
CSP Channels for CAN-Bus Connected Embedded
Control Systems ∗)
Bojan Orlic and Jan F. Broenink

Twente Embedded Systems Initiative,
Cornelis J. Drebbel Institute for Mechatronics and Control Engineering,

Dept. of Electrical Engineering, University of Twente,
P.O.Box 217, NL-7500 AE Enschede, The Netherlands

Phone: +31 53 489 2817 Fax: +31 53 489 2223
E-mail: B.Orlic@utwente.nl, J.F.Broenink@utwente.nl

∗) This research is supported by PROGRESS, the embedded system research program of the Dutch organization for

Scientific Research, NWO, the Dutch Ministry of Economic Affairs an the Technology Foundation STW.

Abstract – Closed loop control system typically contains
multitude of sensors and actuators operated simultane-
ously. So they are parallel and distributed in its essence.
But when mapping this parallelism to software, lot of ob-
stacles concerning multithreading communication and syn-
chronization issues arise. To overcome this problem, the
CT kernel/library based on CSP algebra has been devel-
oped. This project (TES.5410) is about developing commu-
nication extension to the CT library to make it applicable
in distributed systems. Since the library is tailored for con-
trol systems, properties and requirements of control sys-
tems are taken into special consideration. Applicability of
existing middleware solutions is examined. A comparison
of applicable fieldbus protocols is done in order to deter-
mine most suitable ones and CAN fieldbus is chosen to be
first fieldbus used. Brief overview of CSP and existing CSP
based libraries is given. Middleware architecture is pro-
posed along with few novel ideas.

Keywords – real-time, CSP, fieldbus, control, distrib-
uted, framework, fault-tolerance

I. INTRODUCTION

Making embedded distributed fault-tolerant hard real-

time systems requires substantial knowledge both in ap-
plication specific domains, control engineering and in the
software development field. There is lack of employees
with sufficient knowledge in all mentioned areas and us-
ing application specialist and software specialist to write
separate program modules and interconnecting those
modules later in development process, generally does not
yield satisfactory results.

Main objective of this project is to make a flexible
framework that will enable control-system domain ex-
perts to build distributed fault-tolerant hard real-time sys-
tems without much help of computer software specialists.

They should be able to easily use code generated from
control-system modeling and design tools like Matlab,
Simulink and 20-Sim. Unfortunately, although there is
need for building parallel and distributed systems, most
of the mentioned tools still generate sequential code.
Reason for this approach is mostly the huge complexity
associated with multithreaded programming. We want
tools to assist designers in transparent and structured way
of using multithreading for implementing inherently par-
allel control systems. On quasi-concurrent single proces-
sor systems this is solved by using our CT (Communicat-
ing threads) kernel library [1, 2]. This CT library is based
on CSP (Communicating Sequential Processes) theory
[3, 4]. Currently, we have C, C++ and Java versions of
the CT library (CTC, CTCPP and CTJ). Since we want
systems that are working really parallel and not just
quasi-parallel, aim of this research is extending CT ker-
nel library with real-time middleware operating over
fieldbuses.

In existing control systems, there is often gap between
timing constraints of control theory model and practical
implementations, causing uncontrollable performance
degradations [5]. Hard real-time systems are usually mis-
sion-critical, and thus they usually encompass some sup-
port for fault tolerance.

 An overview of main timing, scheduling and fault-
tolerance properties and requirements of real-time con-
trol systems is given in section 2. Section 3 is an over-
view of existing middleware solutions and their applica-
bility in our framework. Since this middleware will be
made using existing fieldbus protocols as lowest layers, a
brief overview of fieldbuses, their history and compari-
son is given in section 4. As the CAN fieldbus is chosen
to be first fieldbus used, separate subsection is dedicated
to its properties and problems in real-time applications.
Section 5 presents basic ideas and concepts of CSP, their
appliance in CT kernel library and ways of formal check-

PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

© PROGRESS/STW 2002, ISBN 90-73461-34-0 OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

ing for synchronization problems. In the In the last sec-
tion, it is presented how all requirements and design
principles derived in previous sections are thought to be
incorporated to form the new framework design.

II. DISTRIBUTED REAL-TIME CONTROL SYS-
TEMS AND REQUIREMENTS

Control systems typically function at number of levels

(Figure 1).
Supervisory control ensures that overall aim is

achieved by using monitoring functions, safety, fault tol-
erance and parameter adaptation algorithms. Sequential
control produce sequences of operations, like in washing
machine timed program.

Figure 1: Embedded Control Systems Architecture

At lowest level there is loop control that periodically
executes the following three phases: gather data from
input sensors, calculate control signals according to cho-
sen control algorithms and send them to actuators. Time
between related sampling and actuation actions is called
control delay [5]. In existing control systems, there is
often gap between control theory model that assumes
equidistant sampling with constant sensor to actuation
delay time and practical implementations based on re-
sponse time oriented scheduling models where it is not
important when is task executed as long as it finished
before its deadline [5, 6].

III. TIME PROPERTIES OF PROCESSES AND MESSAGES IN
CONTROL SYSTEMS

Parallel systems are made by dividing system into in-

divisible schedulable elements called tasks. Considering
regularity of execution task can be: periodic, aperiodic
and sporadic. Periodic tasks are required to execute ex-
actly once every period. Aperiodic task can be triggered
at any time and at any rate. Sporadic tasks are special
kind of aperiodic tasks where maximum inter-arrival rate
is predefined. Sporadic tasks can be handled in time pre-
dictable way by using periodic servers to handle them
and reserving time slots according to defined minimal
inter-arrival times.

Real-time systems are usually described as systems
where not only the logical correctness of the results is
important, but also time at which results are obtained.
Therefore tasks and messages can also be classified ac-
cording to changes in their utility functions over time
(Figure 3). If results, arriving too late, have catastrophic
implications, systems are characterized as hard real-time
systems. If violated timing requirements affects perform-
ance but can be tolerated, systems are characterized as
soft real time systems. Non real-time tasks have flat util-
ity function. There are also tasks that need to be done
precise on time (bounded jitter is allowed but usually
influences system’s performance).

Figure 3: Utility functions for different tasks and mes-

sage types (adapted from [7])

So far we mentioned two classifications of tasks and

messages in real-time systems: one based on time-
regularity and other on time-utility properties. All com-
binations of those two classifications are possible. In
control systems, especially important are precisely peri-
odic tasks, i.e. periodic tasks that must execute (not just
to be released) exactly one period apart in predefined
time.

Figure 2: Equidistant sampling with constant control de-
lay

Appliance I/O

Embedded Software

U
se

r I
nt

er
fa

ce

Supervisory C

Sequence C

Loop C

148

Distributed scheduling techniques are described in de-
tail in [6-8]. The kernel should group all scheduling spe-
cific details in separate modules to allow ease of replac-
ing scheduling techniques. In general, task scheduling
and bus scheduling in distributed systems are not inde-
pendent. For instance, late delivery of messages postpone
the release time of receiving task and therefore influence
task scheduling on receiving node. Also, late arrival of
sender task can influence bus communication if this
communication is time-triggered. A holistic approach to
task and bus scheduling was proposed in [9]. Neverthe-
less, the framework should decouple bus scheduling and
task scheduling in a way that algorithms used to imple-
ment them can be changed independently. In distributed
systems, clocks must be synchronized and time master is
processor or dedicated hardware with reference real time
clock. To tolerate for failures, several nodes should be
potential time-masters. Highest priority task of time-
master can be used to periodically produce clock syn-
chronization and strobe messages.

Periodic messages are usually sent and received by
periodic tasks (sending message periodically can also be
triggered directly in hardware) and most often in control
systems they directly or indirectly represent state vari-
ables. If a control algorithm can tolerate vacant sampling
by reading old values, channels for periodic messages
can be realized as overwrite buffers. Otherwise synchro-
nous rendezvous buffers must be used. When using syn-
chronous buffers, it is possible that processes blocked on
channels can form a cycle. This is called deadlock. In
CSP-based systems, deadlock situations can be detected
and eliminated during design phase using some CSP
based formal checking tool (etc. FDR tool developed by
Bill Roscoe). To eliminate risk of deadlock, channels
could encompass notion of timeouts and both sender and
receiver should define how much they are prepared to
wait for rendezvous.

Aperiodic messages (etc. alarms) are event triggered
and they usually result in waking up some aperiodic
event handling task. Calamities are mostly detected by
more than one sensor, resulting in an avalanche of error
messages. This state is known as alarm shower [10] and
in such cases aim of utmost importance is to maintain
temporal ordering of events such that the event causing
the malfunctioning can be determined. Sensors sending
alarms during an alarm shower can be on different nodes
and in case they send messages in same time, the mes-
sage with the highest priority will be sent first. The tem-
poral order can be maintained either by including time-
stamps in event messages or by relating the time of the
event with the priority of the message. The former ap-
proach introduces additional overhead for every event
message, while with the latter approach we loose the pos-

possibility to prioritize alarm events according to their
urgency.

Timing problems in real-time control systems and
their influence on the control performance are not yet a
totally explored area, but merely a subject of research [5,
6, 11]. Although modern control theory is making some
advances towards control algorithms that handle time
varying delays, most of the contemporary control sys-
tems are built based on control theory that assumes con-
stant control delays and equidistant sampling. Translated
to the task domain, this means that sampling and actua-
tion tasks should be precisely periodic. Otherwise, the
control performance of the overall system will detoriate
and in some cases even the stability of system can be
jeopardized.

Computational algorithms of each subsystem usually
consist of periodic tasks dependent of each other and
executing in some sequence, which can be described by
precedence graphs (an example is shown in Figure 4).

Figure 4: Possible precedence graph for one of loop con-

trol subsystems

This subtasks can execute on different processors,
near data sources they use or because some of them need
to use special processors or hardware. They start after the
precisely periodic sampling tasks finish and must pro-
duce results before arrival of precisely periodic actuation
task. Often, instead of specifying explicit deadlines to
every intermediate task forming a precedence graph of
computational algorithm, this behavior is defined only
through end-to-end deadlines.

A. Fault-tolerance requirements

Fault tolerance is the ability of a system to keep pro-
viding specified services in spite of faults. Fault toler-
ance can be implemented in the framework, in the appli-
cation or in both. Establishing fault tolerance facilities
inside the framework make total fault tolerance support
more efficient. Applications based on this framework are
expected to use rather low-price COTS (commercial off

149

the shelf) components then expensive specialized hard-
ware. Therefore, software methods for fault tolerance are
preferred choice.

Vacant sampling is situation when sampling data or
output data from some computational task is not deliv-
ered in time to input of some computational task. This
problem can arise from latency in overload situations or
from failure of node, task or communication network.
Vacant sampling or incorrect values can be experienced
for longer amount of time and that situation is known as
temporary blackout.

Often, after node failure and replicas activation, there
is simply not enough processor power in system for all
services. Answer to this challenge is in implementing
support for graceful degradation, meaning that we make
dynamical on-line reconfiguration trade-off between re-
source usage and performance level. In case of transient
overload, way to make tradeoff between resource usage
and precision of results is to use imprecise computing.
This means that hard real-time tasks are divided in
obligatory and mandatory part and mandatory part is per-
formed only when there is enough time.

IV. OVERVIEW OF EXISTING MIDDLEWARE
COMMUNICATION MODELS AND SOLUTIONS

A. Remote Method Invocation vs. Publisher/Subscriber
communication model
What kind of communication model do we really

need in distributed control systems: Remote Method In-
vocation (RMI) or the Publisher/Subscriber communica-
tion model? RMI as object oriented approach could at
first sight seem to be far better. But in control system
described through set of cooperating processes, most of
the time we are interested just in passing data from one
process to another and not in calling functions of remote
objects. Besides that, RMI is based on point-to-point
communication. If more than one process needs same
data (etc. input from sensors), it must be separately sent
to each of them. Hard real-time systems are usually mis-
sion critical and they often must contain fault tolerance
mechanisms, which are usually made by replicating
hardware and/or software modules. If there are replicated
processes on different nodes, all replicas must get same
input values and must agree on output values. Broadcast-
ing is much more efficient for this kind of communica-
tion [12]. The Publisher/Subscriber method is far more
simpler to implement and thus can be made far more ef-
ficient considering time overhead it will bring in control
loop.

B. Why don’t we use existing solutions?
Of course, at beginning of every project there is al-

ways a question: do we really have to make everything
from scratch, or we can just (re)use something that al-
ready exists? First of all, commercially available and
open-source middleware exhibit serious lack of fault-
tolerance and real-time properties.

Most famous and most widely used middleware is
CORBA. In embedded systems we aim to keep nodes as
small and as cheap as possible, and CORBA is resource
demanding middleware not tailored for embedded sys-
tems. It is based on RMI and not on the preferred pub-
lisher-subscriber communication model. Besides
CORBA does not have appropriate mechanisms for
guaranteeing real-time constraints. Maybe, we could use
the CORBA reference model, cut out performance bot-
tlenecks and try to make it real-time. This was actually
done at Washington University in TAO project [13], but
still the resulting middleware is too resource- intensive to
fit in embedded systems. Anyway, the TAO project
yielded many communication design patterns and some
of them might be applied in our middleware.

From other existing middleware solutions, Jini is of-
fering some interesting services. For instance, services
can discover other services in the system; they can
signup to be notified of other services/nodes appear-
ing/disappearing. Furthermore, it is possible to download
code. First problem is that Jini is implemented on
Ethernet and therefore inherits its unpredictable message
delivery time. One of the major goals of Jini was to
“raise the level of abstraction of distributed programming
from the network protocol level to the object interface
level” [14]. Based on this, we could try to port this
Ethernet-only middleware to work on some real-time
fieldbus, for instance on CAN. This was done [14], at
Carnegie Mellon University as part of RoSES project
[15], but they were not satisfied with the achieved re-
sults. It appeared that in spite of the proclaimed inten-
tions, some TCP/UDP specific features like host names
and port numbers had crept into Jini’s object interface
level specifications. After discovering services, Jini
communication between two services is based on RMI
communication model as in CORBA. Therefore, that
gives rise to problem of achieving efficient multicast and
broadcast transfers. Besides, since Jini uses some func-
tions not supported by KVM (embedded version of Java
Virtual Machine), the whole Java Virtual Machine had to
be used, resulting in a too large memory footprint. How-
ever, it is possible to tailor KVM and Jini to be compati-
ble.

Reusing is not all about reusing existing components
and source code. What we can also reuse is experience in
solving some general and often recurring problems and

150

usually this experience is best encapsulated in shape of
various design patterns. Valuable directions for using
OOP and design patterns in embedded hard real-time
framework can be found in the AOCS (attitude and orbit
control systems on satellites) framework [16]. Although
the AOCS is a domain specific framework, it demon-
strates a design approach that could be used in any em-
bedded hard real-time systems.

V. FIELDBUSES

A. Historical overview
Historically, fieldbuses are end product in evolution

of process control system architectures. In 1960s there
were central mainframe computers (constituting single
point of failure for system) with costly point-to-point link
to each field device. In early 1970s, supervisory and con-
trol functions were delegated to several controllers still
located near mainframe computer and connected with it
and with field devices by point-to-point connections. In
mid 1970s controllers moved from control rooms closer
to field devices, using serial network to communicate
among themselves and point-to-point connections for its
own sensors and actuators. In early 1980s, serial net-
works known as fieldbuses are used for communication
among field devices. Field devices became smart equip-
ment with built in automatic calibrations, correction of
offsets/drifts, executing local control and fault-
monitoring functions [17].

A fieldbus is serial bus network that provides com-
munication among field devices (sensors, actuators, con-
trollers, regulators). It is usually based on layered struc-
ture made omitting few highest layers in OSI reference
model. A fieldbus offers set of communication services
and protocols. Currently there are more then 30 different
kinds of fieldbus protocols: CAN [18, 19], Profibus [20],
WorldFIP [21], LonWorks [22], Interbus, P-NET, EIB,
DeviceNet, Hart, etc.

In the rest of this section properties of various field-
buses are compared, but emphasize is put on CAN bus,
because it has been chosen to be first one on which CT
libraries will be ported.

B. Comparison, classifications and CAN basic proper-
ties
There is no generally accepted standard concerning

fieldbus protocols. Therefore, in order to choose fieldbus
most convenient for implementing CT library channel
concept, some theoretical comparison studies between
existing fieldbuses protocols concerning their application
in hard real-time systems had to be done. Based less on

this comparison and more on fact that it is already pre-
sent in our lab, the first choice was the CAN fieldbus.

Many of fieldbuses are tailored to satisfy some spe-
cific request, thus forcing the system designer to be very
careful when choosing appropriate fieldbus solution for
its application. Some of most important differences like
available bandwidth, message delivery times (through
priorities), and robustness are often consequences of dif-
ferent optimizations in the underlying MAC (Media Ac-
cess Control) implementation. For instance, CAN is tai-
lored for automotive networks and thus it provide deter-
ministic, reliable communications with short prioritized
messages and extensive error detection, but a price is
paid in limited length and speed (up to 1 Mbit/sec) of the
bus. The Profibus has different variants tailored for fac-
tory automation, process automation, motion control and
safety-relevant applications. LonWorks is optimized for
flexibility to allow broad variety of applications. World-
FIP employs ‘producer/consumer’ mechanism allowing
easy construction of distributed real-time databases. Be-
sides, in WorldFIP aperiodic traffic is handled using an
external control communication model, where the appli-
cation processes explicitly trigger transaction and
autonomous control is employed for time-triggered peri-
odic traffic through static table-based scheduling. This
makes it more resilient to babbling idiot faults and event
shower situations. Most of other fieldbuses implement
only external control based on priorities.

Classification of fieldbuses can be based on different
properties. If we consider the approach used to identify
source and destination nodes (addressing), there are two
categories: fieldbuses that specify address of receiving
node(s) directly in the message header and content ori-
ented (or source addressing) fieldbuses, where receiving
nodes filter message IDs and take only messages of types
they are interested in. While direct addressing is more
widely used, content based addressing is applied in
WorldFIP and CAN fieldbuses. Advantages of content
oriented approach on CAN fieldbus are: flexibility in
adding nodes (no change of software on existing nodes is
needed), guarantee that message is accepted either by all
nodes or by no node, efficient support for multicasting.
Multicast communication is needed when data collected
by a sensor or intermediate results of control algorithms
are shared among few nodes and is also useful for
achieving group communication among replicas in fault
tolerant systems. Many fieldbuses support one-to-many
communication (multicast), but at the direct addressing
approach, extra hardware is needed at every receiver to
filter the broadcast address. In content-based fieldbuses,
receivers filter message ID anyway. This property makes
implementation of Publisher/Subscriber model easy and
efficient.

151

If we base classification on the way fieldbuses resolve
bus conflicts there are: Token based, Master/Slave,
TDMA and carrier-sense (CSMA/CD, CSMA/CA and
CSMA/DCR) fieldbuses.

Token based buses prevent bus conflicts through the
use of special signals-tokens. Token is passed from one
node to next in virtual or real ring structure and only
holder of token has access to the bus. Token based buses
(PROFIBUS, MAP, P-NET, IEC Fieldbus, FDDI, AR-
CNet, PLC-192) are predictable, but they suffer from
large token-managing overhead under light traffic.

 Master/Slave token passing (MS/TP) fieldbuses
(USB, MIL-STD-1553B, MIL-STD-1773) minimize
communication work of slave nodes having a centralized
master periodically polling the slave nodes (can be seen
as master giving a token to slaves) for information. A
centralized master constitutes a single point of failure.
This fault tolerance problem is in Profibus solved using a
multi-master approach.

 In Time Division Multiple Access (TDMA) systems
each node transmits during its own offline pre-
determined time slot. TDMA systems (TTP-C, TTP-A,
DATAC…) give guarantee of deterministic behavior, but
there is lack of flexibility.

Carrier-Sense bus means that nodes transmit only af-
ter detecting the idle bus. Still collision can occur if two
or more nodes detect idle bus and start to transmit in
same time. There are three different mechanisms for re-
solving conflicts on bus and thus three different kinds of
carrier-sense buses: Carrier Sense Multiple Access with
Collision Detection (CSMA/CD), Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) and Car-
rier Sense Multiple Access with Deterministic Collision
Resolution (SMA/DCR).

In CSMA/CD if two or more nodes collide, they
back-off and try to retransmit message after randomly
determined time period. CSMA/CD is non-deterministic
and thus buses based on it (Ethernet) are not appropriate
for hard real-time systems.

Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) combines CSMA/CD efficiency under
light traffic and token based efficiency under heavy traf-
fic. Each node has local timer pre-set with a unique
value. After a start signal sent periodically by leader
node, all nodes release their timers. Node with lowest
value in timer gets the bus first. All other nodes sense
bus activity and reset their timers. In one cycle, a node
can transmit one periodic message, one urgent aperiodic
message and one not urgent aperiodic message. After
sending those messages, node waits for leader to signal
start of next period [17].

The CAN fieldbus belongs to CSMA/DCR category.
Identification field of CAN message beside its role in
content based addressing, constitutes priority for bitwise
arbitration in case of collision. In fact, the CAN bus be-
haves as a wired AND gate with each node seeing all
output. The dominant value (‘0’) on the bus always
overwrites the so-called recessive bit (‘1’). All nodes
competing for access to the bus transmit bit-by-bit their
identification field and listen to the output value. The
node that sent a recessive value and perceived dominant
output looses arbitration and backs off. The node trans-
mitting the highest priority message gains immediate
access to the bus and can transmit without any delay.

Fieldbuses can be compared based on maximal speed,
maximal bus length and support for working in harsh
environments (error detecting and recovery mecha-
nisms). One such comparison [23] for three most widely
used fieldbuses is given in Table 1.

With a maximum speed of 1Mbit/s CAN can not be
qualified as a high-speed bus. The maximum length is
inversely proportional to the used CAN bus speed and
ranges from only 10 m for highest speed to few hundred
meters for much more moderate speeds. Reasons for this
length limitation originate from the CAN error detection
concept, where every node must listen to every bit on the
bus.

Some fieldbus protocols have built-in support for ex-
tending networks. LON identifies each node by a hierar-
chical address composed of domain, subnet and node
address and allows routing of messages. PROFIBUS al-
lows several segments interconnected by repeaters. P-
NET contains several segments interconnected through
gateways. CAN does not have built-in support for ex-
tending the network, but it can be done building higher
level layers on top of the protocol.

The CAN protocol has fixed-format messages of lim-
ited length shown in . CAN-B has an extended message
ID field, namely 29 instead of 11 bits. By sending a re-
mote frame message, a node may require another node to
send the corresponding data frame.

Error detection is based on CRC checking and bit
stuffing. Any node detecting an error sends an error
frame consisting of six consecutive dominant bits, thus
violating bit-stuffing rules. Faulty messages are retrans-
mitted automatically.

In CAN, fault confinement (restricting influence of
faulty nodes) is implemented by counting transmit and
receive errors per each node. When each of the counters
reaches 127, node enters error-passive state where it can
signal errors only while transmitting and is obliged to
have extra eight bit waiting period after transmitting, be-
fore it is allowed new transmission.

152

C. CAN problems and protocols to solve those problems
Real-time fieldbus should have bounded response

times of messages. Bitwise arbitration used in CAN en-
able a node transmitting the highest priority message to
gain immediate bus access and transmit without any de-
lay. Thus, it is possible to calculate worst case response
time for highest priority message. Longest time node
waits for the bus to become idle is equal to longest time
to transmit CAN message. Problem is that latency for
messages with lower priority seems to be unbounded. At
University of York [24] analysis for calculating message
response times on CAN has been done.

Although most failures are handled consistently by all
nodes and there is general belief that CAN native
mechanisms provide atomic broadcast, it was shown in
[25] that there is possibility for inconsistent message
delivery and generation of message duplicates in case of
network errors. This scenario happens when two last bits
of seven bit end of frame are faulty, receivers do not
agree on correctness of message and sender crashes be-
fore retransmission. Mean time of such error is 3.98*10-8
which might be unacceptable for some safety critical ap-
plications. To solve this problem reliable broadcast pro-
tocol was made [25] as simple software layer on top of
CAN. Complete set of atomic multicast and consolida-
tion protocols as well as replication management frame-
work have been proposed in [26].

Dynamic bus scheduling for CAN was investigated at
the University of Michigan [27], resulting in proposed
Mixed Traffic Scheduler (MTS) that was supposed to
have better utilization then fixed-priority schemes and
less overhead then dynamical earliest-deadline (ED)
scheduling.

So far, several research groups have, with more or
less success, ported CORBA on CAN [28]. But CORBA
is RMI based and not real-time and therefore not suitable
for hard real-time systems.

CAN fieldbus is particularly suitable for implementa-
tion of Publisher-Subscriber model, as shown in [29].
Same research group also invented new dynamic bus
scheduling technique, where soft real-time activities are
scheduled with EDF approach and deadlines of hard real-
time communication is guaranteed by calendar-based
resource reservation [12].

VI. CSP ALGEBRA AND ITS APPLIANCE IN THE CT LI-
BRARY

CSP [3, 4] is notation for describing patterns of com-
munication by algebraic expressions that allows formal
checking for undesired conditions like failures, diver-
gences, race hazards, deadlocks, livelocks and starvation.

Figure 5: Format of a CAN message

Fieldbus CAN PROFIBUS WorldFIP

Max Speed up to 1
Mbit/s 500 kbit/s

5 Mbit/s
(with Opti-
cal fibres)

addressing source direct source

Max #
nodes with/

without
repeaters

N/A /30 127 /32 256 /64

Max dis-
tance with

/ without
repeaters

N/A /
40m-
1Mb/s

1km-20
kb/s

800 m/ 200
m

10 km/ 2
km

Arbitration CSMA Token pass-
ing

Bus
Arbiter

Header/Data
size

8 bytes
fixed 250 bytes 1 to 128

bytes

Primary
applications

In sensors /
actuators
Automo-

tive

Inter-PLC
commun.
Factory

automation

Real-time
control

Process/
machine

Distributed
data base

Table 1 Fieldbuses comparison

153

A number of concurrent programming languages like
occam and Ada are based on CSP. In CSP each separate
flow of control that executes sequential code along with
all associated passive objects is called process. Process
can communicate with other processes only through us-
age of special synchronization primitives called chan-
nels. Channels serve to hide location and internal struc-
ture of communicating processes from each other. Each
process has separate address space and because channels
have pass-by-value semantics, there is no way that one
process can change state of some other process. Proc-
esses never access hardware directly and are therefore
hardware independent. The channel communication
model allows changing allocation of processes on proc-
essors without changing program code, which makes this
solution scalable.

Process execution is organized hierarchically using
sequential, parallel and alternative constructs. The se-
quential composition construct mean that its subproc-
esses are executed one at the time and in order. The con-
struct finish when all subprocesses are finished. In paral-
lel construct subprocesses are executed in parallel. If
construct is executed on one processor then subprocesses
are executed in quasi-parallel way by sharing processor
time. Constructs end when all its subprocesses are fin-
ished. Alternative construct wait till one of the processes
guarded by inputs, outputs and timeouts becomes ready,
execute that process and finish. Although not described
in CSP theory it is common to make two extra constructs
by adding notion of priority to parallel and alternative
constructs. Constructs derived in this way are priparallel
and prialternative. One of possible CSP representations
of precedence graph from Figure 4 is given on Figure 6.

Figure 6: Transformation of precedence graph to CSP

constructs architecture

There are two existing libraries providing process ori-
ented design patterns for dealing with concurrency in
Java: Communicating Sequential Processes for Java
(JCSP) [30] and Communicating Threads in Java (CTJ)
[1, 2]. Detailed comparison of two libraries is given in
[31]. JCSP passes local messages by reference and only
external messages by value. JCSP networking [31] solu-

tion is based on T9000 transputer communication mecha-
nisms [32].

CTJ is intended to be the framework library for real-
time systems. Therefore, instead of relying on different
and often non-deterministic scheduling mechanisms of
underlying operating systems, CTJ itself does thread
scheduling. The Java garbage collector has non-
deterministic behavior which makes it inconvenient for
real-time systems. CTJ passes all messages by value, giv-
ing the same semantics to remote and nearby channels
and encouraging reuse of objects, which results in less or
ideally no activity of the garbage collector. In CTJ,
channels are hardware independent, but can have
plugged-in link-driver objects which encapsulate hard-
ware-dependent device-driver code (Figure 7). Real-time
control systems usually operate over fieldbuses. Thus
making real-time library like CTJ distributed assume
building in support for communication over various
fieldbuses (Figure 8).

 Ideally instead of having separate framework version
for each network protocol, CTJ should encompass ability
for distant processes to communicate over shortest route
in heterogeneous network environment. Putting CTJ to
work on CAN fieldbus is just a first step in making this
library truly distributed in real-time control environ-
ments.

VII. PROPOSED ARCHITECTURE FOR REAL-TIME
MIDDLEWARE

Since working on any framework is a process, espe-
cially while implementation is still far a way from being
finished, I want to emphasize that proposed solutions to
some of recurring problems in control and distributed

Figure 7: Channel Framework in CTJ

154

systems are not definitive and are likely to be changed as
soon as better and more elegant solutions came on sur-
face. Consider following lines only as some of possible
ideas being currently under consideration for building
into framework.

A. Realizing end-to-end deadlines
Consider now subsystem with precedence graph

shown on Figure 4. One possible scheduling approach is
to derive release times and deadlines of all intermediate
processes. First logical conclusion is that each process
should have such a deadline that if it finishes before its
deadline, all following processes and all following com-
munication must have enough time for worst case execu-
tion. But missing this deadline based on worst case as-
sumptions of all following processes and communica-
tions does not mean that there is no way to satisfy end-
to-end deadline. On contrary, we can expect that in most
cases end-to-end deadline requirements will still be satis-
fied. Possible solution is to define two kinds of deadlines
for intermediate processes: soft and hard deadlines. Soft
deadline would be calculated to leave enough time for
sum of all worst case execution times of following proc-
esses and communications. This deadline should be
forced by scheduling subsystem. Hard deadline would be
derived based on minimal execution time of all follow-
ing processes and communication. Error handling
mechanisms should not be used until this deadline is
missed, that is as long as there is slightest possibility to
satisfy end-to-end deadline.

Expressing this in utility functions, yields diagrams as
in Figure 9. Sensor and actuator tasks are precisely peri-
odic and utility of their execution drops when jitter com-
pared to fixed sampling and actuation points increase.
Other tasks into precedence graph are constrained
through order of execution and end-to-end deadline. Task
utility is constant until it reaches soft deadline point
where achieving end-to-end deadline can still be guaran-
teed even in case of worst case execution times of all
following subtasks. After that point utility value of task

execution drops until hard deadline point. Further from
that point there is no way to achieve end-to-end deadline
and further execution of task is useless, or we can say its
utility value is zero.

Figure 9: Utility functions for processes from Figure 4

B. Fault tolerance layer
Designer should be able to specify what should be

done when vacant sampling is encountered: should some
default value be used or should value be predicted from
history values and how (value same as in previous period
would be special case of this), or should the system enter
some safe-state or even be shut down. Designer should
also be able to specify allowed amount of lost informa-
tion before registering temporary blackout situation and
forcing system to shutdown or safe-state.

First we must make distinction between time critical-
ity and utility criticality of tasks and messages. Function-
alities essential for system might contain some soft and
not real-time tasks considering time criticality. On the
other hand, functionalities that are optional additions to
system’s essential behavior can encompass hard real-
time loops [15]. We can imagine each of those function-
alities as separate subsystem consisting of mutually de-
pendent tasks related through precedence graph and op-
tionally constrained with end-to-end deadline. Further-
more these subsystems can be nested, thus enabling that
only one part of functionality have hard real-time end-to-
end deadlines. Subsystems are units of replication, mean-
ing that internal outputs of processes inside subsystems
need not to be agreed upon, while subsystem outputs
consolidation is needed for replicated subsystems used
by other subsystems. Sensor tasks and actuator tasks are
grouped in separate sensor and actuator subsystems.
Essential subsystems must be replicated, while optional
subsystems may or may not be replicated depending on
value of their criticality attribute. This replication can be
either active with synchronous agreement protocol
among replicas or passive where only one replica is exe-
cuted at any time and is substituted only if it crashes.
Note that, to tolerate for n faults, 2*n+1 active replicas
must be used. Although process code downloading is

Figure 8: Plug and play framework for devices

155

desirable property, embedded networks usually have not
enough bandwidth and therefore pre-positioning of repli-
cas is preferred in first phase of framework implementa-
tion. Here we can follow Jini plug-and-play ideology by
allowing higher level subsystems to reveal their presence
to other subsystems on network. Subsystems should be
characterized with two attributes: one specifying critical-
ity and other specifying type of subsystem. Subsystems
offering same functionality (having same type of service
attribute) can be interchangeable. In case one of nodes
fails, not replicated subsystems from failed node can’t be
recovered. Replicated subsystems need to agree on out-
puts and thus need to communicate through special kinds
of channels-group consolidation channels.

Graceful degradation can be done by deciding to omit
execution of some optional subsystems. Another way
would be choosing to execute version of subsystems that
require less resources. Third solution would be to inten-
tionally change period for periodic subsystems. This is
possible since period in control algorithms is generally
not determined based only on Shannon theorem, but also
based on required performance demands. Control algo-
rithm can allow range of possible periods, where larger
periods implicate somewhat worse but still acceptable
control performance. [5, 6] Also, different subsystems
implementing different control algorithms can be used
for different ranges of sampling period value. So every
periodic subsystem should define period for optimal con-
trol performance and period for achieving minimum al-
lowable performance. Or we can even allow designers to
make alternative subsystems and structures connecting
period ranges with best suited alternative for that range.

General framework for building hard real-time control
systems should not enforce neither one of proposed
graceful degradation solutions, but should enable design-
ers to easily and in transparent way implement each one
of them.

Fault tolerance layer can be separate subsystem or-
ganized as priparallel construct consisting of Reconfigu-
ration Manager, Replica Manager and user defined alarm
handlers. They are all working on top of lower commu-
nication management layer and should be independent of
underlying network protocol. When failed node is de-
tected, Reconfiguration Manager is released to activate
passive replicas and implement support for graceful deg-
radation as described previously. Replica Manager is as-
sisting group communication channels to achieve repli-
cas determinism.

C. Scheduling integrated with CSP constructs
Slack (laxity) time is defined as the maximum time

task can be delayed to complete within its deadline. In
Figure 10 total slack time is sum of slack1 and slack2

times. But we are working with preemptive systems,
where task execution can be interrupted and in classical
scheduling approaches worst case execution time is fixed
and slack time can’t be updated properly.

Consider system consisting of many subsystem proc-
esses described with precedence graph as one on Figure
4 and optionally with attached end-to-end deadline.
Specify worst case execution times of process Pi as Ci.
If we have process P as sequential construct consisting of
processes P1 and P2, worst execution time of P is C = C1
+ C2. If P is parallel construct of same processes C = C1
+ C2 in quasi-parallel realization (P1 and P2 are on same
node) and C = max (C1, C2) in real parallel realization.
Scheduler can be implemented to consist of three priori-
tized FIFO queues: hard real-time, soft real-time and not
real-time queue. Each subsystem is sorted in one of those
queues. Subsystem processes without end-to-end dead-
line go to not real-time queue, mission critical subsys-
tems goes to hard real-time queue and all the others in
soft real-time queue. Whenever one process in some con-
struct finishes, all minimal and worst case left execution
times of its parent constructs are updated. Adding new
process dynamically also updates those times. For hard
real-time subsystems we want to guarantee bounded exe-
cution times and thus we allow adding process to peri-
odic hard real-time subsystem only before starting new
job for that process. Scheduler must test schedulability of
system with updated times of that subsystem. If system
doesn’t pass schedulability test, process is not accepted
and case is transferred to Reconfiguration Manager to
solve it.

The Scheduler process periodically gains the proces-
sor and sort ready queues according to their slack times
(Least Laxity). Note that now minimum, slack and worst
case execution times left, can be determined much more
precise because their values are updated regularly. We
can set thresholds for preemption to avoid context-switch
related trashing, when two subsystems have close values
of times used for scheduling. Each construct has an em-
bedded scheduler that distributes processor time in the
specified order for sequential constructs, fairly for paral-
lel constructs and according to assigned priorities for pri-
parallel constructs. When a subsystem gets processor
time, it distributes it following its own hierarchy of
nested schedulers (Figure 11).

Figure 10: Usual way to calculate slack (laxity) time

156

This is a novel way to naturally integrate task sched-
uling with CSP construct-based application architecture.
Since CTJ already has solid scheduling, proposed
method for scheduling integrated with CSP constructs
based architecture might be implemented in some later
version of library.

D. Achieving constant sampling period and actuation
delays
As it is elaborated in section II, control systems

should have constant control delay and equidistant sam-
pling. This is not easy to implement in practice, espe-
cially in heterogeneous distributed control systems where
network communication is part of control loop and where
multiple subsystems with different sampling frequencies
and phasing are employed. Obviously, some kind of
time-trigger is needed. Each subsystem can contain mul-
tiple sensors possibly on different nodes that should be
sampled in same moment of time. Therefore, same refer-
ence real-time clock must be used to trigger all time-
triggered actions.

Main stream in practice (and in CT library develop-
ment team) is to use interrupt service routine triggered by
local timers. Interrupt service routine (ISR) can read
data from sensor, write it to buffer and signal some
semaphore to release computational task waiting for in-
put data. In CSP architecture this would mean that we
realize sampling and actuation in passive channel objects
and we do not need special processes for those tasks. But
I find this approach to be potentially dangerous. Local
clocks may be synchronized, but there is always some
jitter. Sampling is a process that has some duration from
triggering A/D converters until sampled data is ready on
output of converter. Because it is not possible to block
ISR, this time is wasted for processor. Long execution of
one ISR can delay execution of other ISR that should
also be precisely periodic. Even if we could bound exe-
cution time of ISR it is still complicated to implement
scheduling algorithm that would take into account those
times. After all, we can expect that in complex control
system might exist some control process more urgent

then current ISR. Furthermore, in custom based schedul-
ing systems like CTJ, ISR doesn’t have its own context,
it is working in a context of interrupted process. There-
fore, ISR should never write to buffer, because buffer
implementation always encompasses mutual exclusion
and potential blocking of current process. Conclusion is
that interrupts should be used only to signal sampling
moment and release waiting sensor tasks. Similar analy-
sis can be drawn for actuator tasks. [7, 33, 34]

More efficient would be to have precisely periodic,
high (not necessarily highest) priority, sensors tasks to
transfer data from peripheral short-term memory to ap-
propriate channels and their remote proxies. Note that
multiplexed A/D converters can be used, but as usual
their inputs must be from different subsystems with dis-
tant enough phasing of sampling moments. Time master,
or local timers if satisfying level of clock synchroniza-
tion can be achieved, must periodically send strobe mes-
sage (it must have very high priority) for each group of
sensors. Strobe signal should release separate process,
which will select proper inputs on appropriate multiplex-
ers and initiate start of conversion in all A/D converters
from that subsystem. Same broadcast address for start of
conversion of all A/D converters would be particularly
convenient in this case. Separate sensor processes are
used for each sensor to collect data. Sensor processes are
blocked and wait for interrupt from converter. In mean-
time other processes can execute. When conversion is
finished, sensor tasks are released to collect data from
peripheral short term memory. Alternatively, sensor tasks
can be released upon strobe and send to sleep for prede-
fined conversion time. After wake up, they poll status of
converter. If number of available interrupts is to limiting,
scheme with only one interrupt per subsystem can be
used. Interrupt can poll converters and release appropri-
ate sensor tasks. To reduce number of bus cycles, addi-
tional simple hardware can allow that each nearby con-
verter from same subsystem use one bit in joint message
to expose its status. Sensor processes are not all of equal
importance, so they can be grouped in sensor subsystem
and organized as priparallel construct.

Similarly, constant control delay can be achieved by
employing actuator processes.

Often we want to use same sensor data in more then
one computational task. This is one-to-many communi-
cation, not with altering readers like is usually done, but
more like a broadcast transmission to all readers. Cur-
rently in CSP this is done through usage of “delta” proc-
ess. This process reads data from one channel and writes
the same data to channels of all processes interested for
that data. Alternative solution could be half-rendezvous
channels, that from outside have same semantics as delta
process meaning that applications based on them can still
be checked with CSP based checking tools. Main differ-

Figure 11: CSP construct based organization enable cal-

culating worst case execution time left and slack
times more precisely

157

ence is that half-rendezvous channels are realized as pas-
sive objects and not as processes (active threads). There-
fore main advantage is that this approach does not in-
crease context switching times. The disadvantage is that
this channel is not a compositional element like a delta
process; rather it is customized for single but often recur-
ring situation. The name half-rendezvous is given be-
cause readers wait for rendezvous and writer engage in
rendezvous only if there are readers waiting. This means
that the sensor process writes data to buffer inside the
channel and releases all computation processes waiting
on that channel. We do not want process that enter chan-
nel after sensor process and are still able to produce out-
puts on time, to be blocked until next sensor data arrive.
Thus, what we can do is to make all processes interested
in sensor data subscribe to channel. This will give chan-
nel some knowledge of processes and therefore is not
totally in spirit of CSP, but is very useful concept. So,
channel will maintain lists of all processes and ones that
already used current data Process performing read func-
tion is blocked only if it wants to take same data twice. If
some processes have not used current data and new data
arrive, error is encountered and reported to fault toler-
ance layer. If this channel is built as remote, all proxies
receive new data through broadcast transmission.

To achieve optimal control performance in control
systems, the sampling period is often few times less then
required by stability issues. This leaves room for toler-
ance to vacant sampling. Anyway, because constant
computational time is also very important, often actuator
should have some input in precise time. Thus, they are
also precisely periodic processes waiting on channels to
be released by time event. If, after released in precise
times, actuator tasks would have to wait on rendezvous
channels, their precise timing would be jeopardized.
Therefore asynchronous channels are needed. To allow
notification of actuator task of vacant data situations we
can put a simple counter in the channel. Every write re-
sets counter to zero, and every read increment counter.
Read function returns data value and data status informa-
tion. Status can have one of following values: ok if
counter=1, vacant if counter>1 and blackout if counter
exceeds value specified by actuator task. In case of va-
cant and blackout data status, actuator process will have
to decide whether to use old value, some default value, to
trigger entering safe-state (etc. shutting down all motors)
or release some emergency process. If we want to enable
replacing vacant data with some interpolated value we
can introduce asynchronous channels with history. They
can keep specified number of last received values as well
as number of periods (number of reads) this values spent
in status of last received and use some actuator specific
mechanism for calculating interpolated values.

Note that still in some situation rendezvous commu-
nication for actuators and sensors tasks could be more
suitable then proposed solutions. Choice between those
two approaches is left to designer of system based on this
framework.

E. Middleware organization
Computation tasks connected through precedence

graph should use rendezvous channels. It would be con-
venient if both sender and receiver processes could spec-
ify amount of time they are ready to wait for rendezvous
– timeout. For receiving process amount of time can be
derived from minimal and/or worst case execution time.
When receiving process gets data after minimal execu-
tion time of following processes expires, there is no use
to do any computation with that data. Vacant sample
should be encountered and fault tolerance layer should be
notified of error. For sending process timeout is set ac-
cording to need to handle next input data and can be set
to be equal to period of whole subsystem.

Since running the Java version of the CTJ library is
not possible without JVM and underlying operating sys-
tem, on microcontrollers with low memory, C and C++
versions of library have to be employed. This basically
means that library should enable nodes with different
language versions of CT to communicate. Unlike C and
C++, where size of some data types and Big/Little En-
dian order can be different on different machines, JAVA
has same representation of data for all platforms. There-
fore, decision is to send data in Java formats and systems
with CTC or CTCPP libraries can have additional OSI
presentation layer process to transform this data to local
representations they use. JVM is solving different operat-
ing systems support for CTJ, but for CTC and CTCPP
minimal differences might exists in versions of frame-
work for different operating systems.

To have a scalable solution, we should allow proc-
esses to communicate over channel without knowledge
where the other side is, addressing it just by its name.
There must be some global base of channel names and
route to channel expressed with its Channel ID, and
Node ID. During its creation channel registers with
Global Identification Broker, sending its name, type and
Node ID and getting his unique Channel ID and route.
Broker must be replicated to avoid single points of fail-
ure. Generally, it would be good to enable the designer to
make a tradeoff between minimal time overhead when
channels are created in initialization phase, convenient
for hard real-time systems, and enhancing reconfigurabil-
ity by enabling dynamical construction of channels
Figure 12.

In remote synchronized channels, a message that is to
be sent over network should have a criticality value

158

(hard, soft, non real-time) and deadline defined. This
value is used to dynamically determine priorities during
bus scheduling according to dynamic bus scheduling
technique. Message inherits criticality value from sub-
system of sending process. A deadline value can again be
derived from worst case execution time of following
processes specified by receiver or in simplest case can be
set equal to end-to-end deadline or period of whole sub-
system. Node can be connected to many heterogeneous
networks. Low level message shaping details are done in
passive, link driver objects in context of sending process
before it is blocked. Data shaping means that object to be
sent must be flattened to stream of bytes and divided into
packets of size limited by underlying network protocol.
The header of the message contains a reference to its
channel, size, deadline and criticality attribute. For each
network on node, there is fieldbus control process con-
structed as parallel construct of two separate processes:
one for bus scheduling and transmitting packets and
other one for receiving packets Figure 12.

Multiple channels use the same fieldbus control proc-
ess, concurrently writing message headers. Bus schedul-
ers have separate FIFOs for every criticality attribute
(hard, soft, not real-time). In each FIFO, message head-
ers are prioritized by their deadlines. A bus scheduler
takes packet from the channel pointed to by the first
message header from the most critical FIFO and sets its
Message ID used for bitwise arbitration and content ad-
dressing. The first part of the message ID is the priority
field and the first two bits of the priority fields are used
to distinguish between hard, soft and non real-time mes-
sages. The rest of the priority field can be predetermined
in the channel creation phase or determined dynamically
based on message deadlines. The second field of the
message is the channel ID. For one-to-X channels this is

enough for a unique message ID value across messages
from different nodes competing for network. If many-to-
X channels are required in system either node ID must be
included as field of message ID, thus decreasing range of
possible priorities, or more efficiently Channel IDs
should be assigned separately for each involved sending
process. Many-to-one communication can be triggered
either by replica agreeing on group communication
channel, or on multiple processes producing data for
same consumer in turn. Each packet is sent separately
over network and reception of first packet, as well as re-
ception of whole message, has to be acknowledged.
Since CAN has powerful error detection mechanism and
automatic message retransmission, packets in between
don’t have to be acknowledged. Rendezvous process
synchronization is ensured by delaying the acknowledg-
ment of first packet until receiver task is ready and
blocking sending task until last packet is acknowledged.
If timeout expires and receiving process is still not ready,
message transmission is aborted. If this is the case, obvi-
ous advantage is more efficient use of network band-
width, since only first packet is sent.

 At receivers end, packets are sent to FIFO inside in-
put channel. When all packets arrive, receiving process is
released and is using passive link driver objects to join
them into stream, which is then unflattened to object. If
needed, conversions to local format of C respectively
C++ data types is done.

F. Ideas for future work
Next step is to implement the CT kernel on other cho-

sen fieldbuses and make hard real-time industrial-like
demonstrators. This should result in further improve-
ments in reconfiguration and scalability issues, in mini-
mizing communication overheads and better adoption to
hard real-time systems needs.

Remote method invocation can be implemented
through call channels. They accept function ID of ser-
vice and all parameters, block client process and initiate
operation at server side. When operation is executed re-
turn value is given to client process and that process is
released.

Efficient ways for encapsulating location knowledge,
finding shortest route and timely and reliable multicast in
heterogeneous networks, where message from channel to
its remote proxy can travel over several fieldbuses,
should be investigated.

While load balancing is desirable especially in over-
load situations, mobile processes are not so easy to im-
plement. Here we can differentiate between periodic
processes with h-state (history) and periodic processes
without h-state. While latter can be easily downloaded on
other nodes, appropriate channels and channel-proxies

Figure 12: Main subsystem processes in middleware

159

can be easily made, making first category mobile in-
volves problem of saving process h-state. Furthermore if
we want to use passive replication this h-state must be
recorded on node different from one where process is
executing. Best time to capture h-state is on arrival of
task, immediately before current job of task begin.

If we want to state that library is deadlock-free then
higher layers of library should be built on same CSP con-
struct based organization principles and CSP based for-
mal check of whole library should be done.

Timed CSP theory should be investigated in details
and applied if possible.

From implementation point of view, we have to in-
vestigate possible advantages of porting library to work
under Real-time Java and KVM. KVM is version of Java
Virtual Machine tailored for embedded systems by
minimizing memory footprint and reducing API.

REFERENCES
[1] G. H. Hilderink, J. F. Broenink, and A. W. P. Bakkers,

“Communicating threads for Java,” presented at Proc.
22nd World Occam and Transputer User Group Techni-
cal Meeting, Keele, UK, 1999.

[2] G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink,
“A distributed Real-Time Java system based on CSP,”
presented at Proc. Third IEEE Int. Symp. On Object Ori-
ented Real-Time Distributed Computing ISORC'2000,
Newport Beach, CA, USA, 2000.

[3] A. W. Roscoe, The Theory and Practice of Concurrency:
Prentice Hall, 1997.

[4] S. Schneider, Concurrent and Real-Time Systems: The
CSP approach: Wiley, 2000.

[5] N. J. Wittenmark B., Torngren M., “Timing problems in
Real-time control systems,” presented at American con-
trol conference, Seattle, 1995.

[6] A. Cervin, “Analyzing effects of missed deadlines in con-
tol systems,” presented at ARTES Graduate Student Con-
ference 2001, Lund, Sweden, 2001.

[7] G. C. Buttazzo, Hard real-time computing systems: Pre-
dictable Scheduling Algorithms and Applications. Pisa,
Italy: Kluwer Academic Publishers, 2002.

[8] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo, Deadline Scheduling for Real-Time Systems,
EDF and related algorithms: Kluwer Academic Press,
1998.

[9] K. Tindell and J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems,” Microprocess-
ing and Microprogramming - Euromicro Journal (Spe-
cial Issue on Parallel Embedded Real-Time Systems),
vol. 40, pp. 117--134, 1994.

[10] H. Kopetz, Real-Time Systems, Design principles for
Distributed Embedded Applications. Boston: Kluwer
Academic Publishers, 1997.

[11] O. Redell, “Global Scheduling in Distributed Real-Time
Computer Systems, An Automatic Control Perspective,”
Dept. of Machine design, KTH 1998.

[12] M. A. Livani and J. Kaiser, “EDF Consensus on CAN
Bus Access for Dynamic Real-Time Applications,” pre-
sented at 6th Int. Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS ´98), Orlando, FL,USA,
1998.

[13] D. C. Schmidt, D. L. Levine, and S. Mungee, “The de-
sign of the TAO real-time object request broker,” Com-
puter Communications, Elsevier Science, vol. 21, 1998.

[14] M. Beveridge, “Jini on the Control Area Network (CAN):
a case study in portability failure,”: Carnegie Mellon
University, 2001.

[15] -, “RoSES” http://www.ece.cmu.edu/~koopman/roses,
2002.

[16] A. Pasetti, Software Frameworks and Embedded Control
Systems. ETH-Zentrum, Zurich, Switzerland: Springer-
Verlag, 2002.

[17] F. Singhoff, “Fieldbus Networks: An Overview”
http://beru.univ-
brest.fr/~singhoff/DOC/PAPIER_A_TRIER/tese-c3.pdf,
2002.

[18] -, “CAN at Bosch” http://www.can.bosch.com, 2002.
[19] -, “CAN in Automation” http:///www.can-cia.de, 2002.
[20] -, “Profibus” http://www.profibus.com, 2002.
[21] -, “Worlfip” http://worldfip.org, 2002.
[22] -, “LONworks” http://www.echelon.com, 2002.
[23] R. Pietruszkiewicz, “An Introduction into Fieldbus Net-

works”
http://www.maintenance.org.uk/Intranet/Index.html: The
University of Manchester - Fieldbus Team, 2002.

[24] K. Tindell, A. Burns, and A. Wellings, “Calculating Con-
troller Area Network (CAN) message response times,”
presented at IFAC Workshop on Distributed Computer
Control Systems, Toledo, Spain, 1994.

[25] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L.
Rodrigues, “Fault-Tolerant Broadcasts in CAN,” pre-
sented at Symposium on Fault-Tolerant Computing,
1998.

[26] L. M. R. d. S. Pinho, “A Framework for the Transparent
Replication of Real-time Application,”: University of
Porto, 2001.

[27] K. M. Zuberi and K. G. Shin, “Design and implementa-
tion of efficient message scheduling for Controller Area
Networks,” IEEE Trans. on Computers, vol. vol. 49, pp.
pp. 182-188, 2000.

[28] K. Kim, G. Jeon, S. Hong, T.-H. Kim, and S. Kim, “Inte-
grating Subscription-Based and Connection-Oriented
Communications into the Embedded CORBA for the
CAN Bus,” presented at Sixth IEEE Real Time Technol-
ogy and Applications Symposium (RTAS 2000), Wash-
ington, D.C., 2000.

[29] J. Kaiser and M. Mock, “Implementing the Real-Time
Publisher/Subscriber Model on the Controller Area Net-
work (CAN),” presented at 2nd Int'l Symposium on Ob-
jectOriented Distributed Real-Time Computing Systems,,
San Malo, 1999.

[30] P. H. Welch, “Java Threads in the Light of occam/CSP,”
presented at Architectures, Languages and Patterns for
Parallel and Distributed Applications, WoTUG-21, Am-
sterdam, 1998.

160

[31] P. H. Welch, J. R. Aldous, and J. Foster, “CSP network-
ing for java (JCSP.net),” presented at Computational Sci-
ence - ICCS 2002, 2002.

[32] P. H. Welch, M. D. May, and P. W. Thompson, “Net-
works, Routers and Transputers: Function, Performance
and Application”
http://www.cs.ukc.ac.uk/pubs/1993/271, 1993.

[33] D. Milicev, “Object-oriented programming and real-time
(in Serbian),” University of Belgrade 1998.

[34] S. Vranjes, “Programming and Real-time (in Serbian),”
University of Beograd 2000.

161

	Contents

