
What Makes Industries Believe in Formal Methods

Chris A. Vissersa,b, Marten van Sinderenb, Luís Ferreira Piresb

aTelematics Research Centre, P.O. Box 217, 7500 AE Enschede, the Netherlands

bTele-Informatics and Open Systems Group, University of Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands

The introduction of formal methods in the design and development departments of an indus-
trial company has far reaching and long lasting consequences. In fact it changes the whole en-
vironment of methods, tools and skills that determine the design culture of that company. A de-
cision to replace current design practice by formal methods, therefore, appears a vital one and
is not lightly taken. The past has shown that efforts to introduce formal methods in industry has
faced a lot of controversy and opposition at various hierarchical levels in companies, resulting
in a marginal spread of such methods. This paper revisits the requirements for formal descrip-
tion techniques and identifies some critical success and inhibiting factors associated with the in-
troduction of formal methods in the industrial practice. One of the inhibiting factors is the often
encountered lack of appropriateness of the formal model to express and manipulate the design
concerns that determine the world of the engineer. This factor motivated our research in the area
of architectural and implementation design concepts. The last two sections of this paper report
on some results of this research.

1 Introduction

Design and Production Culture
Industries aim at continuity and making profit. These goals are achieved by considering sev-

eral important factors such as product range, marketing approach, stock control, productivity
and competitiveness. The latter two factors determine the capability to produce the ‘best’ pos-
sible products in the shortest possible time and at the lowest possible cost. Productivity and
competitiveness are largely determined by the methods, procedures, tools and skills necessary
for the design and production of products, and the way the people involved in them are able to
handle these facilities and faculties in their daily work. They determine a vital aspect of the spe-
cific organization and working practices of an industry and form its specific design and produc-
tion environment.This environment is carefully cultivated and at the same time screened off
from the competition, determining a specific (design and production) culture of that industry.
Figure 1 depicts some elements of a design culture, and their relationship with a specific design
instance ([13]).

Any industry with a well understood self-interest will continuously search for new and better
methods, procedures, tools and skills to optimize its design and production environment, aiming
at improving its productivity and competitiveness and with the ultimate goal to safeguard its
continuity and profit. Being a vital component of its survival strategy, however, this also implies

that an industry will consider modifications to its design and production environment with the
greatest care so as not to put its productivity and competitiveness at stake. Only if substantial
improvements to productivity and competitveness can beguaranteed an industry will seriously
consider new methods, and will afford the investments in money and time to introduce them into
its daily practice.

Consequently, methods, procedures, tools and skills are seen asmeans to achieve a goal, not
goals in themselves.

Formal Methods
In the last decade a substantial sympathy has been raised for the development and application

of Formal Description Techniques (FDTs). These developments were to a large extent triggered
by the need to overcome the so calledsoftware crisis: the inability to control the complexity and
correctness of large software designs. Such lack of control is particularly harmful for the devel-
opment of large and modern distributed systems where hidden errors in the high level design
and specification may cause great difficulties in their operation and maintenance.

FDTs originally aimed at controlling the unambiguity and correctness, not necessarily the
complexity, of designs. As such their development and application was particularly fostered by
ISO and CCITT since these standardization bodies had a particular interest in bringing out their
specifications of standards and recommendations for (e.g. open systems) protocols and services
in an as unambiguous, clear and concise way as possible. These standardization bodies even de-
cided themselves to develop international standards and recommendations for FDTs.

A corresponding sympathy was raised in (inter)national research programs like ESPRIT,
RACE and Alvey. Large FDT oriented research projects, like SEDOS, METEOR and SPECS,
were launched. SEDOS focused on the FDTs LOTOS and Estelle and contributed substantially
to the work in ISO and CCITT. SEDOS appeared an important factor in progressing LOTOS
and Estelle to the status of international standard. SEDOS also contributed substantially towards
the development of formal specifications of ISO standards in these FDTs like the ones for the
Transport and Session layers [6], [7], [5], [4]. Successor projects like Lotosphere and Estelle

Figure 1: Elements of a Design Culture

Basic Design
Concepts

Design
Methodology

Supporting
Tools

Specification
Styles

Design

Design
Language

Design
Specification

Architectural
Semantics

representation

interpretation

Demonstrator were capable of building on top of SEDOS and developed quite sophisticated de-
sign and tool environments around these FDTs.

As a result one can observe that a lot of skills, time and money have been invested in the last
decade in the development of advancedFormal Methods (FMs), i.e. the FDT language defini-
tions, related design methodologies and design support tools. By involving large industrial part-
ners in these efforts serious attempts have been made to advance the uptake of FMs by industry.

At the same time an abundance of FMs has been developed and reported in conferences like
PSTV, FORTE, SDL Forum, FME and AMAST.

As said above, any self-respecting industry will not lightly take the decision to modify its de-
sign and production practice by new methods, let alone replace it completely and overnight.
However, given the continuous search for new and better methods by industry, given the prima-
ry aim of FMs to provide new and better methods, and given the current availability of quite
advanced and sophisicated methods based on standard FDTs, one would expect a broad scale
industrial interest and uptake of these FMs. To what extent is this uptake underway? Is the pic-
ture indeed much different from the one of ten years ago?

State of the Art
Observing the state of the art in this respect shows a discouraging picture. In contrast to the

broad scale interest in Universities, we see at the best that some large industries have shown a
willingness to consider, apply, and even extend FMs, however, generally on an experimental
basis only. In certain institutions indeed some specific error critical projects are carried out (see
for example [2]) but the number of these institutions is small. Serious product developments do
not take place on a broad industrial scale. At any case we can observe a situation which is far
away from the large scale breakthrough of FMs.

Moreover one can observe a widespread indifference with respect to FMs. In CEC funded
programs, like ESPRIT for example, the chances of getting projects accepted that aim at devel-
oping FMs based enabling technologies is marginal nowadays. The number of FDT oriented
tools that are installed in industry is limited. Several industrial circles simply and openly reject
the usefulness of FMs. FMs are oversold, they say: “they have promised too much, but appear
not useful in practice”. In ISO/IEC-JTC1, originally a driving force in their development, we
currently see efforts to abandon the use of FDTs ([8]).

Several arguments may be tossed to excuse the current situation. One may argue, while re-
ferring to structured programming for example, that the uptake by industry of advanced tech-
niques always takes a ten to twenty years learning curve. One may also argue that the introduc-
tion of FMs, through their rigidity and required strict obedience to the semantics of an FDT, will
have a more than usual impact on all aspects of the design culture of an industry, and thus will
naturally face resistance of those who do not have the necessary background. Maybe FMs will
only be introduced through the influx of formally trained students.

Is the industry ignoring its chances? Do current FMs not really support productivity and com-
petitiveness? As ever, any situation is never black and white, and the above excuses to a certain
extent hold. However, the reasons for the reluctance and critical position of industry hold to the
same extent. Facts that should be taken seriously! If not, we may easily jeopardize the cause of
FMs and wind up in, what we may call, aFormal Methods Crisis, i.e. the inability of FMs to
control the correctness and complexity of large software designs.

The question we have to ask ourselves is: what requirements should we really put to FMs,
and what has to be improved in order to make industries believe in them. In order to tackle this

question, it is useful to see what lessons we can learn from the development of the FMs related
to standard FDTs.

2 Original Requirements for FDTs

The interest of standardization bodies in the development of unambiguous specifications of
standards led in ISO in 1979 to the installation of the ISO/TC97/SC16/WG1/FDT group. The
objectives and requirements for FDTs were formulated in Annex E of the OSI Reference Model
([3]). In summary, they should provide a basis for:
• the development of unambiguous, clear, and concise specifications,
• the verification of specifications,
• the functional analysis of specifications,
• the development of implementations from a specification,
• the determination that such implementations conform to their specification.

Within CCITT a similar group already worked for several years on the development of SDL.
At first glance it seems that the above requirements cover all relevant concerns related to

FMs development. But, without disputing the relevance of these requirements, we can at the
same time make the following observations following the history of the different FMs develop-
ments within CCITT and ISO:
1. SDL (version 1980 with graphical notation only) was considered too much hardware and im-

plementation oriented by ISO, who was particularly interested in the software oriented and
the implementation independent specification of OSI standards. The different views on im-
plementation independedness in fact pre-occupied the orientation of the different FDT
groups. Comparing the resulting standards and recommendations against this requirement
we can observe that LOTOS is more suited for abstract specifications, whereas Estelle and
SDL are closer to implementation oriented specifications. As a net result LOTOS provides
better specifications of OSI standards, whereas specifications in Estelle and SDL, once avail-
able, are much easier to implement. The question can be asked why these different FDT
groups made such vastly different interpretations of the level of abstraction at which a spec-
ification of the same technical object should be provided.

2. LOTOS on the one hand, and SDL and Estelle on the other hand, are based on completely
different formal models. LOTOS is based on an (asynchronous) labeled transition system
model, whereas models are interconnected via synchronous interaction. SDL and Estelle are
based on a (synchronous) finite state machine model, whereas models are interconnected via
asynchronous (infinite queues) interaction. Consequently they have completely different
views and modelling power for important architectural notions such as the OSI Service
boundary ([14]). The question can be asked why these different FDT groups made such a
vastly different interpretation of important architectural notions with such drastically differ-
ent consequences for the choice of formal models and resulting modelling power?

3. LOTOS, SDL, and Estelle have shown different degrees of success in producing specifica-
tions of OSI standards. Initially SDL and Estelle appeared quite unsuccessful in producing
Formal Descriptions (FDs) of OSI standards. On the other hand LOTOS should not be too
proud of its specifications of Transport and Session layer standards. The development of the
Transport Protocol Technical Report took about 8(!) years, and of the Session Service and
Protocol Technical reports about 5 years. Moreover, these reports are not used, most proba-
bly not error free, and, in case of the Session layer reports, no longer up to date. In any case

one can observe that LOTOS and Estelle specifications that were derived from the same in-
formal specification are vastly different from each other. Consequently the implementations
will also be vastly different from each other. The question can then be asked why there
should be such drastic differences between specifications and resulting implementations of
the same technical object?
As a side-remark we note that CCITT and ISO have different views on how the application

of FDTs should be guided. CCITT is dealing with recommendations for PTTs, and PTTs often
require that manufacturers produce specifications of their products in SDL, or they produce
specifications in SDL themselves. In ISO there is complete freedom to use, or not to use, FDTs.
As a consequence SDL is spread much wider than LOTOS and Estelle.

The fact that these standard FDTs have quite different interpretations about what to model
and how to model, leading to completely different architectural interpretations, specifications,
and implementations of the very same technical object is bewildering. Corresponding differenc-
es in interpretation and expression can hardly be found in other engineering disciplines like
electrical or mechanical engineering. If we also consider the overwhelming amount of non-
standardized FDTs developed everywhere we observe even wider differences. What is especial-
ly worrying is the lack of interest among formalists to find out the right interpretations. Every-
one maintains the status quo. A well known example is the modelling of the execution of a serv-
ice primitive at the service boundary: in LOTOS this is done synchronously by the interaction
concept, and in SDL and Estelle this is done asynchronously by a message exchange via an in-
finite queue.

Given these large divergencies it seems fair to raise the following questions: What are actu-
ally the objectives and requirements for FMs development for our field of application? Are
these requirements formulated precise and clear enough? Do these requirements provide
enough guidance for FMs development? Does the FMs community agree on these require-
ments? Indeed it seems as if the FMs community should first agree on what the requirements of
the engineering of (distributed) information systems really are before elaborating FMs for this
field. Below we want to contribute to a discussion on this topic by considering some require-
ments and reasoning about them, while using in particular our experience with the develop-
ments around LOTOS.

3 Requirements Revisited

Without ignoring or diminishing the original objectives and requirements of FMs, and with-
out ignoring many other, more detailed, requirements that one can put forward for FM develop-
ments, we think that the following is a set of major requirements that should be observed in or-
der to obtain a more successful uptake of FMs in industry: appropriateness, design methodolo-
gy, design support tools, migration path, limited number of methods, and educational material.
We elaborate each of these requirements below.

3.1 Appropriateness
By appropriateness we mean the measure in which the formal model underlying the devel-

opment of a set of FMs suits the purpose of its application area. Like in any other technical sci-
ence, such as mechanical or electrical engineering, the choice of formal model should be deter-
mined by the needs of the application area in order to be applicable at all. In our case this appli-

cation area is the specification, implementation and production, shortly the development, of
(distributed) information systems.

We believe that, in order to be appropriate, the formal model should provide a complete set
of correct abstractions of relevant engineering concepts which are needed to design distributed
systems.

3.1.1 Relevant Engineering Concepts
The question what are relevant engineering concepts that underly the development of a for-

mal model is probably the most difficult question to answer. This may very well be the reason
why we have such vast differences in formal models. Yet this question is most vital andmust
be answered.

Relevant engineering concepts provided by the OSI Reference Model are for exampleunit
of behaviour, like a service provider or a protocol entity,interaction point, like a service access
point, interaction point identifier, like a service access point address or a connection endpoint
identifier, unit of interaction, like a service primitive,internal data unit, like a protocol data
unit, etc. But also concepts such ascausality, concurrency, conflict, timing, observable behav-
iour, internal behaviour, behaviour composition constructs, which allow the structuring of
complex behaviours through compositions of more elementary behaviour, are important engi-
neering concepts ([9]). Addressing such concepts in the OSI Service Conventions document1

has learned that OSI architects themselves can get involved in quite harsh debates about the cor-
rect interpretation of relevant engineering concepts, such as for example: “the relevance of the
notion of direction of a service primitive”.

An important starting point for the design of LOTOS was support for the representation of
designs in an implementation independent way. A technical object like a service provider or a
protocol entity in LOTOS is therefore defined in terms of itsobservable behaviour. This led to
the notion of the interaction concept with multi-party synchronization, which is probably the
most important design concept in LOTOS. At the same time, however, another important re-
quirement in the LOTOS development was oversighted: the necessity to support the whole im-
plementation trajectory, comprising implementation dependent specification and implementa-
tion notions. This requires among others the possibility of allowing the representation ofinter-
nal behaviour. The Lotosphere project could not restore this omission, since it is a lack of the
LOTOS formal model. In our research this concern has led to the definition of theaction con-
cept (see Sections 4 and 5). For SDL and Estelle on the other hand, too much emphasis was
placed on implementation dependent specification.

We stress that engineering concepts should be considered at all relevant abstraction levels
along the design trajectory, in order to enable the expression of designs at these abstraction lev-
els. This raises the question: what are these relevant abstraction levels? At the same time the
concepts at different abstraction levels should be properly related, which is necessary to perform
design steps.

3.1.2 Correct Abstraction
Evidently, when an engineering concept is identified, its abstract representation in the formal

model should be correct. This means that engineering details which are irrelevant to the consid-
ered abstraction level should be omitted.But at the same time abstract notions which are im-

1. It is quite strange that there is not a Protocol Conventions document.

proper to the engineering concept should not be introduced. Usually there is a kind of interac-
tion, or bootstrap process, between identifying the relevant engineering concept and its abstract
representation, leading to clarification at both sides.

The requirement not to introduce improper abstract notions is often violated. An example of
abstraction which appears quite debatable is the notion of the eventual execution of an interac-
tion in LOTOS once all involved processes are willing to participate in this execution. This no-
tion was chosen in relation to the absence of a notion of time in LOTOS. But one may wonder
whether this abstraction of time is consistent with engineering requirements. Things get worse
when this notion is used to justify the implementation of a choice construct by one of its choice
alternatives on basis of the reduction relation ([1]). It seems here that mathematics is forcing
engineering and not vice-versa. In the same way, the atomicity of interactions (often interpreted
as no time duration), arbitrary interleaving and exit impose quite nasty engineering problems.

The tendency to introduce improper abstractions seems to be often inspired by the fixation
of many formalists on the criterion of correctness of specifications. This fixation might easily
favour simplifications in the choice of the formal model, such as the possibility to define a single
global state, which facilitate the verification of specifications against criteria such as deadlock,
liveness and lifelock. Without diminishing the correctness requirement, it should never go at the
cost of the usefulness of the formal model for pragmatic engineering purposes. Moreover, one
should realize that many products which are incorrect in the sense that they still contain errors,
appear quite useful, and actually are used at a large scale, in practice, even by formalists.

Inappropriate abstractions suppress the creativity of the designer as they force him to use
tricks to express technical constructs that do not have a straightforward representation in the for-
mal model. They lead to unwanted and tricky specifications and implementations.

Therefore formalists should seek cooperation with engineers and together carefully consider
and agree on the engineering concepts and their abstraction rather than simply informing the en-
gineers that a particular choice of abstraction adapts to engineering intuition.

3.1.3 Complete Set
The set of design concepts should be parsimonous. This implies that slightly diverging con-

cepts should be avoided and replaced by one generalized, possibly parameterized, concept, or
replaced by compositions of more elementary concepts. The set of engineering concepts and
their abstractions should observe qualitative architectural principles such as generality, orthog-
onality, propriety, economy, etc. While observing these criteria, however, the set of concepts
should be complete in the sense that all essential engineering needs should be covered. This im-
plies that the parsimony criterion should not be taken into the extreme such that it becomes an
excuse to limit the formal model while neglecting the needs of pragmatic engineering. The latter
might greatly facilitate the development of a simple and complete formal semantics, but it forces
at the same time the engineer to apply tricks, to combine formal and informal techniques, or,
more likely, to abandon the formal model. If in a motorcar the breaks are eliminated because
they cannot be integrated in the engine, the car will be of no practical use, notwithstanding the
(formal) argument that the friction in the engine willeventually stop the car.

Given the possibility to choose, an engineer would prefer a language with a rich set of con-
cepts, which can be selected in a systematic way, over one with a limited set. Our natural lan-
guages are also rich and can be handled, of course with various qualities, by almost everyone.
Examples of concepts which are not supported by LOTOS are real concurrency, timing con-
straints, probabilistic constraints and internal actions.

3.1.4 Example
The requirements formulated so far may look straightforward. Nevertheless most of these re-

quirements are poorly supported by currently available formal methods. We base our example
on LOTOS and on an ad hoc notation for expressing causality between (inter)actions. The latter
notation is introduced here since it supports the considered requirements in an intuitively ap-
pealing way.

Consider a simple system that performs the transfer of a word of 16 bits from one point to
another. Figure 2 presents an abstract view of this system according to an OSI structure of serv-
ice provider and service users. This figure also depicts the causal relationship between the re-
quest for data transfer (req) and the corresponding indication (ind).

This behaviour can be represented as follows:

Suppose that we want to refine this behaviour by introducing an internal actionp, as is shown
in Figure 3. The occurrence ofp signifies the establishment of the same 16 bits at some location
internal to the system. Therefore,req must occur before p, andp must occur beforeind.

The representation of internal actionp in LOTOS can be done by making it hidden from the
environment of the system being specified. It is assumed that in our ad hoc notation internal be-
haviour is intentionally not hidden:

req ind

req ?w:word ind !w

16 bits

Figure 2: Simple Word Transfer Service Provider

S[req, ind] :=
req ?w:word ; ind !w ;exit

S = {start → req(w1:word),
req(w1)→ ind(w2=w1)}

Figure 3: Introducing internal action p

req ind

p

p !w

16 bits 16 bits

req ?w:word ind !w

S' [req, ind] :=
hide p in
req ?w:word ; p !w ; ind !w ;exit

S'= {start → req(w1:word),
req(w1) → p(w2=w1),
p(w2) → ind(w3=w2)}

The LOTOS expression may be considered as an improper use of the language, since LO-
TOS is based on interactions and we have used an interaction offer to represent an internal ac-
tion. An alternative would be to define a structure of processes, in which two processes share
an interaction corresponding top. From a design point of view this may be considered over-
specification because one may be not interested in defining such a specific structure yet.

Suppose now that we decompose the internal actionp, such that the establishment of the orig-
inal 16 bits inp is achieved by two actionsp1 andp2, each one responsible for one octet. We
want at this point thatp1 andp2 are independent of each other. Later design decisions may make
these actions interleaved, or may prescribe a specific order. Figure 4 presents the resulting be-
haviour.

There is a causality relation betweenreq and each of the internal actions, since the octet val-
ues of these internal actions depend on the 16 bits data ofreq. The 16 bits data ofind are gen-
erated from the octets of bothp1 andp2. Therefore these internal actions must have occurred
beforeind can occur.

The representation of this behaviour in LOTOS is problematic. First, the same observations
made above with respect to actionp hold here. Second, there are some problems related to the
LOTOS interlaving semantics. This may be rather cumbersome for some types of behaviours,
and brings extra difficulties for the verification of specifications, since the relationship between
the interleaving semantics model and the original desired behaviour may not be straightforward.
This is particularly true for complex behaviours, for which formal methods in fact should be
helpful.

The example above can be represented in LOTOS and in the ad hoc notation in the following
way:

This means thatp1 andp2 can only be represented in LOTOS as interleaved actions (interac-
tions). However making these actions interleaved has been mentioned above as a specific pos-

Figure 4: Decomposing internal action p

req ind

p1

p1 ?o1:octet[o1=first(w)]

8 bits

16 bits

req ?w word ind !o1++o2

p28 bits p2 ?o2:octet[o2=second(w)]

S'' [req, ind] := hide p1, p2 in
req ?w:word ;
(p1 ?o1:octet[o1=first(w)] ;
exit (o1, any octet)
||| (p2 ?o2:octet[o2=second(w)] ;
exit (any octet, o2))
>> accept o1, o2:octet in

ind !o1++o2 ; exit

S'' = {start → req(w1:word),
req(w1) → p1(o1=first(w1)),
req(w1) → p2(o2=second(w1)),
p1(o1) ∧ p2(o2) →

ind(w2=o1++o2) }

sible design decision, which does not necessarily have to be taken. In relation to the earlier men-
tioned concepts the LOTOS specification seems quite ambiguous and unclear with respect to
what the designer originally meant to express.

3.2 Design Methodology
In a development environment supported by FMs (FM environment), the formal model

should form the basis for the development of a design methodology that covers all essential as-
pects of system design. This methodology should provide pragmatic guidance to the system de-
signer to develop the system starting at a high level of abstraction with the user requirements
and finishing at a low level of abstraction with the implementation specification. To be able to
develop such a methodology the formal model should be capable of supporting system design
at all relevant levels of abstraction and supporting design transformations between these levels.
The following levels of abstraction are seen as at least necessary in a design methodology:
1. The definition of the system while embedded in the user environment. This design allows to

express the user requirements at a high level of abstraction without being forced to decide
how the responsibility for these requirements should be distributed over the system and the
user(s).

2. The definition of the system in terms of a service provider. This requires that the require-
ments as defined in step 1 are distributed over the system and the user(s). It allows to express
the design of the service provider only in terms of what functions are provided by the system,
without being forced to distribute these functions over the parts that ultimately will constitute
the service provider.

3. The definition of the service provider in terms of a set of cooperating parts. This requires that
the functions of the service provider are decomposed and distributed over the parts that con-
stitute the internal structure of the provider. It allows to define the functions of each individ-
ual part separately at a certain abstraction level without being forced to make more detailed
implementation decisions for these functions.

4. The replacement of the abstract interfaces of the parts by real interfaces. This allows to select
the appropriate interfaces as determined by engineering requirements.

5. The definition of the implementation structure that replaces the relationships between the
real interfaces of each individual part. To achieve this, steps 3 and 4, but applied to a part,
can be repeated iteratively and in various orders.
Reflecting these design structures in a standard way in the structure of design specifications

leads to the notion of specification styles ([15]). The availability of specification styles may
greatly facilitate the development of designs.

It appears that most FDTs are too restrictive to cover the whole design trajectory from high
level abstract specification to low level implementation specification, making it extremely hard
to develop a sufficiently comprehensive design methodology that is capable of bridging this
large gap. Moreover it appears that there exists little insight, agreement, and common under-
standing of how such an FDT and comprehensive methodology should look like. This implies
that, in addition to the necessary high investments, such methodologies can only be developed
for very few FDTs. Yet the availability of a comprehensive design methodology is essential for
industrial acceptance of FMs.

3.3 Design Support Tools
Tools form in any technical discipline an important aid to the engineer and directly aim at

improving productivity. The same should apply to the field of engineering (distributed) infor-
mation systems and to a FMs environment that aims at supporting this field. To be effective,
tools should support all aspects of a comprehensive design methodology as discussed in Section
3.2 above. The feasibility of such tools is largely determined by the appropriateness of the for-
mal model and the availability of such a comprehensive design methodology. In a FMs environ-
ment the individual tools should not be self-standing but form a component of a consistent
toolkit architecture. By this we mean that the tools should focus on different and clearly delim-
ited aspects of the design trajectory, should be based on a consistent internal representation
which makes it possible to easily switch back and forward between tools, and should have a con-
sistent interface with respect to each other and to the user. The following categories of tools are
seen as indispensible components of a comprehensive toolkit:design specification support tools
such as syntax and semantics checkers and specification structuring tools,design analysis sup-
port tools such as simulators and verifiers,design transformation support toolssuch as trans-
formers and compilers, andconformance checking tools such as test tools. The Lotosphere
project has done excellent pioneering work in the development of such a toolkit ([12]).

To achieve industrial acceptance, however, there are additional requirements that should be
carefully observed:
1. Tools should be easy to learn and use! It is extremely discouraging if engineers have to study

a long time on a tool before they can use it and then time and again find out that it has all
kinds of unexpected, incomplete, and inconsistent behaviours. A well designed toolkit archi-
tecture and a consistent and attractive user interface supports this requirement.

2. Tools (and FMs in general) should be applicable to large and complex designs. Tools that are
demonstrated for toy problems, and indeed in practice appear to be limited to toy problems,
are of no use and undermine the credibility of FMs.

3. Tools should be produced, documented and maintained at an industrial level. This require-
ment often demonstrates the weakness of the FMs community to comply with industrial
needs.
The above requirements are often violated. Many formalists appear to be only interested in

sophisticated tools that embody some interesting theory without taking the trouble to invest in
less interesting but pragmatically highly relevant matters. The latter is often considered as the
dirty work that should be left over to some commercially interested party. This self-centered
view, however, undermines the cause of FMs. A drudgery at the short term appears often a stra-
tegic investment to safeguard the more elegant work at the longer term.

Given the requirements for a comprehensive toolkit as discussed above, and the very high
investments necessary to develop it, it appears a naive thought that such a toolkit can be devel-
oped for any formal model and design methodology. Therefore it seems expedient to ascertain
first the design methodology and its coverage before making such investments. On the other
hand, once these pre-requisites are available, their completion with a comprehensive toolkit will
appear indispensible for an FMs breakthrough in industrial acceptance.

3.4 Migration Path
New methods should be useful next to existing, more conventional, methods and not have

the nature of being conflicting with them and pushing them out ([16]). It is quite naive to assume
that FMs will be introduced overnight in industry. Engineers simply will not put their produc-

tivity at risk. Rather a FM should prove its capability and a carefully considered migration path
should be traced out that allows its step by step introduction. This allows to gradually build up
confidence, which is rightly is not assumed beforehand by the engineer, in its usefulness and
trustworthiness.

The possibility of a step by step introduction puts requirements to the way the FM is struc-
tured. This structuring should be such that a simple subset of the FM can be used to tackle the
less demanding engineering problems, whereas more sophisticated methods should only be in-
troduced when the complexity of the engineering problem increases. A FM that is only useful
when it is applied in full, and that requires a lot of theoretical study, will in practice not be ap-
plied at all.

3.5 Limited Number of Formal Methods
The logical consequence of the above reasoning, and probably the most frustrating one for

the FMs community, is that FMs should only be developed for a very limited number of formal
models. There are at least two reasons for this: First it is practically impossible for the industry
to assess the unwieldy amount of formal models and associated FMs and select the useful ones.
Second, as mentioned above, it is practically only possible to make the necessary high invest-
ments for a full blown FM, including the design methodology and the tools, for a limited
number of formal models.

This implies that, as long as the FMs community exhausts itself in developing all kinds of
diverging theories, while taking little account of the actual engineering needs, they will never
have the chance of developing full blown FMs that will be accepted by industries. Instead, the
status quo of low credibility will be maintained that way.

To break through this situation (part of) the FMs community should come together andget
organized. The objective should be to identify and select a limited number of distinct but really
pragmatic formal models and join efforts to develop full blown FMs for each one of them while
avoiding all kinds of slightly diverging, yet incompatible, developments. In this endeavor so-
phistication should be subordinate to appropriateness and usefulness. This endeavor may also
require to do, like in tool developments, some “dirty” work like moving the politics in a stand-
ardization organization.

3.6 Accessibility
In order to be used, FMs should be accessible, i.e. they should be well documented and good

course and tutorial materials should be made available for educating engineers. If not accessible
and understood, FMs will not be used. It needs no arguing that the more appropriate the formal
model, the easier the engineer will digest the educational material. Courses and tutorials are
needed at least at introductory level, at advanced level, and at management level. This material
should explain the formal model, the design methods, and the design support tools. It should
also discuss the relative benefits of the FMs and illustrate these benefits on basis of a range of
small to more complex examples and exercises.

Evident as it seems, it is astonishing though to observe how little tutorial material and indus-
trial level tool documentation is available for FMs. One of the few examples of tutorial material
on FDTs is [11]. However most LOTOS based FMs do not have industrially utilizable tutorials
in spite of the large investments made in their development. Here again it seems that writing the
tutorials and the documentation is considered as the dirty, less rewarding, work at the cost of the
longer term repercussion of a lower than possible dissemination and acceptance.

Moreover, formalists seem to be only interested to only talk to formalists in the mathematical
language of the formalists. They do not bother to present their results in a style that makes them
accessible for the engineer. If the latter is studying hard on a paper, and after a week of digesting
mathematics finds out that an abstraction is made which makes the contents of the paper useless
for his purpose, he will not be tempted to study another paper with the same enthusiasm.

3.7 Intermediate Conclusion
Pursuing the traditional criteria for developing FMs, such as formal syntax and semantics,

correctness, unambiguity and conciseness, has in the recent past led to quite sophisticated and
admirable FM results for which the FMs community deserves a compliment. Yet it led to a mar-
ginal uptake in industry. To achieve this uptake the FMs community should seriously observe
the pragmatic requirements of the application area, the engineering of (distributed) information
systems mentioned in this section. If such requirements are ignored the chances of getting fur-
ther isolated from the engineering community, at the cost of jeopardizing the cause of FMs and
reducing research funds, seem quite realistic.

It occurs to us that many of the pragmatic engineering requirements directly or indirectly re-
late to the appropriateness criterion, i.e. the availability of a complete set of correct abstractions
of relevant engineering concepts. For these reasons more research should be carried out in the
area of design methods and the basic design concepts that support these methods as shown in
Figure 1. The objectives of this research should be: to obtain better insights in the engineering
needs of the area of distributed information systems design, to develop the basic design concepts
that determine a comprehensive design methodology for this area, and to develop an appropriate
formal model that underlies a comprehensive FMs engineering environment. These insights
should help existing FMs to improve in the direction of a better industrial applicability.

4 Design Structuring

Often a system specification is interpreted (i) as to constrain the behaviour of the system’s
environment, or (ii) such as it does not state what happens in unspecified cases ([10]). In other
words a system specification defines what the system does under pre-defined conditions which
should be known and respected by the system’s environment, and says nothing about the un-
known pieces of behaviour. Based on these interpretations, a system is often defined as an entity
separately from its environment. This can be done in terms of the possible orderings ofinterac-
tions between the system and its environment, the information values established in these inter-
actions, and the constraints on these values,all as imposed by the system. The system’s envi-
ronment can be defined in the same way.

The definitions of the system and its environmenttogether determine acommon behaviour:
what interactions inwhat order and withwhat value attributes can actually be established. This
common behaviour is what the user is really interested in, and therefore it should be specified
first and be used later to derive the behaviour of the system. We call this common behaviour the
interaction system between the system and its environment. In the definition of the interaction
system only theresult of each interaction is defined while abstracting from the many different
ways in which the system and its environment may contribute to these results. Therefore inter-
action systems are concerned withintegrated interactions, which we henceforth callactions.

The interaction system defines, at a higher level of abstraction than the definition of a system,
what may happen in terms of possible actions, nothow it may happen in terms of possible in-

teractions. This means that constraints can be freely placed on the way the system and its envi-
ronment participate in interactions as long as the desired actions are implemented, allowing de-
sign freedom for choosing the definition of interactions. Although all integrated interactions are
actions, some actions cannot be called integrated interactions, since in the course of the design
process one may choose not to decompose certain actions into interactions and consequently not
to distribute them over parts.

Our design methodology thus starts with the definition of an interaction system requiring as
a basic design concept the notion of action. In subsequent design steps an interaction system is
decomposed into parts (e.g. a system and its environment). Actions may be decomposed into
interactions, which are allocated to and distributed over these cooperating parts. In order to de-
fine the interaction system we first develop a model for monolithic behaviour definition and
causality-oriented behaviour composition.

Experience has shown that complex systems can often better be specified in a structured way
in order to be conceived, understood, manipulated and maintained. In particular the constraint-
oriented specification style ([15]), where a behaviour is structured as a composition of sub-be-
haviours acting as constraints, has been proposed. This way of defining an interaction system
requires that certain actions are decomposed into interactions, which are assigned to constraints.
This design step can actually be used toprepare the decomposition of a functional entity (e.g.
an interaction system) into parts (e.g. a system and its environment), since the constraints can
be assignedin various ways to these parts.

Our design methodology thus continues with decomposing the interaction system into a set
of constraints, requiring as basic design concepts the decomposition of an action into interac-
tions as discussed above and the notion of constraints. In this design step the above mentioned
design freedom can be exploited. The next design step in our design methodology is the alloca-
tion of the constraints to the system and its environment. This step may sometimes require to
repeat the previous design step before the allocation can take place.

We illustrate these design structuring principles with a simple example illustrated in Figure
5, viz. a question-answer service. The question-answer service specifies that the establishment
of a question at the calling side (q_req atQ) is followed by the establishment of the same ques-
tion at the called side (q_ind atA), which is then followed by the establishment of an answer at
the called side (a_req atA) and the establishment of the same answer at the calling side (a_ind
at Q). Figure 5 shows the first three design steps in the development of the question-answer
service, relating them to the first three levels of abstraction discussed above. In this figure we
illustrate the design choice of assigning the relationships betweenq_req andq_ind, anda_req
anda_ind to the system, i.e. the service provider, and of assigning the relationship between
q_ind anda_req to the environment, i.e. the service users.

The next global steps in our design methodology are the decomposition of the Service Pro-
vider into system parts and the replacement of the abstract interfaces by the real interfaces, com-
pleting the abstraction levels as discussed in Section 3.2. For brevity reasons we cannot show
these other two steps.

5 Basic Architectural Concepts

The concepts which allow the different forms of design structuring introduced in Section 4
are elaborated in this section. Section 5.1 presents a model for monolithic behaviour definition,

Section 5.2 extends this model to allow causality-oriented behaviour composition and Section
5.3 introduces constraint-oriented behaviour composition.

5.1 Monolithic Behaviour Definition
Actions, interactions and their relationships, represented in terms of causality relations, form

the basic concepts that allow the definition of behaviour.
For brevity reasons we mention in the sequel only actions where statements also apply to in-

teractions. If actions and interactions need to be distinguished, it is explicitly mentioned unless
it follows clearly from the context. In the figures that follow actions are drawn as circles and
interactions as circle-segments1.

5.1.1 Attributes of Actions and Interactions
We identify, based on our design experience, the following attributes of actions:

• Location attribute: defines the location at which the action occurs;
• Time attribute: defines the moment or period of time when an action occurs or can occur;
• Values of information: defines the values of information established in the action;
• Functionality attribute: defines the set of values of information passed to this action by pre-

vious actions and that may be referred to by successive actions;

1. Actually we have already done this in previous figures.

Interaction System
(monolithic)

Interaction System
(constraint-oriented)

Decomposition into
Functional Entities

actions become interactions

q_req q_ind a_reqa_ind

Q A

System

q_reqa_ind q_ind a_req
Environment

AQ

assignment of constraints

Constraint 2

Constraint 1

Figure 5: First Three Steps of the Design Trajectory

q_reqa_ind q_ind a_req

AQ

• Probability attribute: defines the probability that an action occurs according to its definition,
once this action isenabled.
These attributes fully characterize actions and can be used in the definition of their relation-

ships in order to define the behaviour of functional entities. Attributes of actions may make ref-
erences to attributes of previously occurred actions with which there exists an enabling causal
relationship.

Action attributes and their relationships are also important for the definition of implementa-
tion notions. In action decomposition, for example, all attributes may be decomposed.

 We assume that we can always distinguish, and thus uniquely identify, all actions in behav-
iour definitions. In the examples below we use uniqueaction identifiers to indicate their occur-
rence or non-occurrence.

5.1.2 Behaviour Definitions
We define the behaviour of an interaction system, a system’s environment, a system, and

system parts, by a set of causal relationships amongst actions and interactions. Behaviour defi-
nitions contain the following elements:
• Initial action: an action which occurs independently of the occurrence of other actions of the

defined behaviour, possibly with an initial set of attributes. It may occur spontaneously when
the behaviour is instantiated (start action), or it may be enabled by other behaviours to which
the behaviour is linked (entry points);

• Causality context: the causality context of an action defines the role of this action in a behav-
iour;

• Exit condition: a behaviour is said toexit if it enables initial actions of another behaviour.
This enabled behaviour is then allowed to start, allowing to make references to the attributes
of the exit condition.

• Termination condition: an action is said to terminate a behaviour if no more actions or other
behaviours are enabled by it, characterizingdeadlock.
The conditions for the occurrence of an action of a behaviourB are defined in acausality

relation between the other actions ofB and this action. We say that a causality relation defines
the conditions which enable and constrain the occurrence of an action. The reason for using
causality as the basis for defining behaviour is based on the fact that a distributed behaviour
generally does not have a single global state, but rather a changing set of ‘sub-states’. These
‘sub-states’ can be derived from the causality relations.

5.1.3 Basic Causality Relations
We define the causality relation a1 → a2 as:

the occurrence of action a1 is a condition for the occurrence of action
a2; attributes of a2 may refer to attributes of a1

The causality relation above says nothing about the conditions for the occurrence ofa1.
These are defined in the causality relation ofa1, which is not part of the causality relation ofa2.
This implies that the possible occurrence ofa2 can only be determined after evaluation of all
causality relations that lead to the occurrence ofa1.

The occurrence of an action may also depend on the non-occurrence of another action, char-
acterizing a type of causality, calledconflict.

We define the causality relation¬ a1 → a2 as:

the non-occurrence of action a1 is a condition for the occurrence of
action a2; attributes of a2 may not refer to attributes of a1

Since this causality relation has to be evaluated at the moment the implementation decides
whethera2 will take place or not, we consider thata1 does not happen before or at the time of
a2. If a1 happens beforea2, thena2 will never happen, buta1 may happen aftera2.

Figure 6 depicts these two basic causality relations.

We call the left hand side of a causality relation the (action) conditions. The symbol→ is the
causality operator. The right hand side of a causality relation is called theresult or resulting
action.

5.1.4 Logical Combinations of Conditions
Causality relations of arbitrary complexity are defined by logical combinations of occurrence

and non-occurrence of actions usingand (∧) andor (∨) logical operators. We consider some ba-
sic examples below:
• Conjunction of Occurrences: a1 ∧ a2 → a3

The occurrences of botha1 anda2 is a condition for the occurrence ofa3.
• Disjunction of Occurrences: a1 ∨ a2 → a3

The occurrence ofa1 or the occurrence ofa2 is a condition for the occurrence ofa3. Notice
thata1 and a2 may both happen, but the occurrence of one of them is sufficient for the oc-
currence ofa3. In case botha1 and a2 happen beforea3, there is a (non-deterministic) choice
on which of these actions will be used to causea3, and attributes ofa3 can only refer to the
attributes this causing action.

• Conjunction of Occurrence and Non-occurrence: a1 ∧ ¬ a2 → a3
The occurrence ofa1 and the non-occurrence of a2 are both conditions for the occurrence of
a3.

• Disjunction of Occurrence and Non-occurrence: a1 ∨ ¬ a2 → a3
The occurrence ofa1 or the non-occurrence ofa2 are conditions for the occurrence ofa3.
Figure 7 depicts these causality relations. The graphical notation used in this figure will be

used consistently throughout this text.
Consistently with our interpretation of the basic causality relations, all the prescribed condi-

tions have to be fulfilled at the moment when a resulting action is scheduled to occur. General-
izing, a causality relation in a behaviourB with actionsAB has the formF(A) → aj, A ⊆ AB - {aj},
and whereF is a formula using∨, ∧ and conditions of the formak and¬ ak, representing the
occurrence and non-occurrence ofak ∈ A, respectively. The formulaF(A) has to be evaluated to
true at the momentaj occurs.

It should be observed that the causality relations shown in Figures 6 and 7 allow to define
sequential composition, real parallelism, arbitrary interleaving, choice and disabling.

a1 a2

a1 → a2 ¬ a1 → a2

Figure 6: Basic Causality Relations and Their Graphical Notation

a1 a2

5.1.5 Conditions and Constraints on Attributes
Action attributes play distinct roles in a causality relation, depending on whether an action is

a condition or a resulting action:
• Attributes in conditions: can be used to define specific premisses on values of action at-

tributes in a condition for the resulting action to occur;
• Attributes in resulting actions: are used to define the allowed values of the attributes of the

resulting action.

Example
a1 (v1: Data) [v1 < 10] → a2 (v2: Data) [v2 =v1+3]
This causality relation states that only in casea1 happens with a valuev1 smaller than 10,a2

is allowed to happen. Ifa2 happens its value will bev1+3. In casea1 does not happen or hap-
pens withv1 greater or equal to 10, the condition fora2 is false, anda2 is not allowed to hap-
pen.

Similar discussions also apply to the other action attributes. Due to size limitations we do
not further elaborate on this point in this paper.

5.1.6 Finite Monolithic Behaviour
A finite behaviour can be represented by a set of causality relations, one relation per action

of this behaviour. Consider the following example:

B := { start → a0,
start ∧ ¬ a0 → a1,
a1 ∨ a0 → a2,
a1 ∧ ¬ a2 → a3,
a2 → a4 }

start → a0 states thata0 is enabled from the beginning of the behaviour, i.e. it does not have
to wait for other actions.start ∧ ¬ a0 → a1 implies that while a0 does not happena1 is allowed
to happen, therefore at the beginning of the behavioura1 is also enabled. This means that both
a0 and a1 are initial actions ofB. The behaviour definitionB also determines the causality con-
text of all its actions. For example,a2 is the resulting action in the causality relationa1 → a2,

a1 a1

a2 a2

a3 a3a1 ∧ a2 → a3 a1 ∨ a2 → a3

a1 ∨ ¬ a2 → a3a1 ∧ ¬ a2 → a3

Figure 7: Some Causality Relations and Their Graphical Notation

a1

a2

a3

a1

a2

a3

and appears in the causality relations {a1 ∧ ¬ a2 → a3, a2 → a4}. This completely defines the
role ofa2 in B.

5.2 Causality-oriented Behaviour Composition
Causality relations, as presented so far, are a compact and parsimonious notation to define

relationships between actions, but lack structuring. Furthermore this notation is restricted to
finite behaviours. Therefore this section builds on the previous section, presenting some mech-
anisms to structure designs and to represent repetitive and infinite behaviour.

5.2.1 Causal Composition with Entry and Exit
Causal compositions of behaviours are characterized by the fact that conditions inside an in-

stance of behaviour enable actions of another instance of behaviour, in a similar way as condi-
tions on actions enable result actions in causality relations.

Entries and exits are introduced in our design model as mechanisms to represent causality-
oriented composition of behaviours. SupposeB1 andB2 are behaviours, defined as sets of cau-
sality relations, and thatB1 has one exit andB2 has one entry. A causality-oriented composition
betweenB1 andB2 can be defined by combining the conditions of the exit ofB1 and the action(s)
of the entry ofB2, such that the conditions of the exit ofB1 become conditions to the action(s)
of the entry ofB2. This can be generalized to more than one entry, more than one exit, or both.

We illustrate this with the following example:

B1 := { start → a1, start→ a2,
a1 ∧ a2 → a3,
a3 → a4,
a3 → a5,
a4 ∧ a5 → exit }

B2 := { entry → a6, entry→ a7,
a6 ∧ a7 → a8 }

The statementsentry → a6, entry→ a7 mean thata6 anda7 can be enabled by coupling a con-
dition to thisentry. a4 ∧ a5 → exitmeans that ifa4 and a5 happen, the exit condition is true. We
can define a sequential composition betweenB1 andB2 in the following way:

B := { B1 (exit)→ B2 (entry) }

This means thatB1 is coupled toB2 such that the conditions of theexit of B1 become the con-
ditions for the actions of theentry of B2. The resulting behaviour can be obtained by the ‘short-
circuit’ of theexit of B1 and the actions of theentry of B2.

Figure 8 depicts this example, showing that the conditions of the exit ofB1 have turned into
conditions for the occurrence ofa6 and for the occurrence ofa7.

Exits can also be used to refer to negation of conditions. Consider the following example:

 B1 := { start → a1, start→ a2, a1 ∨ a2 → exit }

 B2 := { entry → a3 }

The behaviour definition ¬ B1 (exit)→ B2 (entry)makes the negation of the exit ofB1, i.e the
non-occurrence of both actionsa1 anda2, a condition for the occurrence ofa3.

5.2.2 Multiple Entries and Exits
We generalize the exit/entry constructs, by considering that a behaviour may have more than

one exit conditions or entry points or both. The consequence is that, in order to allow a proper
combination of exit/entry pairs, exits and entries must be identified.

We illustrate this with an example:

B1 := { start → a4, start→ a5, start→ a7,
a4 ∧ a5 → exit1
a7 → exit2 }

B2 := { entry1 → a8,
entry2 → a9 }

The behaviour definition{B1 (exit1) → B2(entry1), B1 (exit2) → B2 (entry2)} means thatexit1
of B1 is connected toentry1 of B2, and thatexit2 of B1 is connected toentry2 of B2. It is important
to remark thatB1 (exit1), B1 (exit2) andB2(entry1), B2 (entry2) refer to the same instance ofB1
andB2, respectively.

Figure 9 illustrates the effect of this combination mechanism with generic behavioursB1, B2,
B3 andB4. Notice that the exit/entry constructs define a line that delimits the behaviours by de-
composing the causality relations. This mechanism allows us to structure a monolithic behav-
iour in sub-behaviours, in such a way that compositions of behaviour definitions can be created.

5.3 Constraint-oriented Behaviour Composition
An important structuring technique identified in [15] for the representation of behaviours is

theconstraint-oriented style. According to this style, a behaviour is represented as a conjunction
of constraints on actions, which are described in separate processes.

a3

a5

Figure 8: Example of Causality-Oriented Behaviour Composition

a1

a2

a4 a6

a7

B1 B2

a3

a5

a1

a2

a4 a6

a7

B

a8

a8

The consideration of this approach in our design model forces us to represent some actions
in a distributed form. This happens since the global causality relation of each action to be dis-
tributed among multiple constraints is defined as a collection of causality relations in the differ-
ent behaviours that represent these constraints. The combination of this collection of causality
relations determine the desired global causality relation for each distributed action.

After the global causality relation of the distributed actions has been defined in separate be-
haviours, these behaviours can be assigned to the system and to its environment. Actually only
at this point an action is transformed to an interaction.

We consider as an example a behaviourB, which contains a causality relationa ∧ b → c. We
also suppose thata, b andc may be or may be not distributed over behavioursB1 andB2. Ac-
tions which are not distributed are represented in this example withbold, while actions which
are distributed are represented initalics when they turn into interactions. This analysis concen-
trates exclusively on the causality relation ofc without loss of generality.

We spare the reader from the boring exercise of considering all possibilities for the decom-
position ofa, b andc, but rather present one of them below:

Distribute condition a (or b) and the result c
The correct options for the decomposition of the causality relationa ∧ b → c by distributing

conditiona and resultc overB1 andB2 should preserve the original causality relation. These
options are presented below and illustrated in Figure 10:
1. the whole causality relation is placed in one of the behaviours. In Figure 10 the original cau-

sality relation is placed inB2, whileB1 does not contribute to the causality relation. In Figure
10, * → c indicates thatc must be enabled inB1 at the moment thata andb occur. Sincea
belongs to B1, c may be enabled inB1 from the beginning, either by an initial action, or by
any other conditions which are also necessary conditions ofa.

2. the whole causality relation is placed in one of the behaviours, but part of the causality rela-
tion is duplicated in the other behaviour. In Figure 10 we have placed the whole original cau-
sality relation inB2 and the causality betweena and c is duplicated inB1. Although the du-
plication of constraints inB1 and B2 may seem technically undesirable, in the more general

Figure 9: Generalized Exit/Entry Constructs

B1

B3

B4

B2

exit/entry constructs

a11

a12

a13

a14

a15

a21

a22

a23

a41

a42

a32

a31

boundary

case, where references to attributes are possible, this kind of decomposition may be used to
expressseparation of concerns.
 Suppose for example that ina two values of informationv1 andv2 are established, and that
both of them are used for the determination of the values ofc. In this case we can useB1 to
constrain the dependencies with respect tov1 andB2 to constrain the dependencies with re-
spect tov2. If v1 andv2 characterize two distinct aspects of the functions of behaviourB, this
structuring in constraints shall be preserved in later phases of design and may be found back
in the implementation of the system.

3. the original causality relation is decomposed over both behaviours. In Figure 10 the causality
betweena andc is placed inB1 and the causality betweenb andc is placed inB2. The com-
bination of these constraint yield the original causality relation.

B Decomposition of B B1 B2

1. a ∧ b → c * → c a∧ b → c

a
a b

c

a

cc

b
a

c

b
a

c

2. a ∧ b → c a → c a∧ b → c

a
a b

c

a

cc

b
a

c

b
a

c

3. a ∧ b → c a → c a∧ b → c

a
a b

c

a

cc

b
a

c

b
a

c

Figure 10: Three Possible Decompositions in Constraints

The mirror images in whichB1 andB2 are exchanged, and the distribution ofb instead ofa
are also considered here. Similar reasoning can be applied to other distributions ofa, b andc,
and to causality relations of arbitrary complexity, involving disjunctions, conjunctions, occur-
rences and non-occurrences.

Figure 11 illustrates the effect of composition of constraints with four arbitrary behaviours
B1, B2, B3 andB4.

6 Conclusions

The reluctance of the industry to introduce advanced FMs on a broad scale into their daily
practice of designing and developing products should not simply be put on the account of their
unwillingness or lack of understanding. Rather it should be put on the account of the FMs com-
munity of not being capable of turning FMs into real industrial tools. Current FMs are too self-
willed and do not attend industrial requirements. They appear not broadly applicable, do not fit
the purpose, frustrate the engineer, and are difficult to learn. Formal descriptions of designs ap-
pear incomprehensive, very costly to produce, and of little pratical use to the average engineer.

If FMs are to become industrially applicable then the FMs community will have to start
thinking, behaving, and working in an industrial way. This community will have to develop for-
mal models that suit the needs of the application area and that are supported by comprehensive
design methodologies and design support tools. To achieve these goals the FMs community
needs to get organized, with the purpose to select only a limited set of formal models and to de-
velop credible full blown FMs. In these FM developments proper attention should be given to
provide ample and adequate educational material and to trace out proper migration paths to
guide the step by step introduction of FMs in industry.

If these pragmatic requirements are not properly observed, the current reluctance of industry,
may easily lead to what we may call an “FMs crisis”, a crisis of which the FMs community cer-
tainly will suffer most. Undoubtedly when the discipline of engineering distributed information
systems gets mature it will use FMs as a matter of routine, like all other mature technical sci-
ences do. However the question can be posed: will these methods be developed by formalists
that understand the engineering needs, by engineers that understand formalisms, or by formal-
ists and engineers working together?

Figure 11: Arbitrary Composition of Constraints

B1

B3

B4

B2
a1

a2

a3

a4

a5

a8

a9

a10

a12

a11

a7

a6

constraints boundary

...

...

Many of the engineering needs are directly related to the appropriateness criterion, the pro-
vision of a complete set of correct abstractions of relevant engineering concepts. It is suggested
that the FMs community pays more attention to the study of basic design concepts and the de-
sign methods that are based on them in order to develop the material on which an appropriate
formal model should be based. This paper presents some initial results of recent research that
aims at getting a better insight in this area.

References

[1] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their implementa-
tions and their tests. In G. von Bochmann and B. Sarikaya, editors,Protocol Specifica-
tion, Testing and Verification VI, pages 349–360, Amsterdam, 1987. North-Holland.

[2] M. Gamble and C. R. Taylor. The CCSDS protocol validation programme inter agency
testing using LOTOS. In J. Quemada, J. M. nas, and E. Vazquez, editors,Formal De-
scription Techniques, III, pages 319–326, Netherlands, 1991. Elsevier Science Publishers
B.V. (North-Holland).

[3] ISO. Open Systems Interconnection, Reference Model, Version 4, June 1979. ISO/TC 97/
SC 16/N277.

[4] ISO. LOTOS description of the Session Protocol, 1989. ISO/IEC TR9572.
[5] ISO. LOTOS description of the Session Service, 1989. ISO/IEC TR9571.
[6] ISO. Formal description of ISO 8072 in LOTOS, 1992. ISO/IEC TR10023.
[7] ISO. Formal description of ISO 8073 (Classes 0, 1, 2, 3) in LOTOS, 1992. ISO/IEC

TR10024.
[8] ISO/IEC JTC1/SC21. Recommendations on the use of Formal Description Techniques,

Apr. 1993. ISO/IEC JTC1/SC21 N 7761.
[9] P. W. King. Formalization of protocol engineering concepts.IEEE Transactions on Com-

puters, 40(4):387–403, April 1991.
[10] L. Lamport. A simple approach to specifying concurrent systems.Communications of the

ACM, 32(1):32–45, January 1989.
[11] K. J. Turner, editor.Using Formal Description Techniques. John Wiley & Sons, Great

Britain, 1993.
[12] P. van Eijk. Tool demonstration: The Lotosphere integrated tool environment Lite. In

K. Parker and G. Rose, editors,Formal Description Techniques, IV. North-Holland,
1992.

[13] C. A. Vissers, L. Ferreira Pires, and J. van de Lagemaat. Lotosphere, an attempt towards
a design culture. In T. Bolognesi, E. Brinksma, and C. A. Vissers, editors,Third Loto-
sphere Workshop and Seminar, Workshop Proceedings, volume 1, pages 1–30, 1992.

[14] C. A. Vissers and G. Scollo. Formal specification of OSI. In G. Muller and R. Blanc, ed-
itors, International Seminar on Networking in Open Systems, volume 248 ofLecture
Notes in Computer Science, pages 338–359. Springer-Verlag, 1987.

[15] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in dis-
tributed systems design and verification.Theorethical Computer Science, 89:179–206,
1991.

[16] D. Weber-Wulff. Selling formal methods to industry. In J. Woodcock and P. Larsen, ed-
itors,FME’93: Industrial-Strength Formal Methods, volume 670 ofLecture Notes in
Computer Science, pages 671–678, Berlin, 1993. Springer-Verlag.

