

A Combined Component-Based Approach for the Design of
Distributed Software Systems

C. R. Guareis de Farias*, L. Ferreira Pires, M. van Sinderen, D. Quartel
Telematics Systems and Services, University of Twente

P.O. Box 217, 7500 AE, Enschede, The Netherlands
{farias, sinderen, pires, quartel}@cs.utwente.nl

* Supported by CNPq (Brazil).

Abstract
Component-based software development enables the

construction of software artefacts by assembling binary
units of production, distribution and deployment, the so-
called components. Several approaches to component-
based development have been proposed recently. Most of
these approaches are based on the Unified Modeling Lan-
guage (UML). UML has been increasingly used in com-
ponent-based development, despite some shortcomings of
this language. This paper presents a methodology for the
design of component-based applications that combines a
model-based approach with a UML-based approach. This
combined approach tackles some of the limitations of
UML, allowing a better control of the design process.

1. Introduction

Component-based software development has emerged

to increase the reusability and portability of pieces of
software. Component-based development aims at con-
structing software artefacts by assembling (software)
components. In this scope, a component is a self-
contained, customisable and composable binary piece of
software, with well-defined interfaces and dependencies.

A component is a unit of deployment and distribution.
Components represent complete pieces of functionality
that are ready to be installed and executed in multiple en-
vironments, provided that a middleware platform that
supports the execution of the components is available.
Special interest has been recently given to the (runtime)
reconfiguration and migration of components in compo-
nent-based systems, c.f., [1, 10].

Some design methodologies that address component-
based development have been proposed recently. Most of
them are based on the Unified Modelling Language
(UML) [11], c.f. [2, 6, 7, 8]. Although UML has been

increasingly used as the basis for such development meth-
odologies, it still has some drawbacks that hinder its usage
and effectiveness.

So far, the support provided by UML for component-
based development is limited. Both the UML component
semantics and notation should be improved [9, 12]. A
major change in UML with this respect is expected to
occur soon with the release of the UML 2.0 specification.

The specification of complex behaviours using UML
behaviour diagrams can be cumbersome [5]. These types
of diagram provide roughly three kinds of constructs to
describe the relationships between states or activities:
enabling, interleaving (parallelism) and synchronisation.
Other types of relationship that would improve the model-
ling capabilities of UML, such as non-deterministic choice
and disabling, are not supported. Further, the specification
of complex interaction patterns using sequence diagrams
often leads to diagrams of poor legibility.

Finally, the use of UML to model the service pro-
vided by an application and to decompose this service into
a set of components is usually informal and intuitive.
Therefore, it is difficult to formally assess whether the
achieved decomposition in terms of components complies
with the required service.

This paper presents a methodology for the develop-
ment of component-based applications that combines a
model-based approach [14] with a UML-based approach
[6]. This combined approach aims at profiting from the
benefits of both approaches: the abstraction power and
formality associated with the use of the abstract architec-
tural modelling language AMBER [3, 13], and the diver-
sity of concepts and public acceptance of UML.

This paper is structured as follows: section 2 intro-
duces AMBER; section 3 introduces the main elements of
our combined approach, while sections 4 to 6 describe our
approach in more detail; section 7 discusses some related
work and presents some final remarks.

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

2. The AMBER modelling language

AMBER [3, 13] stands for Architectural Modelling

Box for Enterprise Redesign. An AMBER model of a
system consists of two separate sub-models: an entity
model and a behaviour model.

An entity model represents relevant system parts at a
given abstraction level and their interconnection. Two
concepts are used in an entity model, viz., entity and in-
teraction point.

An entity represents a system that carries out some
function or behaviour. An entity may be decomposed into
sub-entities. An interaction point represents some mecha-
nism, physical or logical, through which an entity can in-
teract with its environment (including other entities).

Figure 1 shows the graphical notation of the entity
model concepts. An entity is represented by a rectangle
with cut-off corners, while an interaction point is repre-
sented by an ellipsis that overlaps with the entities that
share the interaction point or by separated ellipses inter-
connected by a line. Figure 1(a) depicts an entity E1 with
a single interaction point. Figure 1(b) depicts the decom-
position of the entity E1 into the sub-entities E2 and E3,
all of them sharing the same interaction point.

interaction point sub-entityentity

E1 E3E2

E1

(a) (b)
Figure 1: Entity model notation

A behaviour model represents the functionality or be-
haviour of each entity described in the corresponding en-
tity model. Three basic concepts are used in a behaviour
model, viz., action, interaction and causality relation.

An action represents an activity performed by a single
entity, while an interaction represents a common activity
performed by two or more entities. The term action is
used to refer to both actions and interactions, whenever
desirable for conciseness.

An action abstracts from how the result of the activity
being modelled is established. However, the result estab-
lished by an activity can be represented by attaching at-
tributes to the corresponding action. Attributes of informa-
tion, time and location represent values of information
established in the activity, the time moment at which the
activity is completed and the logical or physical location
where the activity takes place, respectively.

The occurrence of an action represents the successful
completion of an activity. In case an action occurs, the
same result is established and made available at the same
time moment and at the same location for all entities in-

volved in the activity, otherwise no result is established.
Figure 2 depicts our graphical notation of an action

and an interaction. An action (Figure 2a) is graphically
represented as a circle (or ellipsis), while an interaction
(Figure 2b) is graphically represented as a segmented cir-
cle (or ellipsis), one segment for each interaction contribu-
tion.

(a) action

aaaa

(b) interaction

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 2
τ : Time
 λ : IP

a

Figure 2: Action and interaction

The information (ι), time (τ) and location (λ) attrib-
utes are represented within a textbox attached to the ac-
tion. Constraints can be defined on the possible outcomes
of the values of ι, τ and λ (after the symbol ‘|’). In case of
an interaction, each involved entity can define its con-
straints, such that the values of ι, τ and λ must satisfy all
constraints, otherwise the interaction cannot happen.

A causality relation is associated with each action,
modelling the conditions for this action to happen in terms
of the occurrence or non-occurrence of other actions. An
action only occurs when its enabling condition is satisfied.

The two basic kinds of causality relation between two
actions, a and b, are the enabling relation, in which the
occurrence of a enables the occurrence of b, and the dis-
abling relation, in which the occurrence of a disables the
occurrence of b, provided that b has not occurred yet. Fur-
ther, in case of absence of a causality relation between two
actions, these actions are independent (concurrent).

Basic causality relations can be composed using boo-
lean operators. Causality relations can also contain con-
straints that restrict the occurrence of actions based on the
attribute values of preceding actions. A probability attrib-
ute can also be added to each causality condition to model
the probability that the action happens in case the enabling
condition is satisfied.

Figure 3 shows some common action relations be-
tween two or more actions. A trigger represents a special
kind of action, which has its enabling condition always
satisfied.

AMBER behaviour blocks (see Figure 7) allow one to
structure behaviours. A behaviour block is graphically
represented as a rectangle with round corners. Similarly to
entities, blocks can be decomposed into sub-blocks.

When actions connected through a causality relation
are placed in separate behaviour blocks, an exit and an
entry points are added at the block’s edge, depending on
the direction of the causality relation, to indicate that a
condition in a block enables an action in the other block.

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

a b

a b

concurrency
(independence)

a enables b

a disables b

a b

a or b enables c

a enables b or c

a and b enables c

a enables b and c

a

b

c

a

b

c

a

c

b

a

b

c

a

trigger

Figure 3: Common action relations

Blocks can also be used to represent repeated and

replicated behaviours. A repeated behaviour indicates the
occurrence of a similar behaviour over time, while a repli-
cated behaviour indicates that a number of similar behav-
iours are executed in parallel.

We exempt ourselves from discussing AMBER fur-
ther. Notational details necessary to understand our ap-
proach are provided throughout the paper as needed.

3. Process overview

Our approach identifies four abstraction levels for the

development of a system, viz., enterprise, system, compo-
nent and object.

The enterprise level aims at providing a unified view
of the system and its environment by capturing enterprise-
related concepts.

The system level delimits the system being devel-
oped, distinguishing it from its environment. The envi-
ronment of a system consists of information systems or
human users that make use of the services provided by the
system itself, as well as other systems that provide some
service used by the system being developed.

The component level represents the system in terms
of a set of composed components. A component may be
further decomposed in sub-components. A composite
component is an aggregate of sub-components that, from
an external point of view, is similar to a single component.
If a composite component is part of a component compo-
sition, the design process of this component corresponds
to the design process of an isolated system, and the envi-
ronment of this system contain the other components in
the composition.

The object level defines the internal structure of sim-
ple components. A component is structured using a set of
related objects, which are implemented in a programming
language. The development process of a component at the
object level corresponds to traditional object-oriented

software development processes and therefore we refrain
from discussing it further in this paper.

Figure 4 depicts the levels identified in our approach.

Enterprise Concepts

Environment

System

Enterprise
Level

System
Level

Object Level

Component
Level

Mapping

Refinement Abstraction

Refinement Abstraction

Figure 4: Development using abstraction levels

Besides structuring using abstraction levels, we also
consider different views at each one of these levels. Each
view offers a different perspective of the system being
developed. These perspectives are interrelated so that the
information contained in one view can partially overlap
the information contained in the others.

We identify three basic views, viz., structural, behav-
ioural and interactional. The structural view provides in-
formation about the structure and static relations between
entities. The behavioural view provides information about
the behaviour of each entity in isolation, while the interac-
tional view provides information about the cooperative
behaviour of the entities as they interact with each other.
Both the behavioural and the interactional views can be
seen as dual views on the same aspect, viz., behaviour.

4. Enterprise level

The enterprise level aims at providing a conceptual

and integrated description from a system and its environ-
ment. The description is conceptual because it models
concepts of an application domain and integrated because
no formal separation is made between the system and its
environment.

Different sets of concepts may be captured at this
level according to the target application domain. For ex-
ample, common concepts usually captured at the enter-
prise level are actors, activities, goals, processes, informa-

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

tion (resources), etc. However, specific domains may re-
quire specific concepts, such as rules, policies and events.

The structural view at the enterprise level is captured
using concept diagrams. A concept diagram consists of a
UML class diagram in which a class represents a concept
and an association between classes represents a relation-
ship between these concepts. A glossary is developed in
parallel to the concept diagrams to document the concepts
encountered. The glossary should be maintained and up-
dated as the development of the system continues.

While concept diagrams are useful to capture the
structural relationship between concepts, these diagrams
are not convenient to capture behaviour. Therefore, we
have decided to use AMBER models to capture the behav-
ioural and structural views at the enterprise level.

AMBER can be used in two different ways: to cap-
ture simple relationships between the identified activities
and to capture possible sequences of activities. The identi-
fied activities are modelled as actions in AMBER, while
any piece of information used by an activity is modelled
as the information attribute of the corresponding actions.

Figure 5 depicts some AMBER models of an example
application (chat application) at the enterprise level.
Figure 5a shows that the execution of action register dis-
ables the execution of action connect and vice-versa
(choice), and that a choice can be made after the occur-
rence of the action join among the actions send, receive,
invite, answ-inv and leave. Figure 5b shows two possible
sequences of actions.

connect

register answ-inv
invite

receive

leave

send

join

connect join send leave disconnect invite
register disconnect answ-inv create

(a) relationships between activities

(b) sequences of activities

Figure 5: AMBER model of the enterprise level

5. System level

At the system level we describe the service provided

by the application being developed. At this level we ob-
tain a clear definition of the boundary between the system
and its environment. External supporting services are
identified at this level as well. These services are consid-

ered to be part of the system environment.
The structural view at the system level is captured us-

ing an AMBER entity model and a UML use case dia-
gram. An entity model is used to capture the static rela-
tionship between the system and external supporting ser-
vices, while a use case diagram is used to organise the
system functional requirements.

To create an entity model at the system level, we map
the actors identified at the enterprise level onto entities.
The environment of the system being developed is
mapped onto entities as well. Interaction points are de-
fined, allowing entities to interact.

These entities are then mapped onto actors in a use
case diagram, while the activities identified at the enter-
prise level are mapped onto use cases. Each activity can
be mapped to a separate use case, or two or more related
activities can be combined in a same use case. Although
the description of a use case corresponds to some behav-
iour, at the structural level we are concerned with how
these pieces of behaviour relate to each other and with an
associated actor. Later, the behaviour described by each
use case forms the basis for capturing the behavioural and
interactional views.

Figure 6 shows the entity model of the chat applica-
tion at the system level. Two entities are identified: Chat
Application, representing the chat application itself, and
Participant, representing the user (environment) of the
chat application. A single interaction point, ip1, represents
the interaction mechanisms between the two entities.

Participant

ip1ip1

Chat Application

ip1ip1

Figure 6: Entity model of the system level
Both the behavioural and the interactional views are

initially captured using AMBER behaviour models.
To create a behaviour model at the system level we

first represent the combined behaviour of the identified
entities as a whole. In this step we abstract from the indi-
vidual responsibilities of the entities while interacting, by
only considering a set of integrated interactions (modelled
as actions) and the causality relations between them. This
combined behaviour offers the most abstract representa-
tion of the service provided by the system and it is called
integrated perspective.

Figure 7 shows the integrated behaviour model of the
chat application at the system level. In this phase the ac-
tions and causality relations identified at the enterprise
level are preserved and further combined.

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

create

answ-inv

joinjoin

disconnect

sendsend

inviteinvite

answ-invansw-inv

leaveleave

receivereceive

register

connect

entry
point

exit
point

repeated
behaviour

Figure 7: Integrated behaviour model

After describing the integrated perspective, we con-
sider the individual responsibilities of each entity in-
volved. At this point, we describe, for each entity, its in-
teraction contributions and causality relations. Such a de-
scription is called distributed perspective.

According to the distributed perspective, each action
present at the integrated perspective is refined into an in-
teraction, and each causality relation is distributed over
the involved entities. While describing the distributed
perspective, we refrain from capturing unnecessary details
on how to use the system or its internal structure. The in-
ternal behaviour of entities representing the system envi-
ronment is of no concern at this level either.

The use of AMBER to model the behaviour of the
application being developed at the system level (inte-
grated and distributed perspectives) does not provide a
clear separation between the behavioural and interactional
views. In a single diagram we capture the behaviour of
each entity in isolation plus the interactions between the
entities. This can pose an extra burden, especially when
multiple entities are involved in relatively complex behav-
iours.

Therefore, we suggest the use of UML diagrams to
complement both the behavioural and interactional views.
To complement the behavioural view we suggest the use
of activity diagrams, while to complement the behavioural
view we suggest the use of (non-standard) package se-
quence or collaboration diagrams. Package sequence and
collaboration diagrams are not explicitly defined in the
UML notation guide nor are they supported by most UML
tools, but they are allowed according to the UML meta-
model [7].

Activity diagrams can be used to represent how the
interactions relate to each other in the scope of an entity,
while a package sequence or collaboration diagram can be
used to represent the relationship between interactions.

To help capturing the interactional view we use some
user-supplied usage scenarios to describe the different
situations in which the application can be used.

6. Component level

The component level represents the system being de-

veloped in terms of a set of interconnected components. A
component provides access to its services via one or more
interfaces.

When building a cooperative system from compo-
nents, we do not need to know how these components are
internally represented as objects. Actually, a component
does not have to be necessarily implemented using object-
oriented technology, although this technology is generally
recognised as the most convenient way to implement a
component.

Components can be off-the-shelf, adapted from simi-
lar components or constructed from scratch. So far, most
of the effort spent on building component-based applica-
tions concentrates on building new components. However,
the more mature and widespread this technology becomes
the more likely this effort will move towards adapting
similar components and reusing existing ones [4].

The structural view of an application at the compo-
nent level is captured using an AMBER entity model. This
entity model corresponds to a refinement of the entity
model captured at the system level, in which entities are
refined into sub-entities that represent components, and
interaction points are added to connect these entities. The
entity model is used to represent the static relationship
between the identified components themselves and be-
tween the component and the application environment.

The UML use case diagram identified at the system
level may also be refined and split among the identified
components, such that these components correctly support
the use cases. However, there is no rule of thumb on how
to split and assign use cases to components. A good prac-
tice is to keep similar functionality in a single component
and assign distinct functionality to separate components.
Although similarity and distinction are subjective terms,
sometimes it suffices to rely on the individual judgement
and experience of the application designer. In case a use
case is likely to be supported by two or more components,
it is possible that this use case is too complex and that it
should be refined in multiple simpler use cases.

The behaviour modelling of the application at the
component level follows an approach similar to the system
level. Initially, both the behavioural and the interactional
views are captured using AMBER behaviour models.

A behaviour is assigned to each entity identified at
the structural view. However, we are now interested in
revealing not only the external (observable) behaviour but
also the internal details of the system, i.e., how the inter-
actions between components are refined and how actions
are inserted to represent the activities performed by the
components that form the system.

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

Similarly to the system level, the use of AMBER to
model the behaviour of the application at the component
level does not provide a clear separation between the be-
havioural and interactional views. Therefore we also use
UML diagrams to complement the information captured
by these views at the component level.

To complement the behavioural view we suggest the
use of activity diagrams to represent how the interactions
and actions of each component relate to each other in the
scope of an entity. To complement the behavioural view
we suggest the use of package sequence or collaboration
diagrams to represent the relationship of the interactions
between the identified components.

If composite components are involved, it may be nec-
essary to produce several refinements of the components,
each producing a detailed description of the components
involved and their relationship. For example, in the design
of the chat application at the component level we have
initially identified two composite components, viz., a
client component and a server component.

Figure 8 shows parts of the behaviour model of the
server component. Two sub-behaviours are depicted: a
sub-behaviour representing the connection management of
a participant (left side) and a sub-behaviour representing
the management of invitations (right side). Figure 8 shows
internal details (activities modelled as actions in behav-
iour blocks) and how the interactions are refined.

check for invitation

Server

inv_respinv_notifinvite

add invitation

check for invitation remove invitation

connect register disconnect

remove participant

add participant

Figure 8: Server component behaviour model

In the behaviour model of the client and server com-
ponents, the identified sub-behaviours supplied some
clues on how the structure of the next component level
can be defined. Each sub-behaviour should be assigned to
a different component, though similar sub-behaviours may
also be assigned to a single component. At each refine-
ment of the component level the internal details are further
revealed and the interactions are further refined. A de-
tailed discussion on behaviour refinement and refinement
rules is presented in [13, 14].

In order to model the behaviour of a component using
AMBER, including its interface, we need to introduce
some additional conventions.

A component may have one or more interfaces
through which its services become available. However,
each interface should be contained in a separate behaviour

block. An interface contains operations. The execution of
an operation is modelled as an interaction. We distinguish
between two different types of operations, viz., an invoca-
tion, which returns a value to the invoking component,
and an announcement, which does not return.

An invocation is modelled as a sequence of two inter-
actions, viz., an invocation request and an invocation re-
turn. An announcement is modelled as a single interaction
between two components. Optionally, you may have in
both cases an additional interaction representing the oc-
currence of an exception during the invocation or an-
nouncement. The occurrence of an exception indicates
that the operation could not be completed successfully.

Figure 9 depicts the different types of operations be-
tween components C1 and C2. Figure 9a represents an
invocation operation, while Figure 9b represents an an-
nouncement operation. The interaction modelling an ex-
ception in Figure 9b, although enabled, may not actually
happen. This is represented by annotating the enabling
relation with a question mark.

 C1

exception exception invocation invocation return return

C2

invocation invocation return return exception exception

C1

exception exception announcement announcement

C2

announcement announcement exception exception

(a) invocation (b) announcement

?

?

Figure 9: Interface operations

To model an invocation operation, we add the key-
words invocation, return and exception to the name of the
operation in the interaction identifiers. These keywords
represent the invocation, return and exception interac-
tions, respectively. To model an announcement operation,
we add the keyword announcement is the name of the inter-
action.

Input parameters are modelled as structured informa-
tion attributes of the invocation interaction, while output
parameters are modelled as structured information attrib-
utes of the return interaction. To model the return value of
the operation itself, we attach the keyword returnvalue to an
attribute in the return interaction.

To model the occurrence and notification of events
we also define some additional notation. The keywords
event announcement or event notification are added to indi-
cate that the interaction corresponds to an event. The
keyword event announcement indicates that a component
produces an event, while the keyword event notification in-
dicates that a component consumes an event.

The subscription to an event by a consumer compo-
nent can be modelled as an invocation operation. This

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

component passes in the invocation interaction a reference
to the interface at which the occurrence of the event
should be notified. For simplification purposes, we ab-
stract from the subscription process and consider only the
announcement and notification of the event itself.

7. Final remarks

This paper presented an approach for the design of

component-based systems. According to this approach,
the development of a system is structured in four different
abstraction levels. At each level, different views are used
to capture structural, behavioural and interactional aspects
of the application under development; these seem to be
the most relevant views for application design. Still, we
can have other views if necessary.

Existing commercial UML-based methodologies are
not completely component-oriented, which creates some
barriers to the use and dissemination of component tech-
nology.

The Unified Process [8] is a rather complex UML-
based software development process. The Unified Process
is not really a development process but rather a process
framework, since it describes best practices in software
development but still has to be specialised to be suitable
for different projects. Therefore, it lacks some prescrip-
tiveness. Nevertheless the Unified Process is flexible and
scalable, having being largely used in the software indus-
try. Further, the Unified Process is not really a compo-
nent-based process. The use of components is an after-
thought, since the Unified Process prescribes that the de-
velopment of a set of objects could be followed by their
grouping into components.

Catalysis [2] is another complex software develop-
ment process based on UML. Similarly to the Unified
Process, Catalysis is much like a process template, which
can be tailored according to a particular development pro-
ject. Catalysis also lacks prescriptiveness, but it is flexible
and scalable, being also popular among software develop-
ers. A major benefit of Catalysis is its explicit use of com-
ponents. However, being a broad software development
process, Catalysis is not completely component-oriented.

Our methodology is not as generic and complete as
the Unified Process or Catalysis; however, it is simpler
and component-oriented. Further, it does not rely exclu-
sively on UML and thus is not subjected to its shortcom-
ings.

The use of the formal language AMBER to comple-
ment UML diagrams provides two major benefits. First,
the concepts present in AMBER are simple, intuitive and

close to the concerns of an application designer at the
early stages of the development process. AMBER offers a
high abstraction power and different constructs to repre-
sent behaviour. Second, AMBER has a formal semantics
that allows a number of extra design activities, such as
analysis, verification and simulation, to be carried out in
parallel with the design process itself. These activities
enhance the quality of the design and allow the detection
and solution of problems as early as possible in the devel-
opment process.

8. References

1. Almeida, J.P.A.: Dynamic Reconfiguration of Object-

Middleware-based Distributed Systems. M.Sc. Thesis, Uni-
versity of Twente, 2001.

2. D’Souza, D. F. and Wills, A. C.: Objects, Components and
Frameworks with UML: the Catalysis Approach. Addison
Wesley, USA, 1999.

3. Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W.
and Vissers, C.A.: A Business Process Design Language. In
1999 World Congress on Formal Methods (FM’99), Vol. I.,
LNCS 1708, pp. 76-95, 1999.

4. Grasso, M.P.: Distributed component systems: the next new
computing model. Application Development Trends, 6(11),
pp. 43-52, 1999.

5. de Farias, C.R.G., Diakov, N. and Poortinga, R.: Analysis of
UML. Amidst TR, AMIDST/WP1/N006/V04, 1999.

6. de Farias, C.R.G., Ferreira Pires, L. and van Sinderen, M.:
A component-based groupware development methodology.
In Proceedings of the 4th Int. Enterprise Distributed Object
Computing Conference (EDOC’00), pp. 204-213, 2000.

7. Hruby, P.: Structuring Design Deliverables with UML. In
Proceedings of UML'98 Int. Workshop, pp. 251-260, 1998.

8. Jacobson, I., Booch, G. and Rumbaugh, J. The unified soft-
ware development process. Addison Wesley, USA, 1999.

9. Kobryn, C.: UML 2001: a standardization odyssey. Com-
munications of the ACM, 42(10), 29-37, 1999.

10. Litiu, R. and Prakash, A.: Developing adaptive groupware
applications using a mobile component framework. In Pro-
ceedings of the ACM 2000 Conference on Computer Sup-
ported Cooperative Work (CSCW'00), pp. 107-116, 2000.

11. Object Management Group: Unified Modeling Language
1.3 specification, 1999.

12. Object Management Group UML Revision Task Force:
OMG UML v. 1.3: Revisions and Recommendations, 1999.

13. Quartel, D.: Action relations: basic design concepts for
behaviour modelling and refinement. PhD thesis, Univer-
sity of Twente, Enschede, Netherlands, 1998.

14. Quartel, D.A.C., van Sinderen, M.J., and Ferreira Pires, L.:
A model-based approach to service creation. In Proceedings
of the 7th International Workshop of Future Trends in Dis-
tributed Computing (FTDCS’99), pp. 102-110, 1999.

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01)
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore. Restrictions apply.

