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Abstract – Closed loop control system typically contains 
multitude of sensors and actuators operated simultane-
ously. So they are parallel and distributed in its essence. 
But when mapping this parallelism to software, lot of ob-
stacles concerning multithreading communication and syn-
chronization issues arise. To overcome this problem, the 
CT kernel/library based on CSP algebra has been devel-
oped. This project (TES.5410) is about developing commu-
nication extension to the CT library to make it applicable 
in distributed systems.  Since the library is tailored for con-
trol systems, properties and requirements of control sys-
tems are taken into special consideration. Applicability of 
existing middleware solutions is examined. A comparison 
of applicable fieldbus protocols is done in order to deter-
mine most suitable ones and CAN fieldbus is chosen to be 
first fieldbus used. Brief overview of CSP and existing CSP 
based libraries is given. Middleware architecture is pro-
posed along with few novel ideas. 

 

Keywords – real-time, CSP, fieldbus, control, distrib-
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I. INTRODUCTION 

 
Making embedded distributed fault-tolerant hard real-

time systems requires substantial knowledge both in ap-
plication specific domains, control engineering and in the 
software development field. There is lack of employees 
with sufficient knowledge in all mentioned areas and us-
ing application specialist and software specialist to write 
separate program modules and interconnecting those 
modules later in development process, generally does not 
yield satisfactory results.  

Main objective of this project is to make a flexible 
framework that will enable control-system domain ex-
perts to build distributed fault-tolerant hard real-time sys-
tems without much help of computer software specialists. 

They should be able to easily use code generated from 
control-system modeling and design tools like Matlab, 
Simulink and 20-Sim. Unfortunately, although there is 
need for building parallel and distributed systems, most 
of the mentioned tools still generate sequential code. 
Reason for this approach is mostly the huge complexity 
associated with multithreaded programming. We want 
tools to assist designers in transparent and structured way 
of using multithreading for implementing inherently par-
allel control systems. On quasi-concurrent single proces-
sor systems this is solved by using our CT (Communicat-
ing threads) kernel library [1, 2]. This CT library is based 
on CSP (Communicating Sequential Processes) theory 
[3, 4]. Currently, we have C, C++ and Java versions of 
the CT library (CTC, CTCPP and CTJ). Since we want 
systems that are working really parallel and not just 
quasi-parallel, aim of this research is extending CT ker-
nel library with real-time middleware operating over 
fieldbuses. 

In existing control systems, there is often gap between 
timing constraints of control theory model and practical 
implementations, causing uncontrollable performance 
degradations [5]. Hard real-time systems are usually mis-
sion-critical, and thus they usually encompass some sup-
port for fault tolerance. 

 An overview of main timing, scheduling and fault-
tolerance properties and requirements of real-time con-
trol systems is given in section 2. Section 3 is an over-
view of existing middleware solutions and their applica-
bility in our framework. Since this middleware will be 
made using existing fieldbus protocols as lowest layers, a 
brief overview of fieldbuses, their history and compari-
son is given in section 4. As the CAN fieldbus is chosen 
to be first fieldbus used, separate subsection is dedicated 
to its properties and problems in real-time applications.  
Section 5 presents basic ideas and concepts of CSP, their 
appliance in CT kernel library and ways of formal check-
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ing for synchronization problems. In the In the last sec-
tion, it is presented how all requirements and design 
principles derived in previous sections are thought to be 
incorporated to form the new framework design. 
 

II.     DISTRIBUTED REAL-TIME CONTROL SYS-
TEMS AND REQUIREMENTS  

 
Control systems typically function at number of levels 

(Figure 1).  
Supervisory control ensures that overall aim is 

achieved by using monitoring functions, safety, fault tol-
erance and parameter adaptation algorithms. Sequential 
control produce sequences of operations, like in washing 
machine timed program. 

 

 
Figure 1:   Embedded Control Systems Architecture 

At lowest level there is loop control that periodically 
executes the following three phases: gather data from 
input sensors, calculate control signals according to cho-
sen control algorithms and send them to actuators. Time 
between related sampling and actuation actions is called 
control delay [5]. In existing control systems, there is 
often gap between control theory model that assumes 
equidistant sampling with constant sensor to actuation 
delay time and practical implementations based on re-
sponse time oriented scheduling models where it is not 
important when is task executed as long as it finished 
before its deadline [5, 6]. 

 

III. TIME PROPERTIES OF PROCESSES AND MESSAGES IN 
CONTROL SYSTEMS 

 
Parallel systems are made by dividing system into in-

divisible schedulable elements called tasks. Considering 
regularity of execution task can be: periodic, aperiodic 
and sporadic. Periodic tasks are required to execute ex-
actly once every period. Aperiodic task can be triggered 
at any time and at any rate. Sporadic tasks are special 
kind of aperiodic tasks where maximum inter-arrival rate 
is predefined. Sporadic tasks can be handled in time pre-
dictable way by using periodic servers to handle them 
and reserving time slots according to defined minimal 
inter-arrival times. 

Real-time systems are usually described as systems 
where not only the logical correctness of the results is 
important, but also time at which results are obtained. 
Therefore tasks and messages can also be classified ac-
cording to changes in their utility functions over time 
(Figure 3). If results, arriving too late, have catastrophic 
implications, systems are characterized as hard real-time 
systems. If violated timing requirements affects perform-
ance but can be tolerated, systems are characterized as 
soft real time systems. Non real-time tasks have flat util-
ity function. There are also tasks that need to be done 
precise on time (bounded jitter is allowed but usually 
influences system’s performance).  

  

 
Figure 3: Utility functions for different tasks and mes-

sage types  ( adapted from [7]) 

 
So far we mentioned two classifications of tasks and 

messages in real-time systems: one based on time-
regularity and other on time-utility properties. All com-
binations of those two classifications are possible. In 
control systems, especially important are precisely peri-
odic tasks, i.e. periodic tasks that must execute (not just 
to be released) exactly one period apart in predefined 
time. 

Figure 2: Equidistant sampling with constant control de-
lay 
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Distributed scheduling techniques are described in de-
tail in [6-8]. The kernel should group all scheduling spe-
cific details in separate modules to allow ease of replac-
ing scheduling techniques. In general, task scheduling 
and bus scheduling in distributed systems are not inde-
pendent. For instance, late delivery of messages postpone 
the release time of receiving task and therefore influence 
task scheduling on receiving node. Also, late arrival of 
sender task can influence bus communication if this 
communication is time-triggered. A holistic approach to 
task and bus scheduling was proposed in [9]. Neverthe-
less, the framework should decouple bus scheduling and 
task scheduling in a way that algorithms used to imple-
ment them can be changed independently. In distributed 
systems, clocks must be synchronized and time master is 
processor or dedicated hardware with reference real time 
clock. To tolerate for failures, several nodes should be 
potential time-masters. Highest priority task of time-
master can be used to periodically produce clock syn-
chronization and strobe messages. 

Periodic messages are usually sent and received by 
periodic tasks (sending message periodically can also be 
triggered directly in hardware) and most often in control 
systems they directly or indirectly represent state vari-
ables. If a control algorithm can tolerate vacant sampling 
by reading old values, channels for periodic messages 
can be realized as overwrite buffers. Otherwise synchro-
nous rendezvous buffers must be used. When using syn-
chronous buffers, it is possible that processes blocked on 
channels can form a cycle. This is called deadlock. In 
CSP-based systems, deadlock situations can be detected 
and eliminated during design phase using some CSP 
based formal checking tool (etc. FDR tool developed by 
Bill Roscoe). To eliminate risk of deadlock, channels 
could encompass notion of timeouts and both sender and 
receiver should define how much they are prepared to 
wait for rendezvous.  

Aperiodic messages (etc. alarms) are event triggered 
and they usually result in waking up some aperiodic 
event handling task. Calamities are mostly detected by 
more than one sensor, resulting in an avalanche of error 
messages. This state is known as alarm shower [10] and 
in such cases aim of utmost importance is to maintain 
temporal ordering of events such that the event causing 
the malfunctioning can be determined. Sensors sending 
alarms during an alarm shower can be on different nodes 
and in case they send messages in same time, the mes-
sage with the highest priority will be sent first. The tem-
poral order can be maintained either by including time-
stamps in event messages or by relating the time of the 
event with the priority of the message. The former ap-
proach introduces additional overhead for every event 
message, while with the latter approach we loose the pos-

possibility to prioritize alarm events according to their 
urgency.   

Timing problems in real-time control systems and 
their influence on the control performance are not yet a 
totally explored area, but merely a subject of research [5, 
6, 11].  Although modern control theory is making some 
advances towards control algorithms that handle time 
varying delays, most of the contemporary control sys-
tems are built based on control theory that assumes con-
stant control delays and equidistant sampling. Translated 
to the task domain, this means that sampling and actua-
tion tasks should be precisely periodic. Otherwise, the 
control performance of the overall system will detoriate 
and in some cases even the stability of system can be 
jeopardized. 

Computational algorithms of each subsystem usually 
consist of periodic tasks dependent of each other and 
executing in some sequence, which can be described by 
precedence graphs (an example is shown in Figure 4).  

 

                 
Figure 4: Possible precedence graph for one of  loop con-

trol subsystems  

This subtasks can execute on different processors, 
near data sources they use or because some of them need 
to use special processors or hardware. They start after the 
precisely periodic sampling tasks finish and must pro-
duce results before arrival of precisely periodic actuation 
task. Often, instead of specifying explicit deadlines to 
every intermediate task forming a precedence graph of 
computational algorithm, this behavior is defined only 
through end-to-end deadlines.  

 
A. Fault-tolerance requirements 

Fault tolerance is the ability of a system to keep pro-
viding specified services in spite of faults.  Fault toler-
ance can be implemented in the framework, in the appli-
cation or in both. Establishing fault tolerance facilities 
inside the framework make total fault tolerance support 
more efficient. Applications based on this framework are 
expected to use rather low-price COTS (commercial off 
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the shelf) components then expensive specialized hard-
ware. Therefore, software methods for fault tolerance are 
preferred choice.  

Vacant sampling is situation when sampling data or 
output data from some computational task is not deliv-
ered in time to input of some computational task. This 
problem can arise from latency in overload situations or 
from failure of node, task or communication network. 
Vacant sampling or incorrect values can be experienced 
for longer amount of time and that situation is known as 
temporary blackout. 

Often, after node failure and replicas activation, there 
is simply not enough processor power in system for all 
services. Answer to this challenge is in implementing 
support for graceful degradation, meaning that we make 
dynamical on-line reconfiguration trade-off between re-
source usage and performance level. In case of transient 
overload, way to make tradeoff between resource usage 
and precision of results is to use imprecise computing. 
This means that hard real-time tasks are divided in 
obligatory and mandatory part and mandatory part is per-
formed only when there is enough time.  

 

IV. OVERVIEW OF EXISTING MIDDLEWARE 
COMMUNICATION MODELS AND SOLUTIONS 

A. Remote Method Invocation vs. Publisher/Subscriber 
communication model 
What kind of communication model do we really 

need in distributed control systems: Remote Method In-
vocation (RMI) or the Publisher/Subscriber communica-
tion model?  RMI as object oriented approach could at 
first sight seem to be far better. But in control system 
described through set of cooperating processes, most of 
the time we are interested just in passing data from one 
process to another and not in calling functions of remote 
objects. Besides that, RMI is based on point-to-point 
communication. If more than one process needs same 
data (etc. input from sensors), it must be separately sent 
to each of them. Hard real-time systems are usually mis-
sion critical and they often must contain fault tolerance 
mechanisms, which are usually made by replicating 
hardware and/or software modules. If there are replicated 
processes on different nodes, all replicas must get same 
input values and must agree on output values. Broadcast-
ing is much more efficient for this kind of communica-
tion [12]. The Publisher/Subscriber method is far more 
simpler to implement and thus can be made far more ef-
ficient considering time overhead it will bring in control 
loop. 
 
 

B. Why don’t we use existing solutions? 
Of course, at beginning of every project there is al-

ways a question: do we really have to make everything 
from scratch, or we can just (re)use something that al-
ready exists? First of all, commercially available and 
open-source middleware exhibit serious lack of fault-
tolerance and real-time properties.  

Most famous and most widely used middleware is 
CORBA. In embedded systems we aim to keep nodes as 
small and as cheap as possible, and CORBA is resource 
demanding middleware not tailored for embedded sys-
tems. It is based on RMI and not on the preferred pub-
lisher-subscriber communication model. Besides 
CORBA does not have appropriate mechanisms for 
guaranteeing real-time constraints. Maybe, we could use 
the CORBA reference model, cut out performance bot-
tlenecks and try to make it real-time. This was actually 
done at Washington University in TAO project [13], but 
still the resulting middleware is too resource- intensive to 
fit in embedded systems. Anyway, the TAO project 
yielded many communication design patterns and some 
of them might be applied in our middleware.  

From other existing middleware solutions, Jini is of-
fering some interesting services. For instance, services 
can discover other services in the system; they can 
signup to be notified of other services/nodes appear-
ing/disappearing. Furthermore, it is possible to download 
code.  First problem is that Jini is implemented on 
Ethernet and therefore inherits its unpredictable message 
delivery time. One of the major goals of Jini was to 
“raise the level of abstraction of distributed programming 
from the network protocol level to the object interface 
level” [14]. Based on this, we could try to port this 
Ethernet-only middleware to work on some real-time 
fieldbus, for instance on CAN. This was done [14], at 
Carnegie Mellon University as part of RoSES project 
[15], but they were not satisfied with the achieved re-
sults. It appeared that in spite of the proclaimed inten-
tions, some TCP/UDP specific features like host names 
and port numbers had crept into Jini’s object interface 
level specifications. After discovering services, Jini 
communication between two services is based on RMI 
communication model as in CORBA. Therefore, that 
gives rise to problem of achieving efficient multicast and 
broadcast transfers. Besides, since Jini uses some func-
tions not supported by KVM (embedded version of Java 
Virtual Machine), the whole Java Virtual Machine had to 
be used, resulting in a too large memory footprint. How-
ever, it is possible to tailor KVM and Jini to be compati-
ble.  

Reusing is not all about reusing existing components 
and source code. What we can also reuse is experience in 
solving some general and often recurring problems and 
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usually this experience is best encapsulated in shape of 
various design patterns. Valuable directions for using 
OOP and design patterns in embedded hard real-time 
framework can be found in the AOCS (attitude and orbit 
control systems on satellites) framework [16]. Although 
the AOCS is a domain specific framework, it demon-
strates a design approach that could be used in any em-
bedded hard real-time systems. 

 

V. FIELDBUSES 

A. Historical overview 
Historically, fieldbuses are end product in evolution 

of process control system architectures. In 1960s there 
were central mainframe computers (constituting single 
point of failure for system) with costly point-to-point link 
to each field device. In early 1970s, supervisory and con-
trol functions were delegated to several controllers still 
located near mainframe computer and connected with it 
and with field devices by point-to-point connections. In 
mid 1970s controllers moved from control rooms closer 
to field devices, using serial network to communicate 
among themselves and point-to-point connections for its 
own sensors and actuators. In early 1980s, serial net-
works known as fieldbuses are used for communication 
among field devices. Field devices became smart equip-
ment with built in automatic calibrations, correction of 
offsets/drifts, executing local control and fault-
monitoring functions [17]. 

A fieldbus is serial bus network that provides com-
munication among field devices (sensors, actuators, con-
trollers, regulators). It is usually based on layered struc-
ture made omitting few highest layers in OSI reference 
model.  A fieldbus offers set of communication services 
and protocols. Currently there are more then 30 different 
kinds of fieldbus protocols: CAN [18, 19], Profibus [20], 
WorldFIP [21], LonWorks [22], Interbus, P-NET, EIB, 
DeviceNet, Hart, etc.  

In the rest of this section properties of various field-
buses are compared, but emphasize is put on CAN bus, 
because it has been chosen to be first one on which CT 
libraries will be ported. 

 

B. Comparison, classifications and CAN basic proper-
ties 
There is no generally accepted standard concerning 

fieldbus protocols. Therefore, in order to choose fieldbus 
most convenient for implementing CT library channel 
concept, some theoretical comparison studies between 
existing fieldbuses protocols concerning their application 
in hard real-time systems had to be done. Based less on 

this comparison and more on fact that it is already pre-
sent in our lab, the first choice was the CAN fieldbus.  

Many of fieldbuses are tailored to satisfy some spe-
cific request, thus forcing the system designer to be very 
careful when choosing appropriate fieldbus solution for 
its application. Some of most important differences like 
available bandwidth, message delivery times (through 
priorities), and robustness are often consequences of dif-
ferent optimizations in the underlying MAC (Media Ac-
cess Control) implementation. For instance, CAN is tai-
lored for automotive networks and thus it provide deter-
ministic, reliable communications with short prioritized 
messages and extensive error detection, but a price is 
paid in limited length and speed (up to 1 Mbit/sec) of the 
bus.  The Profibus has different variants tailored for fac-
tory automation, process automation, motion control and 
safety-relevant applications. LonWorks is optimized for 
flexibility to allow broad variety of applications. World-
FIP employs ‘producer/consumer’ mechanism allowing 
easy construction of distributed real-time databases. Be-
sides, in WorldFIP aperiodic traffic is handled using an 
external control communication model, where the appli-
cation processes explicitly trigger transaction and 
autonomous control is employed for time-triggered peri-
odic traffic through static table-based scheduling. This 
makes it more resilient to babbling idiot faults and event 
shower situations. Most of other fieldbuses implement 
only external control based on priorities. 

Classification of fieldbuses can be based on different 
properties. If we consider the approach used to identify 
source and destination nodes (addressing), there are two 
categories: fieldbuses that specify address of receiving 
node(s) directly in the message header and content ori-
ented (or source addressing) fieldbuses,  where receiving 
nodes filter message IDs and take only messages of types 
they are interested in. While direct addressing is more 
widely used, content based addressing is applied in 
WorldFIP and CAN fieldbuses. Advantages of content 
oriented approach on CAN fieldbus are: flexibility in 
adding nodes (no change of software on existing nodes is 
needed), guarantee that message is accepted either by all 
nodes or by no node, efficient support for multicasting. 
Multicast communication is needed when data collected 
by a sensor or intermediate results of control algorithms 
are shared among few nodes and is also useful for 
achieving group communication among replicas in fault 
tolerant systems. Many fieldbuses support one-to-many 
communication (multicast), but at the direct addressing 
approach, extra hardware is needed at every receiver to 
filter the broadcast address. In content-based fieldbuses, 
receivers filter message ID anyway. This property makes 
implementation of Publisher/Subscriber model easy and 
efficient.  
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If we base classification on the way fieldbuses resolve 
bus conflicts there are: Token based, Master/Slave, 
TDMA and carrier-sense (CSMA/CD, CSMA/CA and 
CSMA/DCR) fieldbuses.  

Token based buses prevent bus conflicts through the 
use of special signals-tokens. Token is passed from one 
node to next in virtual or real ring structure and only 
holder of token has access to the bus. Token based buses 
(PROFIBUS, MAP, P-NET, IEC Fieldbus, FDDI, AR-
CNet, PLC-192) are predictable, but they suffer from 
large token-managing overhead under light traffic.  

 Master/Slave token passing (MS/TP) fieldbuses 
(USB, MIL-STD-1553B, MIL-STD-1773) minimize 
communication work of slave nodes having a centralized 
master periodically polling the slave nodes (can be seen 
as master giving a token to slaves) for information. A 
centralized master constitutes a single point of failure. 
This fault tolerance problem is in Profibus solved using a 
multi-master approach.   

 In Time Division Multiple Access (TDMA) systems 
each node transmits during its own offline pre-
determined time slot. TDMA systems (TTP-C, TTP-A, 
DATAC…) give guarantee of deterministic behavior, but 
there is lack of flexibility.  

Carrier-Sense bus means that nodes transmit only af-
ter detecting the idle bus. Still collision can occur if two 
or more nodes detect idle bus and start to transmit in 
same time. There are three different mechanisms for re-
solving conflicts on bus and thus three different kinds of 
carrier-sense buses: Carrier Sense Multiple Access with 
Collision Detection (CSMA/CD), Carrier Sense Multiple 
Access with Collision Avoidance (CSMA/CA) and   Car-
rier Sense Multiple Access with Deterministic Collision 
Resolution (SMA/DCR). 

In CSMA/CD if two or more nodes collide, they 
back-off and try to retransmit message after randomly 
determined time period. CSMA/CD is non-deterministic 
and thus buses based on it (Ethernet) are not appropriate 
for hard real-time systems.  

Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) combines CSMA/CD efficiency under 
light traffic and token based efficiency under heavy traf-
fic. Each node has local timer pre-set with a unique 
value. After a start signal sent periodically by leader 
node, all nodes release their timers. Node with lowest 
value in timer gets the bus first. All other nodes sense 
bus activity and reset their timers. In one cycle, a node 
can transmit one periodic message, one urgent aperiodic 
message and one not urgent aperiodic message.  After 
sending those messages, node waits for leader to signal 
start of next period [17].  

The CAN fieldbus belongs to CSMA/DCR category.  
Identification field of CAN message beside its role in 
content based addressing, constitutes priority for bitwise 
arbitration in case of collision. In fact, the CAN bus be-
haves as a wired AND gate with each node seeing all 
output. The dominant value (‘0’) on the bus always 
overwrites the so-called recessive bit (‘1’). All nodes 
competing for access to the bus transmit bit-by-bit their 
identification field and listen to the output value. The 
node that sent a recessive value and perceived dominant 
output looses arbitration and backs off. The node trans-
mitting the highest priority message gains immediate 
access to the bus and can transmit without any delay.  

Fieldbuses can be compared based on maximal speed, 
maximal bus length and support for working in harsh 
environments (error detecting and recovery mecha-
nisms). One such comparison [23] for three most widely 
used fieldbuses is given in Table 1. 

With a maximum speed of 1Mbit/s CAN can not be 
qualified as a high-speed bus. The maximum length is 
inversely proportional to the used CAN bus speed and 
ranges from only 10 m for highest speed to few hundred 
meters for much more moderate speeds. Reasons for this 
length limitation originate from the CAN error detection 
concept, where every node must listen to every bit on the 
bus. 

Some fieldbus protocols have built-in support for ex-
tending networks. LON identifies each node by a hierar-
chical address composed of domain, subnet and node 
address and allows routing of messages. PROFIBUS al-
lows several segments interconnected by repeaters. P-
NET contains several segments interconnected through 
gateways. CAN does not have built-in support for ex-
tending the network, but it can be done building higher 
level layers on top of the protocol. 

The CAN protocol has fixed-format messages of lim-
ited length shown in . CAN-B has an extended message 
ID field, namely 29 instead of 11 bits. By sending a re-
mote frame message, a node may require another node to 
send the corresponding data frame. 

Error detection is based on CRC checking and bit 
stuffing. Any node detecting an error sends an error 
frame consisting of six consecutive dominant bits, thus 
violating bit-stuffing rules. Faulty messages are retrans-
mitted automatically. 

In CAN, fault confinement (restricting influence of 
faulty nodes) is implemented by counting transmit and 
receive errors per each node. When each of the counters 
reaches 127, node enters error-passive state where it can 
signal errors only while transmitting and is obliged to 
have extra eight bit waiting period after transmitting, be-
fore it is allowed new transmission.  
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C.  CAN problems and protocols to solve those problems 
Real-time fieldbus should have bounded response 

times of messages. Bitwise arbitration used in CAN en-
able a node transmitting the highest priority message to 
gain immediate bus access and transmit without any de-
lay. Thus, it is possible to calculate worst case response 
time for highest priority message. Longest time node 
waits for the bus to become idle is equal to longest time 
to transmit CAN message.  Problem is that latency for 
messages with lower priority seems to be unbounded. At 
University of York [24] analysis for calculating message 
response times on CAN has been done. 

Although most failures are handled consistently by all 
nodes and there is general belief that CAN native 
mechanisms provide atomic broadcast,  it was shown in 
[25] that  there is possibility for inconsistent message 
delivery and generation of message duplicates in case of 
network errors. This scenario happens when two last bits 
of seven bit end of frame are faulty, receivers do not 
agree on correctness of message and sender crashes be-
fore retransmission. Mean time of such error is 3.98*10-8 
which might be unacceptable for some safety critical ap-
plications. To solve this problem reliable broadcast pro-
tocol was made [25] as simple software layer on top of 
CAN. Complete set of atomic multicast and consolida-
tion protocols as well as replication management frame-
work have been proposed in [26].  

Dynamic bus scheduling for CAN was investigated at 
the University of Michigan [27], resulting in proposed 
Mixed Traffic Scheduler (MTS) that was supposed to 
have better utilization then fixed-priority schemes and 
less overhead then dynamical earliest-deadline (ED) 
scheduling.  

So far, several research groups have, with more or 
less success, ported CORBA on CAN [28]. But CORBA 
is RMI based and not real-time and therefore not suitable 
for hard real-time systems. 

CAN fieldbus is particularly suitable for implementa-
tion of Publisher-Subscriber model, as shown in [29]. 
Same research group also invented new dynamic bus 
scheduling technique, where soft real-time activities are 
scheduled with EDF approach and deadlines of hard real-
time communication is guaranteed by calendar-based 
resource reservation [12]. 

 

VI. CSP ALGEBRA AND ITS APPLIANCE IN THE CT LI-
BRARY 

CSP [3, 4] is notation for describing patterns of com-
munication by algebraic expressions  that allows formal 
checking for undesired conditions like  failures, diver-
gences, race hazards, deadlocks, livelocks and starvation. 

 
 
 

 
Figure 5: Format of a CAN message 

 

 

Fieldbus CAN PROFIBUS WorldFIP 

Max Speed up to 1 
Mbit/s 500 kbit/s 

5 Mbit/s 
(with Opti-
cal fibres) 

addressing source direct source 

Max # 
nodes  with/ 

without 
repeaters 

N/A /30 127 /32 256 /64 

Max dis-
tance    with 

/ without 
repeaters 

N/A /  
40m-
1Mb/s 

1km-20 
kb/s 

800 m/    200 
m 

10 km/      2 
km 

Arbitration CSMA Token pass-
ing 

Bus         
Arbiter 

Header/Data 
size 

8 bytes 
fixed 250 bytes 1 to 128 

bytes 

Primary 
applications 

In sensors / 
actuators 
Automo-

tive 

Inter-PLC 
commun. 
Factory 

automation 

Real-time 
control 

Process/ 
machine 

Distributed  
data base 

 

Table 1 Fieldbuses comparison 
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A number of concurrent programming languages like 
occam and Ada are based on CSP. In CSP each separate 
flow of control that executes sequential code along with 
all associated passive objects is called process. Process 
can communicate with other processes only through us-
age of special synchronization primitives called chan-
nels. Channels serve to hide location and internal struc-
ture of communicating processes from each other. Each 
process has separate address space and because channels 
have pass-by-value semantics, there is no way that one 
process can change state of some other process. Proc-
esses never access hardware directly and are therefore 
hardware independent. The channel communication 
model allows changing allocation of processes on proc-
essors without changing program code, which makes this 
solution scalable.  

Process execution is organized hierarchically using 
sequential, parallel and alternative constructs. The se-
quential composition construct mean that its subproc-
esses are executed one at the time and in order. The con-
struct finish when all subprocesses are finished. In paral-
lel construct subprocesses are executed in parallel. If 
construct is executed on one processor then subprocesses 
are executed in quasi-parallel way by sharing processor 
time. Constructs end when all its subprocesses are fin-
ished. Alternative construct wait till one of the processes 
guarded by inputs, outputs and timeouts becomes ready, 
execute that process and finish. Although not described 
in CSP theory it is common to make two extra constructs 
by adding notion of priority to parallel and alternative 
constructs. Constructs derived in this way are priparallel 
and prialternative. One of possible CSP representations 
of precedence graph from Figure 4 is given on Figure 6. 

 

        
Figure 6: Transformation of precedence graph to CSP 

constructs architecture  
 

There are two existing libraries providing process ori-
ented design patterns for dealing with concurrency in 
Java: Communicating Sequential Processes for Java 
(JCSP) [30] and Communicating Threads in Java (CTJ) 
[1, 2]. Detailed comparison of two libraries is given in 
[31]. JCSP passes local messages by reference and only 
external messages by value. JCSP networking [31] solu-

tion is based on T9000 transputer communication mecha-
nisms [32]. 

CTJ is intended to be the framework library for real-
time systems. Therefore, instead of relying on different 
and often non-deterministic scheduling mechanisms of 
underlying operating systems, CTJ itself does thread 
scheduling. The Java garbage collector has non-
deterministic behavior which makes it inconvenient for 
real-time systems. CTJ passes all messages by value, giv-
ing the same semantics to remote and nearby channels 
and encouraging reuse of objects, which results in less or 
ideally no activity of the garbage collector. In CTJ, 
channels are hardware independent, but can have 
plugged-in link-driver objects which encapsulate hard-
ware-dependent device-driver code (Figure 7). Real-time 
control systems usually operate over fieldbuses. Thus 
making real-time library like CTJ distributed assume 
building in support for communication over various 
fieldbuses (Figure 8). 

  Ideally instead of having separate framework version 
for each network protocol, CTJ should encompass ability 
for distant processes to communicate over shortest route 
in heterogeneous network environment. Putting CTJ to 
work on CAN fieldbus is just a first step in making this 
library truly distributed in real-time control environ-
ments. 

 

VII. PROPOSED ARCHITECTURE FOR REAL-TIME 
MIDDLEWARE  

Since working on any framework is a process, espe-
cially while implementation is still far a way from being 
finished, I want to emphasize that proposed solutions to 
some of recurring problems in control and distributed 

Figure 7: Channel Framework in CTJ 
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systems are not definitive and are likely to be changed as 
soon as better and more elegant solutions came on sur-
face. Consider following lines only as some of possible 
ideas being currently under consideration for building 
into framework.  

 

A. Realizing end-to-end deadlines 
Consider now subsystem with precedence graph 

shown on Figure 4. One possible scheduling approach is 
to derive release times and deadlines of all intermediate 
processes.  First logical conclusion is that each process 
should have such a deadline that if it finishes before its 
deadline, all following processes and all following com-
munication must have enough time for worst case execu-
tion. But missing this deadline based on worst case as-
sumptions of all following processes and communica-
tions does not mean that there is no way to satisfy end-
to-end deadline. On contrary, we can expect that in most 
cases end-to-end deadline requirements will still be satis-
fied. Possible solution is to define two kinds of deadlines 
for intermediate processes: soft and hard deadlines. Soft 
deadline would be calculated to leave enough time for 
sum of all worst case execution times of following proc-
esses and communications. This deadline should be 
forced by scheduling subsystem. Hard deadline would be 
derived   based on minimal execution time of all follow-
ing processes and communication. Error handling 
mechanisms should not be used until this deadline is 
missed, that is as long as there is slightest possibility to 
satisfy end-to-end deadline. 

Expressing this in utility functions, yields diagrams as 
in Figure 9. Sensor and actuator tasks are precisely peri-
odic and utility of their execution drops when jitter com-
pared to fixed sampling and actuation points increase. 
Other tasks into precedence graph are constrained 
through order of execution and end-to-end deadline. Task 
utility is constant until it reaches soft deadline point 
where achieving end-to-end deadline can still be guaran-
teed even in case of worst case execution times of all 
following subtasks. After that point utility value of task 

execution drops until hard deadline point. Further from 
that point there is no way to achieve end-to-end deadline 
and further execution of task is useless, or we can say its 
utility value is zero.  

 

 
Figure 9: Utility functions for processes from Figure 4 

 

B. Fault tolerance layer 
Designer should be able to specify what should be 

done when vacant sampling is encountered: should some 
default value be used or should value be predicted from 
history values and how (value same as in previous period 
would be special case of this), or should the system enter 
some safe-state or even be shut down. Designer should 
also be able to specify allowed amount of lost informa-
tion before registering temporary blackout situation and 
forcing system to shutdown or safe-state. 

First we must make distinction between time critical-
ity and utility criticality of tasks and messages. Function-
alities essential for system might contain some soft and 
not real-time tasks considering time criticality. On the 
other hand, functionalities that are optional additions to 
system’s essential behavior can encompass hard real-
time loops [15]. We can imagine each of those function-
alities as separate subsystem consisting of mutually de-
pendent tasks related through precedence graph and op-
tionally constrained with end-to-end deadline. Further-
more these subsystems can be nested, thus enabling that 
only one part of functionality have hard real-time end-to-
end deadlines. Subsystems are units of replication, mean-
ing that internal outputs of processes inside subsystems 
need not to be agreed upon, while subsystem outputs 
consolidation is needed for replicated subsystems used 
by other subsystems. Sensor tasks and actuator tasks are 
grouped in separate sensor and actuator subsystems. 
Essential subsystems must be replicated, while optional 
subsystems may or may not be replicated depending on 
value of their criticality attribute. This replication can be 
either active with synchronous agreement protocol 
among replicas or passive where only one replica is exe-
cuted at any time and is substituted only if it crashes. 
Note that, to tolerate for n faults, 2*n+1 active replicas 
must be used. Although process code downloading is 

 
Figure 8: Plug and play framework for devices  

155



desirable property, embedded networks usually have not 
enough bandwidth and therefore pre-positioning of repli-
cas is preferred in first phase of framework implementa-
tion. Here we can follow Jini plug-and-play ideology by 
allowing higher level subsystems to reveal their presence 
to other subsystems on network. Subsystems should be 
characterized with two attributes: one specifying critical-
ity and other specifying type of subsystem. Subsystems 
offering same functionality (having same type of service 
attribute) can be interchangeable. In case one of nodes 
fails, not replicated subsystems from failed node can’t be 
recovered. Replicated subsystems need to agree on out-
puts and thus need to communicate through special kinds 
of channels-group consolidation channels.   

Graceful degradation can be done by deciding to omit 
execution of some optional subsystems. Another way 
would be choosing to execute version of subsystems that 
require less resources. Third solution would be to inten-
tionally change period for periodic subsystems.  This is 
possible since period in control algorithms is generally 
not determined based only on Shannon theorem, but also 
based on required performance demands. Control algo-
rithm can allow range of possible periods, where larger 
periods implicate somewhat worse but still acceptable 
control performance. [5, 6] Also, different subsystems 
implementing different control algorithms can be used 
for different ranges of sampling period value. So every 
periodic subsystem should define period for optimal con-
trol performance and period for achieving minimum al-
lowable performance. Or we can even allow designers to 
make alternative subsystems and structures connecting 
period ranges with best suited alternative for that range. 

General framework for building hard real-time control 
systems should not enforce neither one of proposed 
graceful degradation solutions, but should enable design-
ers to easily and in transparent way implement each one 
of them. 

Fault tolerance layer can be separate subsystem or-
ganized as priparallel construct consisting of Reconfigu-
ration Manager, Replica Manager and user defined alarm 
handlers. They are all working on top of lower commu-
nication management layer and should be independent of 
underlying network protocol. When failed node is de-
tected, Reconfiguration Manager is released to activate 
passive replicas and implement support for graceful deg-
radation as described previously. Replica Manager is as-
sisting group communication channels to achieve repli-
cas determinism.  
 

C. Scheduling integrated with CSP constructs 
Slack (laxity) time is defined as the maximum time 

task can be delayed to complete within its deadline. In 
Figure 10 total slack time is sum of slack1 and slack2 

times. But we are working with preemptive systems, 
where task execution can be interrupted and in classical 
scheduling approaches worst case execution time is fixed 
and slack time can’t be updated properly. 

Consider system consisting of many subsystem proc-
esses described with precedence graph as one on Figure 
4 and optionally with attached end-to-end deadline. 
Specify worst case execution times of process Pi as Ci.  
If we have process P as sequential construct consisting of 
processes P1 and P2, worst execution time of P is C = C1 
+ C2. If P is parallel construct of same processes C = C1 
+ C2 in quasi-parallel realization (P1 and P2 are on same 
node) and C = max (C1, C2) in real parallel realization. 
Scheduler can be implemented to consist of three priori-
tized FIFO queues:  hard real-time, soft real-time and not 
real-time queue. Each subsystem is sorted in one of those 
queues. Subsystem processes without end-to-end dead-
line go to not real-time queue, mission critical subsys-
tems goes to hard real-time queue and all the others in 
soft real-time queue. Whenever one process in some con-
struct finishes, all minimal and worst case left execution 
times of its parent constructs are updated. Adding new 
process dynamically also updates those times. For hard 
real-time subsystems we want to guarantee bounded exe-
cution times and thus we allow adding process to peri-
odic hard real-time subsystem only before starting new 
job for that process. Scheduler must test schedulability of 
system with updated times of that subsystem. If system 
doesn’t pass schedulability test, process is not accepted 
and case is transferred to Reconfiguration Manager to 
solve it.    

The Scheduler process periodically gains the proces-
sor and sort ready queues according to their slack times 
(Least Laxity). Note that now minimum, slack and worst 
case execution times left, can be determined much more 
precise because their values are updated regularly. We 
can set thresholds for preemption to avoid context-switch 
related trashing, when two subsystems have close values 
of times used for scheduling. Each construct has an em-
bedded scheduler that distributes processor time in the 
specified order for sequential constructs, fairly for paral-
lel constructs and according to assigned priorities for pri-
parallel constructs. When a subsystem gets processor 
time, it distributes it following its own hierarchy of 
nested schedulers (Figure 11).   

 
Figure 10: Usual  way to calculate slack (laxity) time 
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This is a novel way to naturally integrate task sched-
uling with CSP construct-based application architecture. 
Since CTJ already has solid scheduling, proposed 
method for scheduling integrated with CSP constructs 
based architecture might be implemented in some later 
version of library. 

 

D. Achieving constant sampling period and actuation 
delays  
As it is elaborated in section II, control systems 

should have constant control delay and equidistant sam-
pling. This is not easy to implement in practice, espe-
cially in heterogeneous distributed control systems where 
network communication is part of control loop and where 
multiple subsystems with different sampling frequencies 
and phasing are employed. Obviously, some kind of 
time-trigger is needed. Each subsystem can contain mul-
tiple sensors possibly on different nodes that should be 
sampled in same moment of time. Therefore, same refer-
ence real-time clock must be used to trigger all time-
triggered actions.  

Main stream in practice (and in CT library develop-
ment team) is to use interrupt service routine triggered by 
local timers.  Interrupt service routine (ISR) can read 
data from sensor, write it to buffer and signal some 
semaphore to release computational task waiting for in-
put data. In CSP architecture this would mean that we 
realize sampling and actuation in passive channel objects 
and we do not need special processes for those tasks. But 
I find this approach to be potentially dangerous. Local 
clocks may be synchronized, but there is always some 
jitter.  Sampling is a process that has some duration from 
triggering A/D converters until sampled data is ready on 
output of converter. Because it is not possible to block 
ISR, this time is wasted for processor. Long execution of 
one ISR can delay execution of other ISR that should 
also be precisely periodic.  Even if we could bound exe-
cution time of ISR it is still complicated to implement 
scheduling algorithm that would take into account those 
times. After all, we can expect that in complex control 
system might exist some control process more urgent 

then current ISR. Furthermore, in custom based schedul-
ing systems like CTJ, ISR doesn’t have its own context, 
it is working in a context of interrupted process. There-
fore, ISR should never write to buffer, because buffer 
implementation always encompasses mutual exclusion 
and potential blocking of current process. Conclusion is 
that interrupts should be used only to signal sampling 
moment and release waiting sensor tasks.  Similar analy-
sis can be drawn for actuator tasks. [7, 33, 34]  

More efficient would be to have precisely periodic, 
high (not necessarily highest) priority, sensors tasks to 
transfer data from peripheral short-term memory to ap-
propriate channels and their remote proxies. Note that 
multiplexed A/D converters can be used, but as usual 
their inputs must be from different subsystems with dis-
tant enough phasing of sampling moments. Time master, 
or local timers if satisfying level of clock synchroniza-
tion can be achieved, must periodically send strobe mes-
sage (it must have very high priority) for each group of 
sensors. Strobe signal should release separate process, 
which will select proper inputs on appropriate multiplex-
ers and initiate start of conversion in all A/D converters 
from that subsystem. Same broadcast address for start of 
conversion of all A/D converters would be particularly 
convenient in this case. Separate sensor processes are 
used for each sensor to collect data.  Sensor processes are 
blocked and wait for interrupt from converter.  In mean-
time other processes can execute. When conversion is 
finished, sensor tasks are released to collect data from 
peripheral short term memory. Alternatively, sensor tasks 
can be released upon strobe and send to sleep for prede-
fined conversion time.  After wake up, they poll status of 
converter. If number of available interrupts is to limiting, 
scheme with only one interrupt per subsystem can be 
used. Interrupt can poll converters and release appropri-
ate sensor tasks. To reduce number of bus cycles, addi-
tional simple hardware can allow that each nearby con-
verter from same subsystem use one bit in joint message 
to expose its status. Sensor processes are not all of equal 
importance, so they can be grouped in sensor subsystem 
and organized as priparallel construct. 

Similarly, constant control delay can be achieved by 
employing actuator processes.  

Often we want to use same sensor data in more then 
one computational task. This is one-to-many communi-
cation, not with altering readers like is usually done, but 
more like a broadcast transmission to all readers. Cur-
rently in CSP this is done through usage of “delta” proc-
ess. This process reads data from one channel and writes 
the same data to channels of all processes interested for 
that data. Alternative solution could be half-rendezvous 
channels, that from outside have same semantics as delta 
process meaning that applications based on them can still 
be checked with CSP based checking tools. Main differ-

 
Figure 11: CSP construct based organization enable cal-

culating worst case execution time left and slack 
times more precisely 
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ence is that half-rendezvous channels are realized as pas-
sive objects and not as processes (active threads). There-
fore main advantage is that this approach does not in-
crease context switching times. The disadvantage is that 
this channel is not a compositional element like a delta 
process; rather it is customized for single but often recur-
ring situation. The name half-rendezvous is given be-
cause readers wait for rendezvous and writer engage in 
rendezvous only if there are readers waiting. This means 
that the sensor process writes data to buffer inside the 
channel and releases all computation processes waiting 
on that channel. We do not want process that enter chan-
nel after sensor process and are still able to produce out-
puts on time, to be blocked until next sensor data arrive. 
Thus, what we can do is to make all processes interested 
in sensor data subscribe to channel. This will give chan-
nel some knowledge of processes and therefore is not 
totally in spirit of CSP, but is very useful concept. So, 
channel will maintain lists of all processes and ones that 
already used current data Process performing read func-
tion is blocked only if it wants to take same data twice. If 
some processes have not used current data and new data 
arrive, error is encountered and reported to fault toler-
ance layer. If this channel is built as remote, all proxies 
receive new data through broadcast transmission.   

To achieve optimal control performance in control 
systems, the sampling period is often few times less then 
required by stability issues. This leaves room for toler-
ance to vacant sampling. Anyway, because constant 
computational time is also very important, often actuator 
should have some input in precise time. Thus, they are 
also precisely periodic processes waiting on channels to 
be released by time event. If, after released in precise 
times, actuator tasks would have to wait on rendezvous 
channels, their precise timing would be jeopardized. 
Therefore asynchronous channels are needed. To allow 
notification of actuator task of vacant data situations we 
can put a simple counter in the channel. Every write re-
sets counter to zero, and every read increment counter. 
Read function returns data value and data status informa-
tion. Status can have one of following values: ok if 
counter=1, vacant if counter>1 and blackout if counter 
exceeds value specified by actuator task. In case of va-
cant and blackout data status, actuator process will have 
to decide whether to use old value, some default value, to 
trigger entering safe-state (etc. shutting down all motors) 
or release some emergency process. If we want to enable 
replacing vacant data with some interpolated value we 
can introduce asynchronous channels with history. They 
can keep specified number of last received values as well 
as number of periods (number of reads) this values spent 
in status of last received and use some actuator specific 
mechanism for calculating interpolated values.    

Note that still in some situation rendezvous commu-
nication for actuators and sensors tasks could be more 
suitable then proposed solutions.  Choice between those 
two approaches is left to designer of system based on this 
framework. 

 

E.  Middleware organization 
Computation tasks connected through precedence 

graph should use rendezvous channels. It would be con-
venient if both sender and receiver processes could spec-
ify amount of time they are ready to wait for rendezvous 
– timeout. For receiving process amount of time can be 
derived from minimal and/or worst case execution time. 
When receiving process gets data after minimal execu-
tion time of following processes expires, there is no use 
to do any computation with that data. Vacant sample 
should be encountered and fault tolerance layer should be 
notified of error. For sending process timeout is set ac-
cording to need to handle next input data and can be set 
to be equal to period of whole subsystem. 

Since running the Java version of the CTJ library is 
not possible without JVM and underlying operating sys-
tem, on microcontrollers with low memory, C and C++ 
versions of library have to be employed. This basically 
means that library should enable nodes with different 
language versions of CT to communicate. Unlike C and 
C++, where size of some data types and Big/Little En-
dian order can be different on different machines, JAVA 
has same representation of data for all platforms. There-
fore, decision is to send data in Java formats and systems 
with CTC or CTCPP libraries can have additional OSI 
presentation layer process to transform this data to local 
representations they use. JVM is solving different operat-
ing systems support for CTJ, but for CTC and CTCPP 
minimal differences might exists in versions of frame-
work for different operating systems.  

To have a scalable solution, we should allow proc-
esses to communicate over channel without knowledge 
where the other side is, addressing it just by its name.  
There must be some global base of channel names and 
route to channel expressed with its Channel ID, and 
Node ID.  During its creation channel registers with 
Global Identification Broker, sending its name, type and 
Node ID and getting his unique Channel ID and route. 
Broker must be replicated to avoid single points of fail-
ure. Generally, it would be good to enable the designer to 
make a tradeoff between minimal time overhead when 
channels are created in initialization phase, convenient 
for hard real-time systems, and enhancing reconfigurabil-
ity by enabling dynamical construction of channels 
Figure 12. 

In remote synchronized channels, a message that is to 
be sent over network should have a criticality value 
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(hard, soft, non real-time) and deadline defined. This 
value is used to dynamically determine priorities during 
bus scheduling according to dynamic bus scheduling 
technique. Message inherits criticality value from sub-
system of sending process. A deadline value can again be 
derived from worst case execution time of following 
processes specified by receiver or in simplest case can be 
set equal to end-to-end deadline or period of whole sub-
system. Node can be connected to many heterogeneous 
networks. Low level message shaping details are done in 
passive, link driver objects in context of sending process 
before it is blocked. Data shaping means that object to be 
sent must be flattened to stream of bytes and divided into 
packets of size limited by underlying network protocol. 
The header of the message contains a reference to its 
channel, size, deadline and criticality attribute. For each 
network on node, there is fieldbus control process con-
structed as parallel construct of two separate processes: 
one for bus scheduling and transmitting packets and 
other one for receiving packets Figure 12.  

Multiple channels use the same fieldbus control proc-
ess, concurrently writing message headers. Bus schedul-
ers have separate FIFOs for every criticality attribute 
(hard, soft, not real-time).  In each FIFO, message head-
ers are prioritized by their deadlines. A bus scheduler 
takes  packet from the channel pointed to by  the first 
message header from the most critical FIFO and sets its 
Message ID used for bitwise arbitration and content ad-
dressing. The first part of the message ID is the priority 
field and the first two bits of the priority fields are used 
to distinguish between hard, soft and non real-time mes-
sages. The rest of the priority field can be predetermined 
in the channel creation phase or determined dynamically 
based on message deadlines. The second field of the 
message is the channel ID. For one-to-X channels this is 

enough for a unique message ID value across messages 
from different nodes competing for network. If many-to-
X channels are required in system either node ID must be 
included as field of message ID, thus decreasing range of 
possible priorities, or more efficiently Channel IDs 
should be assigned separately for each involved sending 
process. Many-to-one communication can be triggered 
either by replica agreeing on group communication 
channel, or on multiple processes producing data for 
same consumer in turn. Each packet is sent separately 
over network and reception of first packet, as well as re-
ception of whole message, has to be acknowledged. 
Since CAN has powerful error detection mechanism and 
automatic message retransmission, packets in between 
don’t have to be acknowledged. Rendezvous process 
synchronization is ensured by delaying the acknowledg-
ment of first packet until receiver task is ready and 
blocking sending task until last packet is acknowledged. 
If timeout expires and receiving process is still not ready, 
message transmission is aborted. If this is the case, obvi-
ous advantage is more efficient use of network band-
width, since only first packet is sent.   

 At receivers end, packets are sent to FIFO inside in-
put channel. When all packets arrive, receiving process is 
released and is using passive link driver objects to join 
them into stream, which is then unflattened to object. If 
needed, conversions to local format of C respectively 
C++ data types is done.  
 

F. Ideas for future work 
Next step is to implement the CT kernel on other cho-

sen fieldbuses and make hard real-time industrial-like 
demonstrators. This should result in further improve-
ments in reconfiguration and scalability issues, in mini-
mizing communication overheads and better adoption to 
hard real-time systems needs. 

Remote method invocation can be implemented 
through call channels. They accept function ID of ser-
vice and all parameters, block client process and initiate 
operation at server side. When operation is executed re-
turn value is given to client process and that process is 
released. 

Efficient ways for encapsulating location knowledge, 
finding shortest route and timely and reliable multicast in 
heterogeneous networks, where message from channel to 
its remote proxy can travel over several fieldbuses, 
should be investigated.  

While load balancing is desirable especially in over-
load situations, mobile processes are not so easy to im-
plement. Here we can differentiate between periodic 
processes with h-state (history) and periodic processes 
without h-state. While latter can be easily downloaded on 
other nodes, appropriate channels and channel-proxies 

 
Figure 12: Main subsystem processes in middleware 
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can be easily made, making first category mobile in-
volves problem of saving process h-state. Furthermore if 
we want to use passive replication this h-state must be 
recorded on node different from one where process is 
executing. Best time to capture h-state is on arrival of 
task, immediately before current job of task begin. 

If we want to state that library is deadlock-free then 
higher layers of library should be built on same CSP con-
struct based organization principles and CSP based for-
mal check of whole library should be done.  

Timed CSP theory should be investigated in details 
and applied if possible. 

From implementation point of view, we have to in-
vestigate possible advantages of porting library to work 
under Real-time Java and KVM. KVM is version of Java 
Virtual Machine tailored for embedded systems by 
minimizing memory footprint and reducing API. 
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