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Abstract—The main network solutions for supporting QoS rely on traf-
fic policing (conditioning, shaping). In particular, for IP networks the IETF
has developed Intserv (individual flows regulated) and Diffserv (only ag-
gregates regulated). The regulator proposed could be based on the (dual)
leaky-bucket mechanism. This explains the interest in network element per-
formance (loss, delay) for leaky-bucket regulated traffic.
This paper describes a novel approach to the above problem. Explicitly

using the correlation structure of the sources’ traffic, we derive approxi-
mations for both small and large buffers. Importantly, for small (large)
buffers the short-term (long-term) correlations are dominant. The large
buffer result decomposes the traffic stream in a stream of constant rate
and a periodic impulse stream, allowing direct application of the Brownian
bridge approximation. Combining the small and large buffer results by a
concave majorization, we propose a simple, fast and accurate technique to
statistically multiplex homogeneous regulated sources.
To address heterogeneous inputs, we present similarly efficient tech-

niques to evaluate the performance of multiple classes of traffic, each with
distinct characteristics and QoS requirements. These techniques, applica-
ble under more general conditions, are based on optimal resource (band-
width and buffer) partitioning. They can also be directly applied to set GPS
(Generalized Processor Sharing) weights and buffer thresholds in a shared
resource system.

Key words—packet networks, policing, admission control, queueing the-
ory, buffer overflow, ATM, IP, Internet, Intserv, Diffserv.

I. INTRODUCTION

We are currently faced with important changes in the nature
of Internet applications. Roughly speaking, traditional applica-
tions like web browsing, file transfer, and email can be consid-
ered purely as data transfers, which do not have strict Quality
of Service (QoS) requirements. The intended broader set of ser-
vices, however, has an essentially different character, as it does
need relatively hard guarantees (think for instance of real-time
services and services that require a minimal throughput). Con-
sequently, the currently employed service model of best effort
service will not be appropriate to support the new services.

Initiatives within the IETF. The awareness of the ‘QoS problem’
led to a number of initiatives within the Internet Engineering
Task Force, sse for instance [27]. The initially proposed archi-
tecture, Intserv [29], relied on QoS guarantees made on a per
flow basis. With the so-called Reservation Protocol (RSVP) re-
sources are explicitly allocated along a route through the net-
work. Because QoS is guaranteed for individual flows, all these
flows must be policed and subject to admission control. In other
words, the concept proposed shows a strong similarity to ATM,
a connection-oriented network technology (as opposed to the
connectionless Internet Protocol).

The crucial disadvantage of Intserv is its lack of scalability. In
the core of the network the number of flows simultaneously us-
ing a router is usually extremely large, whereas the flows them-

selves are active for a relatively short amount of time. This im-
poses severe requirements on the amount of state to be main-
tained by the routers. It was recognized that Intserv might be
applied in the edge of the network (where the number of flows
is relatively low), but not in the core.

For the core another mechanism has been proposed: Diffserv
[2]. In Diffserv no micro-flows are identified, hence solving
the scalability problems; instead agreements are made for ag-
gregates of flows. The different ISPs have contracts with each
other, thus ‘guaranteeing’ the end-users an end-to-end QoS. Any
ISP has the right to condition the incoming aggregate flows on
the basis of the agreement that it has with neighboring domains,
usually enforced by policing. (It should be noted that there are
two essentially different flavors within Diffserv: expedited for-
warding (EF) and assured forwarding (AF). In this paper the ex-
act differences between these are not crucial). Notice that there
is no real-time admission control — ISPs keep track of the re-
sources they allocated to the users of their network (for instance
other ISPs or big ‘aggregate’ customers) — renegotiations are
usually done by bandwidth-broker type of mechanisms.

Policing. Dual leaky bucket. As noted above, in both the edge
mechanism and the core mechanism a crucial role is played by
policing, albeit on different levels. In Intserv all flows are asked
to declare a traffic contract, typically the three parameters of
the dual leaky bucket, and those are policed. In Diffserv, at a
peer router, there is the possibility of policing the aggregate of a
number of microflows.

The dual leaky bucket (DLB) [25] is a policing device that has
three parameters: peak rate and sustainable rate (which is a
maximum on the average rate), as well as the maximum allowed
burst period (which is the maximum time that the source is
allowed to send consecutively at peak rate). Formally, if
is the amount of traffic controlled by the policer in , then

, where
(for any with ).

Per node performance. One node in the network can be seen as
a queue fed by a number of sources, where a source of type

is characterized by its ‘triple’ . We assume that
the system (router) is characterized by a (constant) link rate

and a buffer . A central question then is: suppose we
have sources of type , , is the combination

admissible, in that it offers all sources sufficient
QoS? One could for instance aim for zero loss, which leads to
solving a linear program [4], [15], [18]. Notice that an equiva-
lent problem arises when the guarantee is specified as maximum
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delay , where .
However, in practice the guarantees required are mostly not

so strict. Rather than deterministic guarantees (zero loss, delay
threshold never exceeded) customers are usually satisfied with
probabilistic criteria (the probability of exceeding buffer level

smaller than , the probability that the delay is larger than
smaller than ). The most significant advantage of these statis-
tical guarantees is that the resulting admissible region is substan-
tially larger than under deterministic guarantees: the number of
admissible sources can be increased considerably.

Worst case traffic. Having decided to use statistical guarantees,
the next question is: how to model regulated traffic, e.g. traffic
that has been subject to a DLB policer? To construct a mecha-
nism that reliably offers the agreed QoS, our calculations should
be based on the ‘worst’ traffic that is compliant with the traffic
contract, i.e., ‘adversarial’ traffic that in some sense maximizes
the loss probability. A number of studies have tried to identify
this ‘worst case traffic’. Significant contributions were made in
[7], [22], [5], and [20]. In this study we use the – non-exact,
but justifiable – assumption that worst case traffic is modeled as
deterministic on-off.

Deterministic on-off traffic is periodic: a source with descrip-
tor transmits at rate during a fixed time , and is
silent during a fixed time , such that the av-
erage rate is . We employ on the customary fluid model, thus
neglecting the discrete nature of packet traffic. As long as the
periods of the sources relate as rational numbers, the resulting
queue is periodic. The only random effect is the phase of the
sources; as said above, the durations of the activity periods and
silences themselves are not random.

Deterministic on-off sources have an interesting correlation
structure. On a short time scale there is positive correlation: the
traffic rate is likely to be unchanged over small intervals. On the
other hand, on somewhat longer time-scales there is negative
correlation: if the source is on, then it is certain that it will be
off units of time later.

It is noted that models with purely negative correlations (for
instance the D/D/1 queue [23, p. 397] where sources trans-
mit their bursts instantaneously rather than gradually) have been
solved (i.e., an explicit form for the buffer content distribution
has been derived). On the other hand also queues with sources
with purely positive correlations (for instance on-off sources
with exponential on- and off-times [1]) have been analyzed suc-
cessfully. However, the model with deterministic on-off traffic
is known to be notoriously difficult, and no closed-form solution
is known.

Contribution of this work. A significant contribution on the per-
formance of a node with regulated input is by Elwalid, Mitra,
and Wentworth [10]. They present an insightful procedure for
calculating an upper bound to the loss probability. They trans-
late a technique to estimate loss probabilities into a manageable
admission control (for more results on admission control, see
also [12] and survey paper [26]). However, the construction ap-
plied used there does not completely reflect the statistical shar-
ing of resources and tends to be conservative. In the present
paper we will explain in detail which effects are captured and
which are not.

The contribution of our work lies in the fast and accurate
methods for evaluation of the loss probability. The key idea
behind them is the exploitation of the different types of correla-
tion. For small buffers the positive correlations of the short time
scale are dominant – hence we propose a method that captures
this explicitly, related to the solution of [1]. For larger buffers
the negative correlations essentially determine overflow behav-
ior – also in this regime we come up with an explicitly tailored
method, related to the D/D/1 model and the Brownian bridge
approximation.

This leads, for homogeneous input (i.i.d. deterministic on-
off sources), to explicit formulae for the loss probability and
the number of sources that can be admitted to achieve a given
QoS criterion. It also allows us to tackle the problem of re-
source allocation for heterogeneous input, even for the case of
service differentiation (per class a specific QoS criterion). The
techniques for heterogeneous traffic are applicable under more
general conditions. They can also be directly applied to set GPS
(Generalized Processor Sharing) weights.

This paper is organized as follows. Section II presents prelimi-
naries on the queue with deterministic on-off input. Section III
and IV treat small buffers and large buffers, fed by homogeneous
input, respectively. Section V illustrates the theory of the pre-
vious sections by means of numerical examples. In Section VI
we focus on heterogeneous input; the corresponding numerical
examples are provided in Section VII.

II. PRELIMINARIES

This section focuses on the preliminaries of our analysis. We
will introduce the model (Section II-A), describe the state-of-
the-art of the analysis of the model (Section II-B), and motivate
our approach (Section II-C).

A. Model
We consider traffic from a number of determinsitic on-off

sources arriving at a buffered resource. A source of type has
mean rate , peak rate and on-time . There are sources
of type . The resource is modeled as a queue with constant
depletion rate . An important case is when traffic is homoge-
neous: all sources have the same traffic descriptor . No-
tice that the only random effect is the ‘phase’ of the sources: the
start of the on-time is uniformly distributed on the period of the
source. We are interested in the probability of the buffer con-
tent exceeding level , denoted by , or, equivalently,
the probability that the delay exceeds To avoid triv-
ialities,

B. Literature
This subsection reviews and evaluates the existing literature

in the field of queues fed by adversarial traffic. We distinguish
between three approaches: exact bounds, the virtual buffer-trunk
construction by Elwalid et al. [10], and large deviations asymp-
totics.

Exact bounds. Kvols and Blaabjerg [17] consider the discrete-
time version of our model – it is assumed that there are homo-
geneous sources. Then the model is equivalently given, by on-
time , off-time and cell spacing (i.e., during bursts every
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time units a cell arrives). The well-known Beneš formula [23]
then states ( denoting the queue size at time , assuming that
at time stationary behavior is reached) that equals

P P

P

Here is the load of the multiplexer, and is the number
of arrivals from all sources in time interval However,
evaluating the above expression is hard, because no closed form
expression for the conditional probability exists. Unfortunately,
the trivial upper bound

P

is not very accurate. Therefore the authors also derive a
(more accurate, but not necessarily conservative) approxima-
tion. However, even in the homogeneous case the method turns
out to be quite complex ( -fold convolutions have to be deter-
mined explicitly). In Garcia, Barceló, and Casals [11] similar
algorithms are found for the continuous-time (i.e., fluid) version
of the model.

Virtual buffer-trunk construction. In Elwalid et al. [10], as a
first step, a worst-case analysis of this model is treated assuming
coincident bursts. Then it is easy to verify that if the solution of
the following linear program is smaller than there cannot be
any loss:

subject to (1)

where . This is an immediate consequence of the
relation

Buffer contents

(2)
Although the mathematical program (1) can be solved explic-
itly [4], [15], [18], the authors of [10] impose the additional
requirement , where . With this
assumption, it is easy to show that there is no loss if the sum of
the effective bandwidths is not larger than , where the effective
bandwidth of a source with parameters is given by

Since its solution satisfies the extra proportionality constraint,
this gives an underestimate of the real admissible region. How-
ever, the crucial advantage is that the effective bandwidth of a
source of a given class does not depend on the traffic mix, i.e.,
the characteristics of the other classes.

As argued in the introduction, in practice, it is not required
that there is zero loss, but some small loss fraction is allowed,

say . In order to allow for such a small loss probability,
Elwalid et al. [10] propose a statistical multiplexing routine.
Clearly a source of type requires only a fraction of
time. So, at a random moment in time the required bandwidth
by a type source amounts to with probability and is
zero else. For that reason, we have to investigate the probability

P (3)

where equals with probability , and is zero otherwise.
The ‘ -admissible region’ then consists of all combinations
that keep the above probablity below In [10] it is proposed
to use the Chernoff bound to approximate the above probability,
thus deriving the corresponding admissible region.

The most important advantages of this method are its intuitive
nature, its low complexity, and its applicability for the case of
multiple types of traffic. However, the construction is sometimes
overly pessimistic: could be much smaller than (3).
Two important reasons for that are: (i) During the period that the
source needs bandwidth , it does not need buffer space all
the time; the buffer usage has (as a function of time) a triangular
shape. (ii) In the construction a source can never be served at
a higher rate than the lossless effective bandwidth, even if there
is enough bandwidth available to serve at higher rates, e.g., the
peak rate. It is pointed out in [18] how to adapt the framework
of [10] to overcome the former problem (in fact only partially,
because there is still a union bound involved, that may turn out
to be quite crude). However, as it does not solve the latter, the
procedure of [18] is still conservative. The key point is that
the construction of [10] loses detail by turning the dynamical
queueing model into the static criterion (3).

Large deviations approach. A third approach is of an asymptotic
nature, and relies on the theory of large deviations. First con-
sider the homogeneous-input model We rescale the resources by
the number of sources: and . In the scaled
model we define

steady-state probability that the
buffer content exceeds level .

From Simonian and Guibert [24], with the amount of traffic
generated by a single source in ,

E (4)

We call this curve, i.e., the decay rate of the loss probability as
function of , the loss curve, see also [3], [6].

C. Approach

A general conjecture is that the loss curve is convex (con-
cave) at a specific , if the packet arrivals are negatively (posi-
tively) correlated on the time scale related to overflow. Empiri-
cal motivation for this conjecture can be found in Section 4.4 of
Botvich and Duffield [3]. They consider a discrete-time queue
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fed by sources with geometric( ) on-times and geometric( )
of times. They found that depending on the correlation structure,
the loss curve had a convex or concave shape. More precisely,
for (negative correlation) they showed convexity,
for concavity (positive correlation).

As said before, deterministic on-off fluid sources exhibit pos-
itive correlation on short time-scales and negative correlation on
larger time-scales. These correlations can be visualized by ex-
amining the variance of . To calculate this variance, we first
show how to compute the distribution of

The distribution of can be made explicit as follows. The
period of the source is denoted by We assume
that , but an analogous reasoning applies to the case
that Because (the epoch of the start of the burst) is
uniformly distributed on , three cases can be distinguished:

This enables the calculation of E , allowing us to
evaluate (4), in principle. However, this is computationally in-
volved, which motivates our search for fast and explicit approx-
imations.

We are also in a position to calculate Var :

Var

Between 0 and , is first convex, then concave, and fi-
nally convex again; notice that concavity (convexity) indicates
negative (positive) correlations.

The first part of the curve will be concave, due to the positive
correlations on the short time scale, whereas the second part will
be convex, because of the negative correlations on the somewhat
longer time scale. The idea of this work is to develop specific
approximations for both parts of the loss curve. For small values
of , we will use the ‘square root’ short-buffer approximation as
given in Section III, in which explicitly the positive correlations
are exploited. For larger values of we will use an approxima-
tion based on the Brownian bridge, which naturally incorporates
the negative correlations of the traffic offered (Section IV).

III. APPROXIMATION FOR SMALL BUFFERS,
HOMOGENEOUS INPUT

In this section we review a result derived earlier, specifically
for small buffers. As noted before, in this regime the positive
correlations are dominant; in fact we will show that

. We will show that this approximation immediately leads
to an expression of the number of sources to be admitted.

A. Approximation
First define

and

Mandjes and Kim [19] proved that increases rapidly for
small as :

(5)
Notice that this formula reflects the positive correlations:
is concave for small . This leads to the loss approximation

(6)

B. Admissible region
For small values of we expect that the number of admissi-

ble sources grows rapidly, suggested by (5). We will verify this
property here. If is the required loss fraction, due to (6) we
have to solve

here is the number of admissible flows for a given buffer
level . Implicit differentiation with respect to yields

d
d

where denotes derivative with respect to the argument
This yields d d when , with

We notice that hence grows quickly for small : like
; follows from

IV. APPROXIMATION FOR LARGE BUFFERS, HOMOGENEOUS
INPUT

This sections deals with an approximation of the loss proba-
bility for large values of the buffer size.
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A. Approximation

In the literature [8], [13], [21] it has been proposed to ap-
proximate the tail probabilities in the D/D/1 queue (i.e., the
queue fed by streams that emit a packet every, say, units
of time) by using a Brownian bridge. In this section we use a
similar approximation for the queue fed by deterministic on-
off sources. We first explain the rationale behind the Brownian
bridge approximation for the D/D/1 queue.

Let Brownian motion with drift E and
Var It can be verified that, ,

E

Var

We call the Brownian bridge ( ).
Now consider traffic generated by a single stream of the
D/D/1 model. Let be the number of packets generated

by such a stream in . It is easy to check that E
and Var . In other words, for
and , the first two moments of and the Brown-
ian bridge coincide. In the central limit regime (i.e., when the
load of the queue is relatively high), the mean and variance es-
sentially determine the moment generating function of the input
process:

E 1

2

This justifies the use of the Brownian bridge as an approxima-
tion of the D/D/1 queue. The probability distribution of the
Brownian bridge is explicitly known [8], [13], [21].

In the case of deterministic on-off sources, Var is not pro-
portional to , as we noted in Section II, but it does have
the property that it drops to 0 at time . This suggests that we
could choose and of the Brownian bridge to fit the mean
and to conservatively bound the variance Var with a func-
tion proportional to . Then we apply the Brownian bridge
on the corresponding process to get a conservative estimate.

It is not hard to see that we should choose
. The conservative (i.e., dominating) variance should satisfy

for all . If , this may be
done by choosing where

having equality at , , and , and stricts inequality
elsewhere (see Figure 1) . has to be replaced by in the
formula if .

Let is a Brownian bridge with parameters and
. With (i) because of the conservative choice of , and

(ii) by direct application of the overflow probability formula for
Brownian bridge [13], we obtain:

P

Adversarial DLB
       Traffic

t

2(t)

Brownian
Bridge

Fig. 1. Variance plots for deterministic on-off traffic and the closest Brownian
bridge fit.

(i)
P

(ii) (7)

T
Time

Rate

p

S

T
Time

Rate Impulses
of size

p

p(T−  )

S

      (i)            

      (ii)            

Fig. 2. (i) Single deterministic on-off source, which is (ii) conservatively re-
placed by a superposition of constant rate and periodic impulse.

B. Admissible region

For the D/D/1 model with impulses of size every units
of time, the Brownian bridge approximation would look like

This means that approximation (7) has an interesting interpre-
tation, as is illustrated in Figure 2. The procedure essentially
bounds deterministic on-off source by an equivalent superposi-
tion of a constant rate and periodic impulse. The parameter ,
picked using the tightest variance fit to a Brownian bridge, de-
termines an instantaneous burst that is generated every units
of time, whereas the difference arrives at a constant
rate. Evidently this is a significant improvement over replacing
the entire square wave profile with impulses (corresponding to
the choice ).
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For a given loss probability , we obtain the maximum
number of admissible sources as

(8)

The results compare favorably with alternative methods, as will
demonstrate numerically in the next section.

V. NUMERICAL RESULTS FOR HOMOGENEOUS TRAFFIC

We have described the computation of the overflow probabil-
ity and admissible region for the regime of small buffers (Sec-
tion III) and the regime of large buffers (Section IV). In this
section both regimes are combined into a unified approximation.

Class Mean(Mbps) Peak(Mbps) (ms) (ms) Loss
1 0.15 0.3 353 707
2 0.15 1.5 70.7 707
3 0.15 6.0 1.77 70.7
4 0.15 20 0.53 70.7

TABLE I
TRAFFIC PARAMETERS FOR THE EXPERIMENTAL CLASSES.

In Figure 4, the number of admissible connections is shown, as
a function of the buffer size. The traffic parameters of class 2
and 3 are taken from Figure 13 of [10]. The link rate is 150
Mbit/s. We chose the overflow probability of the last column; it
is mentioned that other values give comparable graphs. Notice
that the sources are ordered in increasing burstiness.

Exact and EMW. In both graphs we have plotted the number of
admissible sources based on (4). As this approach is asymp-
totically exact (given that the number of sources is large), we
call this curve exact and will serve as a benchmark throughout.
Also, we show the acceptance curve based on [10] (denoted by
EMW in the graphs). We see that this approximation performs
quite well for small buffers, but loses its efficiency for larger
buffer sizes. Apparently, the conservative elements identified in
Section II-B play an important role.

Large and small buffer. Also the Brownian bridge-based large
buffer approximation has been computed. If the buffer is large
this approximation is close to the exact curve. Notice that there
are parts of the curve in which the Brownian bridge is not con-
servative. Apparently, the conservative bound on the second
moment of is not enough here; higher moments play an
important role (particularly when the load is relatively low: then
the central limit regime does not apply). However, as seen from
this graph and extensive other numerical experiments the differ-
ence between both curves is in general not very significant. On
the other hand, we see that the small buffer approximation cap-
tures the exact loss curve quite well in the left hand side of the
graphs.

Concave envelope. Having good approximations for large and
small buffers, we consider a unified approximation: we merge
the two curves by adding a linear segment such that we get a
concave envelope. We see that this curve gives a good fit for all
traffic classes, and is nearly always still conservative.

Algorithm by Guérin et al. [12]. In [12] traffic is modeled as on-
off, with exponentially distributed on- and off-times. In other
words, the model is different from ours, and hence the results
are in principle not applicable to DLB regulated traffic (for in-
stance, the burst size is unbounded). By fitting the mean on
and off-times to and we have compared their algorithm to
our concave envelope and the exact curve. We found [12] too
aggressive for small buffers, and significantly conservative for
larger buffers.

VI. HETEROGENEOUS TRAFFIC

We now consider the case of multiple classes of regulated
sources sharing common resources and . The sources are
homogeneous within each class, but may differ in traffic (leaky
bucket) parameters across classes. The difference in leaky
bucket parameters generally implies that the deterministic on-
off profiles for each class may have different periods, on-times,
and amplitudes. This fact makes it difficult to characterize the
aggregate process, and hence also difficult to analyze perfor-
mance. In particular, it is tempting to repeat the method of upper
bounding the aggregate variance by a Brownian bridge. How-
ever, the Brownian bridge variance profile is a poor fit, since the
aggregate variance is a superposition of periodic functions with
possibly widely different periods.

As a conservative alternative, we consider the problem of
optimally partitioning into among the classes,
given a fixed number ( ) of sources in each class. ‘Opti-
mal’ here refers to maximizing the size of the admissible re-
gion by maximizing for a given connection mix vector

, where . Partition-
ing of resources, which can support diverse QoS requirements
by protecting individual classes, generally loses the multiplex-
ing advantage obtained by sharing across classes. Thus for ho-
mogeneous QoS requirements, we get a conservative solution to
the FIFO system. However, partitioning is still quite efficient
in the practically interesting case of small number of classes ,
each with large number of connections .

We begin this section by formulating a general version of the
partitioning problem, followed by a specialized solution for the
Brownian bridge. We conclude by discussing the relevance of
the partitions to GPS and shared buffer management.

A. Solution to the General Problem

Consider the admissible region specified by

(9)

for each class with distinct traffic/QoS parameters. As can
be verified, for given , equation (9) defines a convex
vs. tradeoff curve, for the concave envelope introduced in
Section V, as well as the small and large buffer approximations
individually. To find the admissible region we then seek to solve

Maximize subject to

(10)
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We first observe that, at optimum, all the loss constraints in (10)
would hold with equality, as otherwise we may reduce and/or

for the corresponding class and admit more connections1.
We hence suppose that, for fixed (in particular the optimal
value), we may invert (9) to obtain the buffer as a function of
the other parameters, i.e., . Now consider
the intermediate problem:

Minimize subject to

(11)

While we omit proofs and various details here due to limited
space, readers familiar with optimization would recognize (11)
as a standard convex minimization to which the Strong La-
grangian Principles (see, for example [28]) can be applied,
which yields the following Kuhn-Tucker conditions:

for some global (class-independent) non-negative Lagrange
multiplier . It hence follows that the maximum value of
retains feasibility of the following conditions for some , which
represents the slope of each of the bandwidth-buffer tradeoff
curves at the optimal operating point:

(12)

Figure 3 pictorially illustrates the solution to the above opti-
mization problem. The final pair of constraints on total buffer
and bandwidth may be further augmented by a per-class delay
constraint of the form (illustrated in Figure 3(a)), or
indeed any other jointly semi-concave constraints of the form

, without altering the solution procedure sig-
nificantly. When the condition in (13) cannot be satisfied
for all classes, which may happen when or

within the operating region for some (see Fig-
ure 3(b)), we may replace by the closest achieved value for
class , and choose the corresponding operating point
on the tradeoff curve. These modifications are justified by stan-
dard results from theory of convex programming. This implies
that the optimal operating point for this class corresponds to ei-
ther the mean rate (or the maximum delay limit when delay con-
strained) or the peak rate respectively. The operating point for
each class is hence uniquely specified for given when equa-
tion (9) satisfies the above described convexity property for each
class.

We have thus reduced the multiclass problem to a two vari-
able optimization on , which we solve using a simple bi-
section search procedure on for fixed followed by an outer

We ignore the fact that needs to be integral, but this is of minor conse-
quence when .

B

C

i

i
r pi i

R (B ,C ,N ) = i i i i i

(Mean) (Peak)

Delay constraint
B = D Ci      i   i

Operating
Region

Iso−loss curve

(a)

(b)

Ci

dB
dCi

i−

x
x

x
x

x

Optimal Operating points

dB
dCi

i−Ci vs. in operating 

region for each class.

Fig. 3. Illustration of optimal partitioning solution.

bisection on . We use this general procedure to obtain the ad-
missible region for the concave fit, but further simplification is
possible if the Brownian bridge approximation is adequate, as
explained in Section VI-B. Note that the partitioning solution
presented here generalizes the lossless multiclass solution pre-
sented in [15], where the tradeoff curves were linear for
fixed .

General traffic types. It is evident from the above discus-
sion that this procedure is applicable to all traffic types with
convex bandwidth-buffer trade off curves, of which leaky
bucket regulated traffic is an example. A shortly forthcoming
manuscript [16] shows that the convexity holds under much
more general circumstances when the number of connections
multiplexed is large. This is also intuitively in conformity
with the notion of ‘diminishing returns’ in the bandwidth-buffer
tradeoff, i.e. for a fixed number of connections and specified
performance target, one obtains diminishing savings in band-
width as buffer space is increased, and vice-versa. Note that the
trade off curves could be obtained by measurements when traffic
characteristics are not available explicitly.

Measurement-based resource allocation. The above observa-
tions can also be utilized to devise a control algorithm to achieve
the optimal operating point without explicitly computing the ad-
missible region. The per-class trade-off curves, along
with measurements of buffer and bandwidth utilizations, are the
main drivers of this control. It is easy to see that the following
simple proportional control would converge at the unique opti-
mal value of , which necessarily exists if the problem is at all
feasible: Reduce (Increase) , if the buffer utilization is higher
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(lower) than bandwidth utilization, by an amount proportional
to the absolute difference in the utilizations. Reducing would
decrease the and increase for every class, while increasing

does the opposite. Hence the algorithm efficiently reallocates
resources to achieve balanced buffer and bandwidth usage over-
all.

B. Brownian bridge
Applying the above described partitioning technique to this

special case, we seek to maximize subject to

(13)

The necessary convexity conditions are easily shown to hold
here, and it turns out that these equations can be solved nearly
in closed-form, (using techniques described in the Appendix)
except for numerically solving for in

(14)

where

The optimum value for is given by for satisfy-
ing (14).

C. Relation to GPS and Buffer Management
We may use the optimal partitioning results to set GPS

weights (see [9], [14] for GPS weight computation using the
methods of [10]) and perform buffer management in an inte-
grated fashion. Given the optimal split, the GPS weight

for each class connection (assuming per connection queue-
ing) can be set as If the queueing is per-class,
the weights would of course be for class . How-
ever, to guarantee performance requirements, the corresponding
buffer space must be guaranteed as well. This can be accom-
plished using the technique of virtual partitioning as described
in [15]. The per-VC (resp. per-class) nominal allocations de-
scribed therein are easily recognized to be (resp. )
from the optimal partition. This approach hence naturally inte-
grates GPS, buffer management and admission control in a het-
erogeneous setting, which has previously proved a challenge.

VII. NUMERICAL RESULTS FOR HETEROGENEOUS
TRAFFIC

We now present the results of the optimal resource partition-
ing procedure for two traffic classes. The traffic parameters used

in the results of Figure 5 correspond to classes 2 and 3 in Table
I, with the loss requirements chosen as and respec-
tively for classes 2 and 3. Figure 5 plots the admissible region
using the different methods. The two bounding straight lines,
provided for comparison, are obtained by joining corner points
from [10] and the exact method (4), which do not admit diverse
QoS. Note that the Brownian bridge and concave fit methods
improve on EMW [10], are reasonable approximations for the
‘exact’ region, and are computationally simpler than these al-
ternatives. The discrepancy between ‘exact’ and the concave fit
observed in Figure 5(a) is mainly due to the fact that the buffer
space assumed is not yet ‘large’ for class 3 connections, as seen
by the improved fit in Figure 5(b) with a larger buffer. In par-
ticular, the Brownian bridge method is very fast and reasonably
accurate when the cumulative buffer space is large and the de-
lay constraint for individual classes is not too stringent. Our
experiments also show close agreement between the concave fit
and Brownian bridge methods in the optimal operating points

.

VIII. CONCLUSIONS

We have presented improved approximations for statistically
multiplexing homogeneous regulated sources. These are used
to develop techniques to optimally partition resources among
heterogeneous classes. All the proposed procedures are fast, ac-
curate, and simple.

In the intermediate buffer range, our concave fit differs ap-
preciably from the exact results. Also our partitioning solution
neglects possible inter-class sharing of resources, which could
lead to significant inefficiency when the number of classes is
large. These constitute directions for further research.
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APPENDIX: SOLUTION TO THE MULTI-CLASS BROWNIAN
BRIDGE PROBLEM

Following the results of section VI, we seek to maximize
subject to , and

(15)

From equations (13) for fixed ,

for some global, class-independent parameter . Thus,

Combining with , and satisfy

(16)

Explicit elimination of from the two equations, followed by
some algebraic simplification, leads to the condition (14) for
and the optimal solution by recovering .
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Fig. 4. Admissibility curves for the 4 connection types of Table I.
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Fig. 5. Two-class admissible regions with (a) B=1.4 Mb (b) B=2.0 Mb.


