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Abstract 
Component-based software development enables the 

construction of software artefacts by assembling binary 
units of production, distribution and deployment, the so-
called components. Several approaches to component-
based development have been proposed recently. Most of 
these approaches are based on the Unified Modeling Lan-
guage (UML). UML has been increasingly used in com-
ponent-based development, despite some shortcomings of 
this language. This paper presents a methodology for the 
design of component-based applications that combines a 
model-based approach with a UML-based approach. This 
combined approach tackles some of the limitations of 
UML, allowing a better control of the design process.  
 
1. Introduction 

 
Component-based software development has emerged 

to increase the reusability and portability of pieces of 
software. Component-based development aims at con-
structing software artefacts by assembling (software) 
components. In this scope, a component is a self-
contained, customisable and composable binary piece of 
software, with well-defined interfaces and dependencies.  

A component is a unit of deployment and distribution. 
Components represent complete pieces of functionality 
that are ready to be installed and executed in multiple en-
vironments, provided that a middleware platform that 
supports the execution of the components is available. 
Special interest has been recently given to the (runtime) 
reconfiguration and migration of components in compo-
nent-based systems, c.f., [1, 10]. 

Some design methodologies that address component-
based development have been proposed recently. Most of 
them are based on the Unified Modelling Language 
(UML) [11], c.f. [2, 6, 7, 8]. Although UML has been 

increasingly used as the basis for such development meth-
odologies, it still has some drawbacks that hinder its usage 
and effectiveness.  

So far, the support provided by UML for component-
based development is limited. Both the UML component 
semantics and notation should be improved [9, 12]. A 
major change in UML with this respect is expected to 
occur soon with the release of the UML 2.0 specification.  

The specification of complex behaviours using UML 
behaviour diagrams can be cumbersome [5]. These types 
of diagram provide roughly three kinds of constructs to 
describe the relationships between states or activities: 
enabling, interleaving (parallelism) and synchronisation. 
Other types of relationship that would improve the model-
ling capabilities of UML, such as non-deterministic choice 
and disabling, are not supported. Further, the specification 
of complex interaction patterns using sequence diagrams 
often leads to diagrams of poor legibility. 

Finally, the use of UML to model the service pro-
vided by an application and to decompose this service into 
a set of components is usually informal and intuitive. 
Therefore, it is difficult to formally assess whether the 
achieved decomposition in terms of components complies 
with the required service. 

This paper presents a methodology for the develop-
ment of component-based applications that combines a 
model-based approach [14] with a UML-based approach 
[6]. This combined approach aims at profiting from the 
benefits of both approaches: the abstraction power and 
formality associated with the use of the abstract architec-
tural modelling language AMBER [3, 13], and the diver-
sity of concepts and public acceptance of UML.  

This paper is structured as follows: section 2 intro-
duces AMBER; section 3 introduces the main elements of 
our combined approach, while sections 4 to 6 describe our 
approach in more detail; section 7 discusses some related 
work and presents some final remarks. 
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2. The AMBER modelling language 
 
AMBER [3, 13] stands for Architectural Modelling 

Box for Enterprise Redesign. An AMBER model of a 
system consists of two separate sub-models: an entity 
model and a behaviour model. 

An entity model represents relevant system parts at a 
given abstraction level and their interconnection. Two 
concepts are used in an entity model, viz., entity and in-
teraction point. 

An entity represents a system that carries out some 
function or behaviour. An entity may be decomposed into 
sub-entities. An interaction point represents some mecha-
nism, physical or logical, through which an entity can in-
teract with its environment (including other entities).  

Figure 1 shows the graphical notation of the entity 
model concepts. An entity is represented by a rectangle 
with cut-off corners, while an interaction point is repre-
sented by an ellipsis that overlaps with the entities that 
share the interaction point or by separated ellipses inter-
connected by a line. Figure 1(a) depicts an entity E1 with 
a single interaction point. Figure 1(b) depicts the decom-
position of the entity E1 into the sub-entities E2 and E3, 
all of them sharing the same interaction point. 

 

interaction point sub-entityentity

E1 E3E2

E1

(a) (b)  
Figure 1: Entity model notation 

A behaviour model represents the functionality or be-
haviour of each entity described in the corresponding en-
tity model. Three basic concepts are used in a behaviour 
model, viz., action, interaction and causality relation. 

An action represents an activity performed by a single 
entity, while an interaction represents a common activity 
performed by two or more entities. The term action is 
used to refer to both actions and interactions, whenever 
desirable for conciseness. 

An action abstracts from how the result of the activity 
being modelled is established. However, the result estab-
lished by an activity can be represented by attaching at-
tributes to the corresponding action. Attributes of informa-
tion, time and location represent values of information 
established in the activity, the time moment at which the 
activity is completed and the logical or physical location 
where the activity takes place, respectively. 

The occurrence of an action represents the successful 
completion of an activity. In case an action occurs, the 
same result is established and made available at the same 
time moment and at the same location for all entities in-

volved in the activity, otherwise no result is established. 
Figure 2 depicts our graphical notation of an action 

and an interaction. An action (Figure 2a) is graphically 
represented as a circle (or ellipsis), while an interaction 
(Figure 2b) is graphically represented as a segmented cir-
cle (or ellipsis), one segment for each interaction contribu-
tion.  

(a) action

aaaa

(b) interaction

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 5
 τ : Time
 λ : IP

 ι : Nat | ι > 2
τ : Time
 λ : IP

a

 
Figure 2: Action and interaction 

The information (ι), time (τ) and location (λ) attrib-
utes are represented within a textbox attached to the ac-
tion. Constraints can be defined on the possible outcomes 
of the values of ι, τ and λ (after the symbol ‘|’). In case of 
an interaction, each involved entity can define its con-
straints, such that the values of ι, τ and λ must satisfy all 
constraints, otherwise the interaction cannot happen.  

A causality relation is associated with each action, 
modelling the conditions for this action to happen in terms 
of the occurrence or non-occurrence of other actions. An 
action only occurs when its enabling condition is satisfied.  

The two basic kinds of causality relation between two 
actions, a and b, are the enabling relation, in which the 
occurrence of a enables the occurrence of b, and the dis-
abling relation, in which the occurrence of a disables the 
occurrence of b, provided that b has not occurred yet. Fur-
ther, in case of absence of a causality relation between two 
actions, these actions are independent (concurrent).  

Basic causality relations can be composed using boo-
lean operators. Causality relations can also contain con-
straints that restrict the occurrence of actions based on the 
attribute values of preceding actions. A probability attrib-
ute can also be added to each causality condition to model 
the probability that the action happens in case the enabling 
condition is satisfied. 

Figure 3 shows some common action relations be-
tween two or more actions. A trigger represents a special 
kind of action, which has its enabling condition always 
satisfied. 

AMBER behaviour blocks (see Figure 7) allow one to 
structure behaviours. A behaviour block is graphically 
represented as a rectangle with round corners. Similarly to 
entities, blocks can be decomposed into sub-blocks.  

When actions connected through a causality relation 
are placed in separate behaviour blocks, an exit and an 
entry points are added at the block’s edge, depending on 
the direction of the causality relation, to indicate that a 
condition in a block enables an action in the other block. 
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Figure 3: Common action relations 

 
Blocks can also be used to represent repeated and 

replicated behaviours. A repeated behaviour indicates the 
occurrence of a similar behaviour over time, while a repli-
cated behaviour indicates that a number of similar behav-
iours are executed in parallel. 

We exempt ourselves from discussing AMBER fur-
ther. Notational details necessary to understand our ap-
proach are provided throughout the paper as needed.  

 

3. Process overview 
 
Our approach identifies four abstraction levels for the 

development of a system, viz., enterprise, system, compo-
nent and object.  

The enterprise level aims at providing a unified view 
of the system and its environment by capturing enterprise-
related concepts.  

The system level delimits the system being devel-
oped, distinguishing it from its environment. The envi-
ronment of a system consists of information systems or 
human users that make use of the services provided by the 
system itself, as well as other systems that provide some 
service used by the system being developed. 

The component level represents the system in terms 
of a set of composed components. A component may be 
further decomposed in sub-components. A composite 
component is an aggregate of sub-components that, from 
an external point of view, is similar to a single component. 
If a composite component is part of a component compo-
sition, the design process of this component corresponds 
to the design process of an isolated system, and the envi-
ronment of this system contain the other components in 
the composition.  

The object level defines the internal structure of sim-
ple components. A component is structured using a set of 
related objects, which are implemented in a programming 
language. The development process of a component at the 
object level corresponds to traditional object-oriented 

software development processes and therefore we refrain 
from discussing it further in this paper. 

Figure 4 depicts the levels identified in our approach. 
 

 
Enterprise Concepts 

Environment 

System 

Enterprise 
Level 

System 
Level 

Object Level 

Component 
Level 

Mapping 

Refinement Abstraction 

Refinement Abstraction 

 
Figure 4: Development using abstraction levels 

Besides structuring using abstraction levels, we also 
consider different views at each one of these levels. Each 
view offers a different perspective of the system being 
developed. These perspectives are interrelated so that the 
information contained in one view can partially overlap 
the information contained in the others.  

We identify three basic views, viz., structural, behav-
ioural and interactional. The structural view provides in-
formation about the structure and static relations between 
entities. The behavioural view provides information about 
the behaviour of each entity in isolation, while the interac-
tional view provides information about the cooperative 
behaviour of the entities as they interact with each other. 
Both the behavioural and the interactional views can be 
seen as dual views on the same aspect, viz., behaviour. 

 
4. Enterprise level 

 
The enterprise level aims at providing a conceptual 

and integrated description from a system and its environ-
ment. The description is conceptual because it models 
concepts of an application domain and integrated because 
no formal separation is made between the system and its 
environment. 

Different sets of concepts may be captured at this 
level according to the target application domain. For ex-
ample, common concepts usually captured at the enter-
prise level are actors, activities, goals, processes, informa-
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tion (resources), etc. However, specific domains may re-
quire specific concepts, such as rules, policies and events. 

The structural view at the enterprise level is captured 
using concept diagrams. A concept diagram consists of a 
UML class diagram in which a class represents a concept 
and an association between classes represents a relation-
ship between these concepts. A glossary is developed in 
parallel to the concept diagrams to document the concepts 
encountered. The glossary should be maintained and up-
dated as the development of the system continues.  

While concept diagrams are useful to capture the 
structural relationship between concepts, these diagrams 
are not convenient to capture behaviour. Therefore, we 
have decided to use AMBER models to capture the behav-
ioural and structural views at the enterprise level.  

AMBER can be used in two different ways: to cap-
ture simple relationships between the identified activities 
and to capture possible sequences of activities. The identi-
fied activities are modelled as actions in AMBER, while 
any piece of information used by an activity is modelled 
as the information attribute of the corresponding actions. 

Figure 5 depicts some AMBER models of an example 
application (chat application) at the enterprise level. 
Figure 5a shows that the execution of action register dis-
ables the execution of action connect and vice-versa 
(choice), and that a choice can be made after the occur-
rence of the action join among the actions send, receive, 
invite, answ-inv and leave. Figure 5b shows two possible 
sequences of actions. 

 

 
connect 

register answ-inv 
invite 

receive 

leave 

send 

join 

connect join send leave disconnect invite 
register disconnect answ-inv create 

(a) relationships between activities 

(b) sequences of activities  

Figure 5: AMBER model of the enterprise level 
 

5. System level 
 
At the system level we describe the service provided 

by the application being developed. At this level we ob-
tain a clear definition of the boundary between the system 
and its environment. External supporting services are 
identified at this level as well. These services are consid-

ered to be part of the system environment.  
The structural view at the system level is captured us-

ing an AMBER entity model and a UML use case dia-
gram. An entity model is used to capture the static rela-
tionship between the system and external supporting ser-
vices, while a use case diagram is used to organise the 
system functional requirements. 

To create an entity model at the system level, we map 
the actors identified at the enterprise level onto entities. 
The environment of the system being developed is 
mapped onto entities as well. Interaction points are de-
fined, allowing entities to interact.  

These entities are then mapped onto actors in a use 
case diagram, while the activities identified at the enter-
prise level are mapped onto use cases. Each activity can 
be mapped to a separate use case, or two or more related 
activities can be combined in a same use case. Although 
the description of a use case corresponds to some behav-
iour, at the structural level we are concerned with how 
these pieces of behaviour relate to each other and with an 
associated actor. Later, the behaviour described by each 
use case forms the basis for capturing the behavioural and 
interactional views.  

Figure 6 shows the entity model of the chat applica-
tion at the system level. Two entities are identified: Chat 
Application, representing the chat application itself, and 
Participant, representing the user (environment) of the 
chat application. A single interaction point, ip1, represents 
the interaction mechanisms between the two entities. 

 

Participant

ip1ip1

Chat Application

ip1ip1

 
Figure 6: Entity model of the system level 
Both the behavioural and the interactional views are 

initially captured using AMBER behaviour models. 
To create a behaviour model at the system level we 

first represent the combined behaviour of the identified 
entities as a whole. In this step we abstract from the indi-
vidual responsibilities of the entities while interacting, by 
only considering a set of integrated interactions (modelled 
as actions) and the causality relations between them. This 
combined behaviour offers the most abstract representa-
tion of the service provided by the system and it is called 
integrated perspective. 

Figure 7 shows the integrated behaviour model of the 
chat application at the system level. In this phase the ac-
tions and causality relations identified at the enterprise 
level are preserved and further combined. 

Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS�01) 
1071-0485/01 $17.00 © 2001 IEEE Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 10:58 from IEEE Xplore.  Restrictions apply.



create

answ-inv

joinjoin

disconnect

sendsend

inviteinvite

answ-invansw-inv

leaveleave

receivereceive

register

connect

entry
point

exit
point

repeated
behaviour

 
Figure 7: Integrated behaviour model 

After describing the integrated perspective, we con-
sider the individual responsibilities of each entity in-
volved. At this point, we describe, for each entity, its in-
teraction contributions and causality relations. Such a de-
scription is called distributed perspective.  

According to the distributed perspective, each action 
present at the integrated perspective is refined into an in-
teraction, and each causality relation is distributed over 
the involved entities. While describing the distributed 
perspective, we refrain from capturing unnecessary details 
on how to use the system or its internal structure. The in-
ternal behaviour of entities representing the system envi-
ronment is of no concern at this level either. 

The use of AMBER to model the behaviour of the 
application being developed at the system level (inte-
grated and distributed perspectives) does not provide a 
clear separation between the behavioural and interactional 
views. In a single diagram we capture the behaviour of 
each entity in isolation plus the interactions between the 
entities. This can pose an extra burden, especially when 
multiple entities are involved in relatively complex behav-
iours. 

Therefore, we suggest the use of UML diagrams to 
complement both the behavioural and interactional views. 
To complement the behavioural view we suggest the use 
of activity diagrams, while to complement the behavioural 
view we suggest the use of (non-standard) package se-
quence or collaboration diagrams. Package sequence and 
collaboration diagrams are not explicitly defined in the 
UML notation guide nor are they supported by most UML 
tools, but they are allowed according to the UML meta-
model [7]. 

Activity diagrams can be used to represent how the 
interactions relate to each other in the scope of an entity, 
while a package sequence or collaboration diagram can be 
used to represent the relationship between interactions. 

To help capturing the interactional view we use some 
user-supplied usage scenarios to describe the different 
situations in which the application can be used.  

6. Component level 
 
The component level represents the system being de-

veloped in terms of a set of interconnected components. A 
component provides access to its services via one or more 
interfaces.  

When building a cooperative system from compo-
nents, we do not need to know how these components are 
internally represented as objects. Actually, a component 
does not have to be necessarily implemented using object-
oriented technology, although this technology is generally 
recognised as the most convenient way to implement a 
component. 

Components can be off-the-shelf, adapted from simi-
lar components or constructed from scratch. So far, most 
of the effort spent on building component-based applica-
tions concentrates on building new components. However, 
the more mature and widespread this technology becomes 
the more likely this effort will move towards adapting 
similar components and reusing existing ones [4]. 

The structural view of an application at the compo-
nent level is captured using an AMBER entity model. This 
entity model corresponds to a refinement of the entity 
model captured at the system level, in which entities are 
refined into sub-entities that represent components, and 
interaction points are added to connect these entities. The 
entity model is used to represent the static relationship 
between the identified components themselves and be-
tween the component and the application environment. 

The UML use case diagram identified at the system 
level may also be refined and split among the identified 
components, such that these components correctly support 
the use cases. However, there is no rule of thumb on how 
to split and assign use cases to components. A good prac-
tice is to keep similar functionality in a single component 
and assign distinct functionality to separate components. 
Although similarity and distinction are subjective terms, 
sometimes it suffices to rely on the individual judgement 
and experience of the application designer. In case a use 
case is likely to be supported by two or more components, 
it is possible that this use case is too complex and that it 
should be refined in multiple simpler use cases. 

The behaviour modelling of the application at the 
component level follows an approach similar to the system 
level. Initially, both the behavioural and the interactional 
views are captured using AMBER behaviour models. 

A behaviour is assigned to each entity identified at 
the structural view. However, we are now interested in 
revealing not only the external (observable) behaviour but 
also the internal details of the system, i.e., how the inter-
actions between components are refined and how actions 
are inserted to represent the activities performed by the 
components that form the system.  
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Similarly to the system level, the use of AMBER to 
model the behaviour of the application at the component 
level does not provide a clear separation between the be-
havioural and interactional views. Therefore we also use 
UML diagrams to complement the information captured 
by these views at the component level. 

To complement the behavioural view we suggest the 
use of activity diagrams to represent how the interactions 
and actions of each component relate to each other in the 
scope of an entity. To complement the behavioural view 
we suggest the use of package sequence or collaboration 
diagrams to represent the relationship of the interactions 
between the identified components. 

If composite components are involved, it may be nec-
essary to produce several refinements of the components, 
each producing a detailed description of the components 
involved and their relationship. For example, in the design 
of the chat application at the component level we have 
initially identified two composite components, viz., a 
client component and a server component.  

Figure 8 shows parts of the behaviour model of the 
server component. Two sub-behaviours are depicted: a 
sub-behaviour representing the connection management of 
a participant (left side) and a sub-behaviour representing 
the management of invitations (right side). Figure 8 shows 
internal details (activities modelled as actions in behav-
iour blocks) and how the interactions are refined.  

 

check for invitation

Server

inv_respinv_notifinvite

add invitation

check for invitation remove invitation

connect register disconnect

remove participant

add participant

 
Figure 8: Server component behaviour model 

In the behaviour model of the client and server com-
ponents, the identified sub-behaviours supplied some 
clues on how the structure of the next component level 
can be defined. Each sub-behaviour should be assigned to 
a different component, though similar sub-behaviours may 
also be assigned to a single component. At each refine-
ment of the component level the internal details are further 
revealed and the interactions are further refined. A de-
tailed discussion on behaviour refinement and refinement 
rules is presented in [13, 14]. 

In order to model the behaviour of a component using 
AMBER, including its interface, we need to introduce 
some additional conventions.  

A component may have one or more interfaces 
through which its services become available. However, 
each interface should be contained in a separate behaviour 

block. An interface contains operations. The execution of 
an operation is modelled as an interaction. We distinguish 
between two different types of operations, viz., an invoca-
tion, which returns a value to the invoking component, 
and an announcement, which does not return. 

An invocation is modelled as a sequence of two inter-
actions, viz., an invocation request and an invocation re-
turn. An announcement is modelled as a single interaction 
between two components. Optionally, you may have in 
both cases an additional interaction representing the oc-
currence of an exception during the invocation or an-
nouncement. The occurrence of an exception indicates 
that the operation could not be completed successfully.  

Figure 9 depicts the different types of operations be-
tween components C1 and C2. Figure 9a represents an 
invocation operation, while Figure 9b represents an an-
nouncement operation. The interaction modelling an ex-
ception in Figure 9b, although enabled, may not actually 
happen. This is represented by annotating the enabling 
relation with a question mark.  

 
 C1 

exception exception invocation invocation return return 

C2 

invocation invocation return return exception exception 

C1 

exception exception announcement announcement 

C2 

announcement announcement exception exception 

(a) invocation (b) announcement 

? 

? 

 
Figure 9: Interface operations 

To model an invocation operation, we add the key-
words invocation, return and exception to the name of the 
operation in the interaction identifiers. These keywords 
represent the invocation, return and exception interac-
tions, respectively. To model an announcement operation, 
we add the keyword announcement is the name of the inter-
action. 

Input parameters are modelled as structured informa-
tion attributes of the invocation interaction, while output 
parameters are modelled as structured information attrib-
utes of the return interaction. To model the return value of 
the operation itself, we attach the keyword returnvalue to an 
attribute in the return interaction. 

To model the occurrence and notification of events 
we also define some additional notation. The keywords 
event announcement or event notification are added to indi-
cate that the interaction corresponds to an event. The 
keyword event announcement indicates that a component 
produces an event, while the keyword event notification in-
dicates that a component consumes an event.  

The subscription to an event by a consumer compo-
nent can be modelled as an invocation operation. This 
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component passes in the invocation interaction a reference 
to the interface at which the occurrence of the event 
should be notified. For simplification purposes, we ab-
stract from the subscription process and consider only the 
announcement and notification of the event itself. 

  

7. Final remarks 
 
This paper presented an approach for the design of 

component-based systems. According to this approach, 
the development of a system is structured in four different 
abstraction levels. At each level, different views are used 
to capture structural, behavioural and interactional aspects 
of the application under development; these seem to be 
the most relevant views for application design. Still, we 
can have other views if necessary.  

Existing commercial UML-based methodologies are 
not completely component-oriented, which creates some 
barriers to the use and dissemination of component tech-
nology.  

The Unified Process [8] is a rather complex UML-
based software development process. The Unified Process 
is not really a development process but rather a process 
framework, since it describes best practices in software 
development but still has to be specialised to be suitable 
for different projects. Therefore, it lacks some prescrip-
tiveness. Nevertheless the Unified Process is flexible and 
scalable, having being largely used in the software indus-
try. Further, the Unified Process is not really a compo-
nent-based process. The use of components is an after-
thought, since the Unified Process prescribes that the de-
velopment of a set of objects could be followed by their 
grouping into components. 

Catalysis [2] is another complex software develop-
ment process based on UML. Similarly to the Unified 
Process, Catalysis is much like a process template, which 
can be tailored according to a particular development pro-
ject. Catalysis also lacks prescriptiveness, but it is flexible 
and scalable, being also popular among software develop-
ers. A major benefit of Catalysis is its explicit use of com-
ponents. However, being a broad software development 
process, Catalysis is not completely component-oriented. 

Our methodology is not as generic and complete as 
the Unified Process or Catalysis; however, it is simpler 
and component-oriented. Further, it does not rely exclu-
sively on UML and thus is not subjected to its shortcom-
ings.  

The use of the formal language AMBER to comple-
ment UML diagrams provides two major benefits. First, 
the concepts present in AMBER are simple, intuitive and 

close to the concerns of an application designer at the 
early stages of the development process. AMBER offers a 
high abstraction power and different constructs to repre-
sent behaviour. Second, AMBER has a formal semantics 
that allows a number of extra design activities, such as 
analysis, verification and simulation, to be carried out in 
parallel with the design process itself. These activities 
enhance the quality of the design and allow the detection 
and solution of problems as early as possible in the devel-
opment process. 
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