and also Real/IX (Furth, 1991). RT-Linux (Yodaiken, 95) uses a virtual
machine technique which runs both Linux as well as RT-Linux on a hardware
adaption layer on the same computer.

Dedicated RT kernels have provisions to serve HRT tasks such as reservation of
shared resources and schedulability analysis. These can be done off-line or at
run-time or a combination of both. Off-line handling offers speed but is inflexi-
ble. Handling at run-time might be time consuming in the real-time domain.
Also scheduling of RT tasks can be needlessly complex. This paper investigates



simple, flexible, fair and responsive scheduling strategies with low administra-
tion overhead in such a way that a straightforward analysis of RT behaviour is
attainable. We have good reasons to claim that these strategies can be used for
targets ranging from dedicated RT kernels to GPOSs with RT properties. We
have working prototypes of (1) dedicated HRT kernels for embedded systems,
(2) kernels for multimedia, and (3) we have a proposal for embedding these
techniques in a RT GPOS. In particular our techniques allow for dynamic ad-
mission of new tasks and for QoS variation of running tasks.

RT algorithms are also meaningful classified as static or dynamic:

• A static algorithm uses a priori information of tasks about periods, arrival
times and resource usage. Scheduling decisions are typically made off-line
or in background and are put in a time-ordered event list.

• A dynamic algorithm uses little or no a priori information about the arrival
of tasks. Scheduling decisions are made on-line at distinguished events such
as arrival or completion of tasks, or while claiming or releasing resources.

Static algorithms can be tuned optimally for static tasks. They are however not
flexible. Dynamic algorithms offer more flexibility. In the context of this paper
we refer to dynamic scheduling algorithms. They are all based on variations of
the Earliest Deadline First (EDF) rule (Liu, 1973). First we give an overview of
the existing techniques in the dynamic kernels in section 2. Our task model is
described in section 3. Interesting scheduling protocols are presented and evalu-
ated in section 4. Finally an overview of our implementations and tests is given
in section 5 as well as a proposal for a GPOS kernel.

2 EXISTING PREEMPTIVE SCHEDULING METHODS
In preemptive scheduling algorithms tasks are scheduled according to a priority.
A task may preempt another task if it has a higher priority. The priorities of the
following well-known scheduling methods are determined as follows:

• Earliest Deadline First (EDF). Priority increases dynamically when the
deadline comes closer.

• Rate Monotonic (RM). Priority is static and is inversely proportional to the
period time: short periods are mapped on high priorities. The deadline is
equal to the end of the period.

• Deadline Monotonic (DM). Priority is static and is inversely proportional to
the deadline interval. The deadline is before the end of the period.

Note that RM is a special case of DM. Note also that EDF task do not necessar-
ily need to have a fixed repetition period. However, when it comes to “QoS
schedulability analysis” we need to take periodic repetition into account in order
to compute the task's work load.



Without any precautions scheduling methods may lead to the phenomenon of
blocking, priority inversion or transitive waiting. Blocking may happen when
shared resources are used. In this context we mean by shared resources those
resources for which a task has to obtain mutual exclusive (mutex) use. A waiting
task cannot preempt a running one to use a mutex resource if the latter is using
this resource. Note that in this context the processor itself is a shared but not a
mutex resource, since it is made preemptable at any time. If we mention re-
sources in the sequel of this paper we mean mutex resources except stated oth-
erwise explicitly. Blocking happens when a high priority task must wait for the
release of a resource by a low priority task. Priority inversion is a special form
of blocking. It occurs when a high priority task is blocked, waiting for a resource
that is held by a low priority task that is preempted by a medium priority task.
Transitive waiting occurs in a chain of tasks, which are all waiting for the re-
lease of resources of their predecessors. This may cause large (indirect) blocking
values.

The priority of a task can be static or dynamic. A static priority does not vary in
time while a dynamic priority does. Note that in EDF a deadline can be ex-
pressed as a static or a dynamic priority. A deadline interval -- from release to
deadline -- is associated with a static priority while an absolute deadline will be
associated with a dynamic priority. A scheduler orders tasks to priority and a
dispatcher assigns these tasks to the processor(s) in the resulting order. In dy-
namic RT systems the dispatcher and scheduler are mostly combined to one en-
tity and referred to as “the scheduler”. This scheduler executes protocols such as

• basic protocols, like the Fixed Priority (FP) protocol and the Basic Inheri-
tance (BI) protocol,

• ceiling protocols, like the original Priority Ceiling Protocol (Sha, 1990) and
the Stack Resource protocol (Baker, 1991),

• transaction protocols, in several variants of the Real-Time Transaction
(RTT) protocol (Jansen, 1996).

All but the FP-protocol provides methods to bound the duration of blocking. BI
realises this by inheriting either static or dynamic priority. A low priority task τl,
owning shared resources that are also requested by high priority tasks τh, inherits
the high priority from τk. BI bounds blocking, however it cannot avoid transitive
waiting. The ceiling protocols -- PC and SR -- limit blocking. Both use static
priorities. They avoid both priority inversion and transitive waiting. The basic
idea is to make way for a high priority task -- say τk -- by not allowing preemp-
tion of a low priority task -- say τl -- by any medium priority task -- say τm -- if τl

uses resources also claimed by τk. This strategy limits blocking to one single
task only -- or more precise -- to one critical section only. This implies that tran-
sitive waiting is not possible and consequently deadlock is impossible. The
Real-Time Transaction protocols (RTTs) also avoid priority inversion and tran-
sitive waiting. They are based on EDF, either with absolute or relative deadlines.



When a transaction starts, it simultaneously acquires all resources it needs to
complete the transaction. During the transaction, resources can only be released.
A transaction completes when it has released all resources. Priority inheritance
is applied dynamically when a high priority transaction must wait for resources
in use by a low priority transaction. This avoids preemption of low priority
transactions and advances the release of resources. We will now introduce a task
model suited for flexible scheduling of transactions. Based on this model we
will introduce our scheduling protocols and analyse their pros and cons in sec-
tion 4.4.

3 TASKS AND TRANSACTIONS
We now introduce our task model. Tasks are based on transactions, which make
the use of critical sections for mutual exclusive resources superfluous. This
makes our task model quite straightforward and has positive consequences for
administration overhead and for schedulability analysis. We will consider them
in the relevant sections.

A non-periodic task can be considered as a sequence of “free-running” or “re-
source-using'” transactions. A “free-running transaction” is not subject to mutex
scheduling constraints since it does not use shared resources. An invocation of a
`”resource using” transaction, can only be run if it can acquire all its resources
simultaneously. This condition guarantees that a transaction always runs to
completion. Unbounded priority inversion, transitive waiting and deadlock are
impossible. A transaction may release its shared resources at any time. However,
for the sake of simplicity, we assume that a transaction releases its resources
when it runs to completion. Dealing with early release times is possible, how-
ever, a little more complicated and beyond the scope of this paper.

When we refer to periodic tasks we model them as a single periodic transaction.
Whether transactions are periodic is not relevant for the proposed scheduling
algorithm, but, for QoS schedulability analysis, it is relevant.

A transaction may be in one of the following states: sleeping, ready. The ready
state is split up in released, running or preempted. A transaction is put into the
administration after it is admitted to the system. It is then put in the sleeping
state where it waits for its release time, after which and it enters the ready queue.

In the ready state a transaction can be released when it is waiting for the proces-
sor, running when it has the processor or preempted when it had to leave the
processor to a transaction with a higher priority. When a transaction is done, it is
put into the sleeping state waiting for the following release event. When a trans-
action is completely finished it is withdrawn from the administration.

A transaction τi is a member of the set of all transactions τ  = { τ1, … , τn }



Definition Transaction: Transaction τi is defined as the tuple of static parame-
ters (Di,Ti,Ci,Ri)

where Di is the deadline interval, Ti is the time interval between two successive
invocations -- the period -- , Ci is the maximum run-time interval Ti takes to
complete and Ri is the set of resources which are used by τi. The first invocation
of Ti is denoted by Ti

0. Invocation j of  Ti is denoted by Ti
j

Definition Invocation: Invocation τi
j is associated with static parameters  (τi

j,di
j)

of the jth invocation of τi

where ri
j is the absolute release time from which an invocation j may run and di

j

the absolute deadline at which an invocation j has to be completed. Note that Di

= di
j - ri

j for all j.

A transaction τi is also associated with a static priority Pi. An invocation τi
j is

associated with a dynamic priority d(τi
j). A priority determines the processor

rights. If there is a competition for the processor, the transaction or the invoca-
tion with the highest priority wins. In the protocols as described in section 4
both types of priority will be used. In general, for EDF-oriented scheduling
protocols, the following relations between deadline and priority hold:

D(τa) > D(τb) ⇔  P(τa) < P(τb)
d(τa

j) > d(τb
k) ⇔ p(τa

j) < p(τb
k) (1)

4 THE PROPOSED INHERITANCE PROTOCOLS
This section discusses two protocols for scheduling of tasks that are variants of
the Priority Ceiling protocol (PC) and the Stack Resource (SR) protocol. Both
protocols are based on real-time transactions and run under an inherited pre-
emption level. The preemption level determines which transactions may preempt
a running one. Preemption levels can be based on absolute deadlines or on
deadline intervals. PC as well as SR has a preemption level that is statically de-
rived from deadline intervals; SR has a dynamic refinement.

4.1 CEILING PROTOCOLS
Ceilings are used in the Priority Ceiling protocol (Sha, 1990) and in the Stack
Resource protocol (Baker, 1991). We will now introduce variants of these pro-
tocols and evaluate their advantages and disadvantages. For clarity we have cho-
sen not to introduce these protocols in their full glory but only in their essentials.
Consequently we use transactions instead of nested critical sections and single-
unit resources instead of multiple-unit resources. First we will introduce the no-
tion of ceiling and preemption level. Then we introduce a simple variant of the
Priority Ceiling (PC) protocol and successively we will extend this protocol to
an interesting variant of it, the Stack Resource (SR) protocol. PC and SR were



originally defined in terms of priority. In order to prevent confusion with the al-
ready introduced notions, we prefer to present them with deadlines instead of
priority. This can hardly lead to confusion with the relations as given in (1) in
mind.

4.2 PRIORITY CEILING PROTOCOL
In the Priority Ceiling protocol inheritance of deadlines is effectuated over the
use of shared resources and the smallest deadline -- the highest priority , tradi-
tionally the ceiling -- of any transaction that uses this resource is of interest. The
ceiling DR of a resource R is defined as the smallest deadline of any transaction
that uses this resource:

DR  = min{Dx, R ∈  Rx} (2)

The inherited preemption deadline ∆a of a transaction τa defined as follows:

∆a = min{Da, DR | R ∈  Ra} (3)

∆a is a static property of τa and can be computed off-line. The smallest preemp-
tion deadline of all running or preempted transactions is the running one and de-
noted as δ.

Definition PC: PC is defined by the following rules:

1. Released but not yet running or preempted invocations are ordered to
their static deadlines Di.

2. The invocation τa
k with the shortest deadline -- say Da - is selected for

processor competition.
3. τa

k will preempt the running invocation iff  Da < δ.

Note that this protocol is very easy to implement. All static information can be
computed off-line or in background. Our PC variant, based on transactions, is
stricter than the original PC. Note that our variant shows a last-in first-out be-
haviour of running transactions. The running invocation is the last one which is
introduced and if it is not preempted it will be the first one to complete. This
opens the possibility for using a single shared stack for all transactions. In the
case that many small transactions are running, this would considerably limit the
amount of memory needed. We now introduce a refined variant of the PC proto-
col, the SR protocol.

4.3 STACK RESOURCE PROTOCOL
SR is a refinement of PC. Under SR an invocation τa does not have only a static
deadline Da but also a dynamic one da

j. Its preemption level is determined by a
pair (∆a , da

j) where ∆a is defined as in (3) under PC.

Definition SR: SR is defined by the following rules:



1. Released but not yet running or preempted invocations are ordered to
their dynamic deadlines di

j.
2. The invocation τa

k , with the shortest dynamic deadline -- say da
k -- is

selected for processor competition.
3. τa

k will preempt the running invocation τr
l iff (Da < ∆r) ∧ (da

k < dr
l )

Due to the last-in first-out character of SR we may conclude that the running
invocation is on top of a stack of preempted invocations. The maximum priori-
ties P and p are associated with the running invocation. SR was earlier published
in (Baker, 91). It used several refinements such as multiple unit resources and
nested critical sections. For more details we refer to the original article.

4.4 EVALUATION OF PC AND SR
Both protocols do not need explicit use of synchronisation primitives such as
semaphores. Due to inheritance and order -- EDF in our case -- synchronisation
is implicitly accomplished. This obliterates the explicit request for mutual exclu-
sion; o additional synchronisation primitives are needed. This makes these algo-
rithms straightforward, easy to reason about, and easy to implement.

In our further evaluation we will consider several aspects of the protocols such
as:

• Efficiency: what is the complexity of the protocol; is it easy to imple-
ment and does it run efficiently; can it run on a single shared stack?

• Flexibility: does the protocol adapt to changes in its immediate environ-
ment, can it be extended with multiple unit resources and can transac-
tions be refined to nested use of resources?

• Blocking: Blocking occurs if a high priority invocation must wait for the
release of resources by one or more low priority invocations. Blocking is
an important issue in QoS schedulability analysis, since it has as a con-
sequence that some blocking load has to be executed also before the
blocked invocation may start.

Both protocols are easy to implement and run efficiently. They can have re-
source usage of transactions replaced by nested resource usage. The use of re-
sources is nested if an earlier acquired resource is released later then the release
of any later acquired resource. This has as an advantage that blocking can de-
crease. This is because the preemption level is increased at the actual acquisition
of a resource instead of the start of a transaction and decreased when the re-
source is released. The disadvantage is some more administration overhead.
However the main characteristics of PC and SR do not really change.

PC is very straightforward. Our variant can run on a stack. It has a small over-
head. Ceilings and preemption levels can be computed off line or in background.
Blocking is limited to only one invocation. PC is a good and powerful candidate



for use in any RT environment. It has the small disadvantage that all used
scheduling information is static. This might make its dynamic behaviour some-
what inflexible.

SR brings dynamic behaviour into play again by adding dynamic priority to
static priority when scheduling decisions have to be made. SR inherits all the
good static properties from PC: small overhead, possibility of off-line computa-
tion of ceilings, a maximum of one blocking invocation and the possibility of a
shared stack. It offers some freedom in the choice of the dynamic part: earliest
deadline first (EDF), rate monotonic (RM) or deadline monotonic (DM) may be
chosen on top of the static part. Choosing RM would lead to a resource-using
variant of the original RM: with the possibility of using a stack and with limited
blocking. Choosing DM does to our opinion not make much sense. Our favour-
ite is EDF: the dynamic priority is derived from absolute deadlines. When, in the
following, SR is mentioned without further specification, we mean SR/EDF. If
we compare SR/EDF to PC, we see that SR/EDF gives a higher priority to trans-
actions that are waiting for execution for already some time and for which the
deadline comes closer.

5 IMPLEMENTATION AND TESTS
A framework for scheduling experiments with PC and SR/EDF has been added
to Inferno and is described in (Bos, 97). Test results are not yet available. A con-
siderable amount of work has been done for the determination of the QoS feasi-
bility analysis for PC (Jeffay, 1991) and for SRP/EDF (Ripoll, 1996). We could
improve the results of the latter by presenting an algorithm with a refined esti-
mation of the blocking component. The details are beyond the scope of this
overview, but are ready for publication elsewhere.

6 CONCLUSIONS
We have evaluated two dynamic, real-time scheduling policies adapted to mul-
timedia requirements but also suited to hard real-time. These policies are based
on the principle of (1) Earliest Deadline First, (2) on Real-Time Transactions
and (3) on selected inheritance strategies. We experimented with variants of the
Ceiling Protocol and the Stack Resource protocol. Our experiments show that
all policies are flexible and fair and allow for an efficient multimedia kernel-
level scheduling. Although not presented in detail, in this paper, we like to em-
phasise that the Ceiling Protocol and the Stack Resource protocol allow for pre-
cise Quality of Service analysis. Consequently these two are not only suited to
“multimedia quality of service management” but also to ``task feasibility deter-
mination” of hard real-time systems.

The scheduling overhead of our run-time policy is low. This is due to the or-
thogonality of the ingredients, which enable a systematic implementation.



Among others, mutual exclusion is guaranteed by the aforementioned ingredi-
ents (1) to (3). No additional synchronisation primitives are needed. Experi-
ments have shown a scheduling overhead can be less than 1 percent. This is
really a low price for the offered services. The dynamic behaviour of the Stack
Resource protocol, combined with its possibility for precise “quality of service
analysis”, makes the presented SR variant our favourite for further use and
analysis in real-time and multimedia systems.
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