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ABSTRACT

DCOS is a Data Centric lightweight Operating System for
embedded devices. Despite limited energy and hardware
resources, it supports a data driven architecture with pro-
visions for dynamic loadable Modules. It combines these
with Real-Time provisions based on Earliest Deadline First
with a simple but smart resource handling mechanism. We
will give an overview of the capabilities of DCOS and we
will describe the basics of the main mechanisms
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1 Introduction

Nowadays embedded micro-controllers are becoming
smaller and more energy efficient. That enables the design
of tiny, energy efficient embedded devices that shrink in
size but grow in functionality. This increase in complexity
leads to a different approach for software design. Program-
ming firmware as, for example, a classic super-loop im-
plementation becomes too difficult to design and maintain,
and is inefficient concerning processing power and energy
consumption.

To simplify software development for these new de-
vices, small operating systems are developed, targeting
these tiny micro controllers. This paper introduces such
an operating system: the Data Centric Operating System
(DCOS).

1.1 DCOS Overview

DCOS is aReal-Time Operating System (RTOS) for
embedded devices with very limited memory, processing,
and energy resources. Despite these limitations, DCOS has
powerful features like, real-time scheduling, online meco
figuration, and support for a modular data driven architec-
ture.

Where other operating systems for tiny embedded ap-
plications offer configuration only during compile time,

1This research is partly sponsored by the EU project Eyes 2[811-
34734 and by the IBM Equinox Programme.

DCOS is a dynamic system, able to adapt its functionality
to create the most efficient configuration for every situatio

Furthermore, with the module support in DCOS, ap-
plications can be defined as modules, compiled off-line
and dynamically inserted, or removed, in binary format.
Firmware can now be upgraded by replacing only certain
parts, instead of the complete binary. This simplifies the
upgrade process, and it limits the use of precious energy.

In what way differs DCOS from other systems? To
answer that question we describe the unique aspects of
DCOS as we have not seen in comparable systems in the
remainder of this section.

Real-Time EDF scheduling

DCOS uses real-time preemptive EDF scheduling
[12] on hardware considered of having too limited re-
sources to do so. In order to simplify scheduling, other
systems use methods as (1) cooperative scheduling [10],
where the real-time behaviour is mostly the responsibil-
ity of the programmer, or (2) event driven operations like
TinyOS [6], where system behaviour is unpredictable and
real-time guarantees can not be given. By using these meth-
ods, the other systems rule out the advantages of preemp-
tive scheduling, like a better responsiveness and prawssio
for Quality of Service of streaming media. The organisa-
tion of real-time processing is given in detail in section 4.

Automatic mutual exclusion

The kernel enforces mutual exclusion of shared re-
sources without the need of semaphores or monitors. By
adding to a task a list of used resources, the scheduler uses a
smart but simple mechanism to determine if there are tasks
that share resources and schedules these tasks so that con-
current access to these resources is excluded. This simpli-
fies application development in contrast to other systems
where the application programmer must perform the error
prone task of providing these mechanisms himself. The or-
ganisation of the automatic mutual exclusion is explained
in section 4.



Data centric architecture

DCOS supports the data centric architecture [5][11].
With the data centric architecture the components of an em-
bedded applications can be enabled or disabled, or mutu-
ally rearranged. Connections between the different compo-
nents are data streams that are centrally coordinated. This
enables reconfiguration of functionality online, instead a
compilation time only. The support for the data centric ar-
chitecture provides functionality fonter Process Commu-
nication (IPC) and hence no separate mechanism is needed.

1.2 Platform

A prototype of DCOS is implemented on a Texas In-
struments MSP430 micro-controller, running at 4.6MHz,
with 2048 bytes ofRandom Access Memory (RAM), and
60KB of program flash memory. The kernel size is 3800
bytes, and the kernel itself needs 32 bytes of RAM.

2 Related work

Recent years have shown a growing interest in devel-
oping systems and applications for very-low-cost embed-
ded systems with severely limited ROM and RAM. A typ-
ical example of a development environment for sensor net-
works is TinyOS. TinyOS is an open-source component-
based architecture designed for wireless embedded sen-
sor networks. Even though it does not comply to a strict
definition of operating system, its component library in-
cludes various network protocols, distributed services; s
sor drivers, and data acquisition.

Salvo is a Real-Time Operating System (RTOS) de-
signed expressly for very-low-cost embedded systems with
severely limited ROM and RAM. Typical applications use
1-2K ROM and 50-100 bytes of RAM. Salvo is highly con-
figurable and scalable, with a full set of run-time features
including priority-based, cooperative multitasking, eve
services, real-time delays and elapsed-time services.

The real time scheduling techniques presented in this
paper are based on the combination of EDF and inheri-
tance techniques as presented in [7] for use of shared re-
sources during the complete run-time in tasks and in [8]
in which the use of shared resources is organised within
nested NCSs. The integration of EDF and inheritance are
integrated in a novel way to constitute an attractive set of
scheduling and dispatching techniques with a straightfor-
ward computation of blocking techniques. We will use
these techniques in the context of this paper.

The foundation for these techniques are based on
EDF [12] with the use of shared resources [9] and the in-
heritance techniques are based on the work of Baker [1]
and Sha [15].

The scheduling algorithm is similar to Baker’s Stack
Resource (SR) protocol [1]. As in SR we use Critical Sec-
tions, originally introduced by Dijkstra [4] and profitably

used by Sha in [15] to confine the problematic unrestricted
use of shared resources. However, SR is a multi-unit proto-
col with which the computation of blocking is an (NP-)hard
problem. EDFI can be considered as a simplified version
of SR with single unit resources for which a straightfor-
ward feasibility analysis can be shown. For this limited
model we can use a priority inheritance technique, which
is similar to the Priority Ceiling (PC) protocol of Sha et
al. [14]. However, PC uses fixed priorities for inheritance
while EDFI uses Deadline Inheritance (D). DI allows for a
considerable simplification of blocking computation dgrin
feasibility analysis.

EDF based systems with shared resources have been
investigated earlier by Jeffay [9]. However, Jeffay does no
base the use of shared resources on NCSs. Instead he par-
titions a task intgphases in which it is allowed to usene
resource only. Scheduling is executed according to EDF
with Dynamic Deadline Modification (DDM). DDM is a
technique based on the dynamic introductioreadcution
deadlines, which prevents the preemption of a running task
by another — shorter deadline — task if both tasks share mu-
tually exclusive resources. These execution deadlines are
determined dynamically, at the cost of the real-time bud-
get.

The difference between DDM and our approach is
that DDM uses phases wittlynamic deadline modifica-
tion, while EDFI uses NCSs witktatic deadline inheri-
tance. We estimate that the real-time computation cost of
DDM is considerably higher than our approach which re-
quires very few work to be done at real-time budget costs.

The principle behind scheduling a task set with shared
resources is that a released taslstays on the Released
Queue as long as it needs resources that are already in use
by one of the tasks in the Run Stack, even ifias a shorter
deadline. Therefore, once a taskis on the Run Stack, it
will never claim a resource already held by another, pre-
empted, task. Such a taskwould simply not have been
scheduled. We enforce this behaviourdeadline inheri-
tance, which is similar to Priority Inheritance, introduced
by Sha [14].

3 The DCOS Kernel

This section gives a short overview of the functional-
ity available in the DCOS kernel.

3.1 Real-Time Scheduler

DCOS has an RT-Transactions EDFI scheduler [7, 8]
based orkarliest Deadline First and deadlinénheritance.
EDFI is a lightweight preemptive hard real-time schedul-
ing algorithm. Mutual exclusion of shared is resources,
based on deadline Inheritance techniques, is enforced by
the scheduler itself. Through analysis of a given task-set
a hard guarantee on meeting the real-time constraints for
each task can be given. More details of the scheduler are



given in section 4.

3.2 Data Manager

The kernel supports a data centric architecture. Such
an architecture enables the application to dynamically re-
configure its functionality. The main differences of the
data centric architecture to a static configured applicatio
is that the functional building blocks are centrally coerdi
nated, and that these blocks are loosely coupled (meaning
that a block has no hard coded connections to other blocks).
Rearranging the connections will create different configu-
rations, making the system functionally adaptable.

In the data centric architecture, data is associated with
its processing. The processing entities are cdllat Cen-
tric Entities (DCE) while the relevant data is referenced
by a so calledData Type (DT). A DT is a data object
that can be read, written and signalled by a DCE. A pub-
lish/subscribe mechanism is used publish DTs to DCEs.
When DT has been changed the subscribed DCEs are sig-
nalled. For instance an event, which is an interrupt or a sig-
nal, can signal a DT that will cause the subscribed DCEs
to be activated. Note that in DCOS the signal handling is
coordinated by a so-called data-manager.

New configurations can be achieved by altering the
set of active DCEs and modifying their subscriptions. A
similar but much more complex use of such a mechanism
has been shown in the Splice system [2]. In Splice DTs are
called “data-sorts”.

3.3 Dynamic Loadable Modules

DCEs can be implemented as loadable modules that
can handle DTs. DCOS is able to support reconfigura-
tion of the system based on the inclusion or removal of
modules. These modules are are not part of the operating
system itself but provide additional application or system
functionality. Modules can be loaded dynamically, that is
at runtime. Note that this may require admission control to
guarantee real-time behaviour.

A Dynamic Loadable Module (DLM) is a task com-
piled separately from the kernel code. A DLM is relocat-
able and can be loaded and executed anywhere in program
memory, and as such it is a building block for the creating
of new configurations online. With this module support,
modifications of applications can be done more efficiently.
Instead of updating the complete application (such as de-
scribed in [13]) only a subset of the modules making up the
task-set has to be changed, resulting in less data traffic and
thus less energy consumption. Another advantage is that it
allows nodes in a network to be heterogeneous, each node
may execute its dedicated set of modules and as result less
memory space is needed.

A ready DLM may be transferred to the target hard-
ware through the radio or the serial port where on arrival
it is stored in the secondary storage from where it can be

loaded for execution. For the communication a packet pro-
tocol is provided. This protocol divides the DLM into small
sub-packets which are uploaded individually so that the
node can store it temporary in RAM before writing it to
the secondary storage. This protocol can be used for any
type of binary that has to be uploaded to a file system on
secondary storage (EEPROM). This is a low complexity
file-system that only supports location, creation and read-
ing of files.

3.4 Other support

DCOS is able to dynamically reconfigure itself by al-
tering its task - and data sets. So DCOS supports dynamic
memory allocation. Furthermore, in the implementation of
DCOS we have support for various kinds of devices such as
the radio transceiver, a serial port, a serial EEPROM with
file system, as well as an LCD. The details of these imple-
mentations are beyond the scope of this article.

4 Real-time operation

This section describes the real-time concepts and op-
erations as used in DCOS. DCOS uses lightweight RT
scheduling and dispatching based mneemptive Earliest
Deadline First (EDF). Shared resources can be used un-
der mutual exclusion. This, in general, may complicate
scheduling, resource synchronisation and switching and
may confront the application programmer with a rather
complicated environment. However the combination of
EDF with Deadline Inheritance (DI) to EDFI, as described
in [7, 8], the mutual exclusive use of resources is provided
elegantly by the scheduler.

EDFI limits process switching, while mutual exclu-
sion of shared resources is granted at system level so that
the programmer does not need to take care of resource syn-
chronisation: processes are simply not scheduled by the
system whenever there is the threat of a potential resource
conflict.

EDFI can manage scheduling and dispatching very ef-
ficiently. It uses few system code and processing overhead
and it hardly needs additional memory (RAM). Therefore,
it is suitable for lightweight micro kernels. Therefore we
will use EDFI for DCOS.

4.1 Real-time task specification

A task in DCOS is a real-time task. The kernel may
run a varying number of these real-time tasks, each of
which could have been inserted dynamically as a module.
The set of tasks that may request attention of the processor
is called thetask set. Every taskr; with (1 < i < n) is de-
fined by a set of properties which are relevant for it timely
behaviour. These properties, which must be provided by
the application designer, are described as follows:



e Deadline Interval D; is the relative time between the
arrival a; of a task and its absolute deadlifg where
D; = d; — a;. A task must be finished before its
absolute deadline otherwise a fault has occurred.

e Period T; is the minimum time between every invoca-
tion of a task. Note that tasks may be aperiodic, but
the inter-arrival time between two successive invoca-
tions of r; must not be smaller thdf;.

e CPU Cost C; is the worst-case computation time of a
taskz, denoted ag’;.

e Resource Usage R; is a list of resources, also shared
by other tasks, that; will use during each invocation.
A task maynot hold resources between invocations.

A complete real-time specification of a task looks as
follows:

T; - (CiuﬂaDi7Ri) (1)

which is exactly what an application programmer has
to specify. Nothing more and nothing less. The system can
do the additional work: based on the task set specification
DCOS can execute the feasibility analysis for the admis-
sion control of tasks and/or modules. If the addition of a
task/module implies a non-feasible set of tasks, then the
task is rejected; otherwise it is inserted in the system. The
feasibility analysis is beyond the scope of this paper and fo
this we refer to [7, 8].

We will describe shared resource and its conse-
guences for task synchronisation in section 4.5.

4.2 Real-Time multitasking

EDFI uses dynamic priorities determined by the ab-
solute deadlines. Such a deadline is easily determined by
addingD; to the arrival time of the task’s invocation. The
arrival time is determined by a periodic clock, by an aperi-
odic interrupt or by an internal signal generated by another
task or module. The latter may complicate a straightfor-
ward feasibility analysis and how to model this behaviour
is still under discussion. An advantage of using a preemp-
tive EDF oriented protocol is that EDF has the best utilisa-
tion U, defined ad/ = """ , C;/T;, among all other real
time schedulers. A possible disadvantage of EDF(I) is it's
behaviour under overload, that is when tasks exceed their
runtime budget;. Under these circumstances it is hard to
predict which task will miss a deadline. If this would be
areal problem, DCOS could be provided without much ef-
fort with a kernel based on Deadline Monotonic scheduling
with Deadline Inheritance (DMI), very little effort for the
scheduler/dispatcher, however with a partly differensfea
bility analysis.

4.3 Context Switching

Context switching is a demanding mechanism in pro-
cessing power, as well as in memory usage. It can be com-
plicated to keep track of the context. Fortunately DCOS in-
herits the advantages of a single processing stack from the
Stack Resource protocol [1] where all tasks share a single
stack on which also contexts are saved. If a task is pre-
empted the new context is created just on top of the stack.
Restoring a context only occurs when the running task ex-
its after which a preempted task and its context is then re-
found on top of the stack.

4.4 Task states and queues

first
waiting/
blocked

event

a

preemption stack

Figure 1. DCOS kernel architecture

event waiting queue

The kernel architecture of DCOS tasks is explained
with Figure 1. It shows two queues, the waiting queue and
the released queue and a stack as well as the transitions of
tasks. Every task can reside in one of the following states:
waiting, released, running or preempted. Waiting tasks re-
side in the waiting queue, released tasks reside in the re-
leased queue while a preempted task resides on the stack.
A running task is associated with the top of the stack. An
admitted task is put in thevaiting queue, in which it waits
until an event — either from a periodic or aperiodic inter-
rupt or from a signal — occurs, upon which the target task
is transferred to the released queue. Released tasks are or-
dered to their priority, which is inverse proportional with



the absolute deadline. The scheduler will assign the pro-
cessor to the task with the highest priority. If the head of
the released queue has a higher priority than the running
task, and if there is no resource conflict, the running task
will be preempted in favour of the new high priority task.
This causes the running task to become preempted while
the new task becomes running. When a running task fin-
ishes, it will return to the waiting queue. The scheduler
will successively compare the preempted task on top of the
stack with the head of the released queue and starts run-
ning the task with the highest priority of both. A running
task may send signals which in turn may invoke the transfer
of waiting tasks to the released queue. In DCOS this may
proceed by using DTs, which if symbolicly shown in the
figure: on writing a DT its subscribers are signalled via the
event manager.

4.5 Resource Synchronization

Resources are elements in your application that can
be used by different tasks. A resource can be a variable,
a data structure, or a hardware device like a serial port or
an LCD. In order to preserve the integrity of a resource in
a multitasking system, it must be prevented that two tasks
sharing the same resource, have access to it at the same
time. A mutual exclusion mechanism, original from Di-
jkstra [3] avoids this concurrent use of shared resources.
Mutual exclusion in the DCOS kernel is obtained through
the scheduler. First we describe how the use of resources
are specified and them we explain how this information is
used by the scheduler.

Typically, the access to these resources are subject
to read/write restrictions. Each resource is identified by
a uniqgue name in the system and every task specification
must identify whether it only reads or (also) writes a re-
source. For convenience we denote read resources by small
letters and write resources by capitals. A resource list-is 0
ganised bycritical sectionsin order to group the resources
that are used by; simultaneously. For every section it is
specified how long a task may hold this section. For in-
stanceR; = [t1(A,b), t2(a,C)] specifies that firstA b)
is hold during a time;, whereA is written andb is read.
Successively the resources are returned to the system after
which the following section may be used during a titge
wherea may be read and’ may be written. The value of
R, is substituted in equation 1.

For the set of tasks that will become active in the sys-
tem a feasibility analysis will be executed. This is done on
basis of deadline inheritance. A resource inherits the $bwe
relative deadline of any task that needs to use that resource
exclusively. Every resource inherits two deadlines, a read
deadline and a write deadline. So a read resourcegsay
only inherits the lowest deadlines from writers of that re-
source, while a write resourckinherits the smallest dead-
line interval from all its readers and writers. If we denote
the inherited values of and A by D, andD 4 then be can
conclude thaD 4 < D,,.

A critical section asserts the lowest inherited value of
all of its resources. A task asserts an inherited deadline in
terval from the section it executes. If no section is exatute
atasks asserts as inherited deadline its original deatljne
If we denote the current task’s inherited deadlinethen
a running task,. can only be preempted by the head of the
released queus, iff:

(dh < dr) A (Dh < A) (2)

Condition 2 is called the scheduling condition. It pro-
vides synchronisation of shared resources. It can be guar-
anteed that there cannot be two task on the stack that share
mutual exclusive resources. However it unavoidably intro-
duces blocking of tasks with a higher priority than the run-
ning task if the right-hand of equation 2 is not met. It can
however be proved that the higher priority task only can
experience blocking once by one task.

5 Results

The DCOS kernel prototype is implemented on a
Texas Instruments MSP430 microcontroller running at
4.6MHz. The controller has 2048 bytes of RAM, and 60KB
of program flash memory.

Scheduler latency —For the performance metric of
the scheduler, we have measured its latency using task-sets
of different sizes, ranging from 1 to 16 tasks. Latency is
the maximum computation time of the scheduler, and is the
time between the activation of the scheduler and the mo-
ment the CPU continues, or starts executing a task. The
measured latency ranges from80for the smallest task-
set, to 11@s for the largest, which is approximately less
than double the latency incurred with cooperative schedul-
ing. Based on the measured latency, the maximum number
of task switches per second ranges from 9000 to 12500.

Memory usage —For the basic kernel implementa-
tion, consisting of the scheduler, data manager, dynamic
memory allocator, and the minimum requirethrdware
Abstraction Layer (HAL), the kernel uses 3800 bytes of
program flash memory.

The absolute minimum RAM usage of the kernel is
32 bytes and 26 bytes of possible stack usage. For each
task an additional 10 bytes of heap space is needed.

6 Conclusion

DCOS has been successfully implemented on a small
micro-controller platform to be used for generic support of
embedded systems. We have shown that, in the light of
the limited amount of energy, hardware resources, it is yet
possible to provide a generic operating system — with dy-
namic memory allocation, management for secondary stor-
age and support for peripheral devices — that allows for a
data centric architecture with dynamic loadable modules to
be executed while meeting real-time requirements.
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