
Veri�cation and Optimization of a PLC Control

Schedule

Ed Brinksma1 and Angelika Mader2 ?

1Faculty of Computer Science, University of Twente
2Computer Science Department, University of Nijmegen

Abstract. We report on the use of the SPIN model checker for both

the veri�cation of a process control program and the derivation of opti-

mal control schedules. This work was carried out as part of a case study

for the EC VHS project (Veri�cation of Hybrid Systems), in which the

program for a Programmable Logic Controller (PLC) of an experimental

chemical plant had to be designed and veri�ed. The intention of our ap-

proach was to see how much could be achieved here using the standard

model checking environment of SPIN/Promela. As the symbolic calcu-

lations of real-time model checkers can be quite expensive it is interest-

ing to try and exploit the e�ciency of established non-real-time model

checkers like SPIN in those cases where promising work-arounds seem

to exist. In our case we handled the relevant real-time properties of the

PLC controller using a time-abstraction technique; for the scheduling we

implemented in Promela a so-called variable time advance procedure. For

this case study these techniques proved su�cient to verify the design of

the controller and derive (time-)optimal schedules with reasonable time

and space requirements.

1 Introduction

Nowadays, the veri�cation of hybrid systems is a popular topic in the formal

methods community. The presence of both discrete and continuous phenomena

in such systems poses an inspiring challenge for our speci�cation and modelling

techniques, as well as for our analytic capacities. This has led to the develop-

ment of new, expressive models, such as timed and hybrid automata [3, 16], and

new veri�cation methods, most notably model checking techniques involving a

symbolic treatment of real-time (and hybrid) aspects [10, 17, 6].

An important example of hybrid (embedded) systems are process control pro-

grams, which involve the digital control of processing plants, e.g. chemical plants.

A class of process controllers that are of considerable practical importance are

those that are implemented using Programmable Logic Computers or PLCs.

Unfortunately, both PLCs and their associated programming languages have

? supported by an NWO postdoc grant and the EC LTR project VHS (project nr.

26270)

no well-de�ned formal models, c.q. semantics, which complicates the design of

reliable controllers and their analysis.

To assess the capacity of state-of-the-art formal methods and tools for the anal-

ysis of hybrid systems, the EC research project VHS (Veri�cation of Hybrid

Systems) has de�ned a number of case studies. One of these studies concerns

the design and veri�cation of a PLC program for an experimental chemical plant.

In this paper we report on the use of the SPIN model checker for both the ver-

i�cation of a process control program for the given plant and the derivation of

optimal control schedules. It is a companion paper to [12], which concentrates

on the correct design of the process controller. The intention of our approach

was to see how much could be achieved here using the standard model check-

ing environment of SPIN/Promela [7]. As the symbolic calculations of real-time

model checkers can be quite expensive it is interesting to try and exploit the

e�ciency of established non-real-time model checkers like SPIN in those cases

where promising work-arounds seem to exist. In our case we handled the relevant

real-time properties of the PLC controller using a time-abstraction technique;

for the scheduling we implemented in Promela a so-called variable time advance

procedure [15]. For this case study these techniques proved su�cient to verify the

design of the controller and derive (time-)optimal schedules with very reasonable

time and space requirements.

The rest of this paper is organised as follows: section 2 gives a description of the

batch plant, the nature of PLCs and a description of the control program that

was systematically designed in [12]. Section 3 describes the Promela models for

the plant and the control process, and their use for the formal veri�cation and

optimization. Section 4 contains the conclusions.

2 Description of the system

The system of the case study is basically an embedded system, consisting of

a batch plant and a Programmable Logic Controller (PLC), both of which are

described in more detail below. The original goal of the case study was to write a

control program such that the batch plant and the PLC with its control program

together behave as intended. The intended behaviour is that, �rst, new batches

can always be produced, and second, in the second place, that the control sched-

ule is time optimal, i.e. the average time to produce a batch is minimal.

2.1 Description of the batch plant

The batch plant (see Figure 1) of the case study is an experimental chemical

process plant, originally designed for student exercises. We describe its main

features below; a more detailed account can be found in [9]. The plant \produces"

batches of diluted salt solution from concentrated salt solution (in container B1)

and water (in container B2). These ingredients are mixed in container B3 to

obtain the diluted solution, which is subsequently transported to container B4

and then further on to B5. In container B5 an evaporation process is started.

The evaporated water goes via a condenser to container B6, where it is cooled

and pumped back to B2. The remaining hot, concentrated salt solution in B5 is

transported to B7, cooled down and then pumped back to B1.

The controlled batch plant is clearly a hybrid system. The discrete element is

provided by the control program and the (abstract) states of the valves, mixer,

heater and coolers (open/closed, on/o�). Continuous aspects are tank �lling

levels, temperatures, and time. The latter can be dissected into real-time phe-

nomena of the plant on the one hand, such as tank �lling, evaporation, mixing,

heating and cooling times, and the program execution and reaction times (PLC

scan cycle time), on the other. The controller of the batch plant is a nice example

of an embedded system: the controlling, digital device is part of a larger physical

system with a particular functionality.

For the case study we decided to �x the size of a batch: the material is either

4.2l salt solution with a concentration of 5g/l and 2.8l water or, if mixed, 7l

salt solution of 3g/l concentration. With these batch sizes containers B1, B2,

B4, B6 and B7 are capable of two \units" of material, B3 and B5 only one

\unit" of material. The plant description in [9] contains also durations for the

transport steps from one tank to another. In our (timed) plant model we used

these durations as our basis, although the actual durations might possibly be

di�erent.

B1{B3 B2{B3 B3{B4 B4{B5 heat B5 B5{B7 cool B6 cool B7 B6{B2 B7{B1

320 240 70 350 1100 280 300 600 240 220

Table 1. Duration of plant processes in seconds

2.2 Programmable Logic Controllers

PLCs are special purpose computers designed for control tasks. Their area of

application is enormous. Here, we brie
y emphasize the main characteristics of

PLCs in comparison to \usual" computers.

The most signi�cant di�erence is that a program on a PLC runs in a permanent

loop, the so called scan cycle. In a scan cycle the program in the PLC is executed

once, where the program execution may depend on varible values stored in the

memory. The length of a scan cycle is in the range of milliseconds, depending

on the length of the program. Furthermore, in each scan cycle there is a data

exchange with the environment: a PLC has input points connected via an in-

terface with a dedicated input area of its memory, and the output area of the

memory is connected via an interface with the output points of the PLC. On the

input points the PLC receives data from sensors, on the output points the PLC

LIS
101

QI
102

LIS
201

QI
202

LIS
301

QI
302

LIS
401

FIS
801

LIS
501

QIS

TI

502

503

LIS
601

TIS
602

LIS
701

TIS
702

PIS
1001

PIS
901

B1 B2

B3

B4

K1

B6B5

B7

P1 P2

V2

V1

V3

V8 V9

V7

V6 V4

V5

V13

V11

V12

V29

V14

V15

V17

V16

V10

V18

V19

V21V23

V27 V20

V24

V25 V28V26 V22

cooling
water

salt

cooling
water

cooling
water

H O2

H O2

Fig. 1. The P/I-Diagram of the Batch Plant

sends data to actuators. Finally, there are some activities of the operating sys-

tem (self checks, watchdogs etc.) that take place in a scan cycle. The operating

system itself is small and stable, which is prerequisite for reliable real-time con-

trol. PLC programs are developed and compiled on PCs in special programming

environments and can be loaded to the PLC. There are di�erent programming

languages collected in a standard [8]. In our application we used Sequential Func-

tion Charts (SFC), a graphical language that is related to Petri-Nets, and the

program executed in each scan cycle depends on the places that are active at the

moment. In this sense SFC provides a meta-structure and the actual instructions

of our application are written in Instruction List, an assembly-like language. In

these languages it is possible to make use of timers which is also a di�erence to

the programming languages we usually deal with.

The scan cycle mechanism makes PLCs suitable for control of continuous pro-

cesses (tight loop control). However, it has to be guaranteed that the scan cycle

length is always below the minimal reaction time that is required by the plant to

control the entire system. In this case study the scan cycle time is a few orders

of magnitude smaller than what the reaction time has to be. The execution time

of a scan cycle is in the range of a few milliseconds. For some applications the

timing behaviour in this range is relevant, e.g. for machine control. For our chem-

ical plant it is not relevant: it does not really matter whether a valve closes 10

ms earlier or later. This property is relevant when modelling the whole system.

Here, we can model the PLC as if executing \time-continuously", i.e. a scan cycle

takes place in zero time. In comparison to the PLC the plant is so \slow" that

it cannot distinguish a real PLC with scan cycles form an ideal time-continuous

control. For a more detailed discussion of modelling PLCs see [11].

2.3 The control program

The goal of this section is to describe our view on the plant and the control

program as we used it in an informal way. Its formal derivation and our other

veri�cation activities are presented in [12].

In the plant we identi�ed a number of transport processes, such as transport

of 4.2l salt solution from container B1 to B3. All possible transport processes,

the evaporation process and two cooling process lead to a number of 12 parallel

processes. The activities in each process are simply to open some valves, switch

on a mixer, pump or heater, and when the process �nishes, close and switch o�

everything again. Each process starts its activities if its activation conditions

are ful�lled, and is in a wait state otherwise. An active process (state) remains

active until its postconditions are ful�lled. Then it gets back in the waiting

state. With this approach we have a so called closed loop control: the criterion

to change a state is not that time proceeded, but an event occurs. The structure

of the program is easy to �nd back in the SFC (Sequential Function Chart)

representation in Figure 2.

wait1

P1

�1

result1

wait12

P12

�12

result12

START

true

wait2

P2

�2

result2

: : :

Fig. 2. The control program in Sequential Function Chart

Control starts in the state \START" and (because the transition condition is

\true") immediately distributes to the 12 parallel wait states. In a wait state a

process does nothing. If control comes to state Pi, the program attached to state

Pi is executed in every scan cycle as long as control remains in Pi. The programs

attached to P1, : : : , P12 are contained in �gure 3 in the so called Instruction

List (IL) format. The instructions of IL are assembly-like. Here, we mainly load

the constants true or false to the accumulator and write the accumulator value

to the variables, e.g., Vi, representing the valves. The action quali�er P1 (at the

top of each program) indicates that the instructions right to it are only executed

in the �rst scan cycle when control is here; P0 says that the instructions are only

executed in the last scan cycle when control is in this location.

The main complexity of the program is hidden in the activation conditions �i.

We assume to have a predicate Pi.X for each step Pi indicating whether control is

at the corresponding step or not (these variables are available in PLC programs).

The conditions to start a process (i.e. step) are infomally the following:

1. The �lling levels of the tanks must allow for, e.g., a transport step: the upper

tank must contain enough material, the lower tank must contain enough

space, etc. These conditions are encoded in the predicates �i of Figure 4.

2. We do not want a tank to be involved in two processes at a time. E.g.,

when transferring solution from B4 to B5 there should not be a concurrent

transfer from B3 to B4. This requirement can be formulated by conditions on

valves: when solution is transferred from B4 to B5 valve V11 must be closed

for the duration of the transfer (invariant). These requirements induce a

con
ict structure on the processes. It is required that control is never at two

con
icting processes at the same time. This condition is split into two parts:

�rst, control cannot go to a process if a con
icting process is alraedy active.

These conditions are encoded in the predicates 	i of Figure 5. Second, when

con
icting processes could get control at the same moment only the one

having priority gets it. These priorities are �xed, and their priority graph is

cycle free. They induce the predicates �i in �gure 6.

P1 : P1 LD true

ST V8

P0 LD false

ST V8

P2 : P1 LD true

ST V9

P0 LD false

ST V9

P3 : P1 LD true

ST V8

ST Mixer

P0 LD false

ST V8

ST Mixer

P4 : P1 LD true

ST V9

ST Mixer

P0 LD false

ST V9

ST Mixer

P5 : P1 LD true

ST V11

P0 LD false

ST V11

P6 : P1 LD true

ST V12

P0 LD false

ST V12

P7 : P1 LD true

ST Heater

P0 LD false

ST Heater

P8 : P1 LD true

ST V15

P0 LD false

ST V15

P9 : P1 LD true

ST V17

P0 LD false

ST V17

P10: P1 LD true

ST V29

P0 LD false

ST V29

P11: P1 LD true

ST V18

ST V23

ST V22

ST V1

ST V3

ST Pump1

P0 LD false

ST V18

ST V23

ST V22

ST V1

ST V3

ST Pump1

P12: P1 LD true

ST V20

ST V24

ST V25

ST V5

ST V6

ST Pump2

P0 LD false

ST V20

ST V24

ST V25

ST V5

ST V6

ST Pump2

Fig. 3. Instruction List Programs for steps P1. : : : , P12

The execution mechanism of PLCs guarantees a synchronous execution of paral-

lel steps: in each scan cycle each program attached to an active step is executed

once. It is this synchronous mechanism that makes the conditions �i to have

the intended e�ect.

�1 := (B1 = sol42C _ B1 = sol82C) ^ B3 = empty

�2 := (B2 = water28C _ B2 = water56C) ^ B3 = empty

�3 := (B1 = sol42C _ B1 = sol82C) ^ B3 = water28C

�4 := (B2 = water28C _ B2 = water56C) ^ B3 = sol42C

�5 := B3 = sol70C ^ (B4 = empty _ B4 = sol70C)

�6 := (B4 = sol70C _ B4 = sol140C) ^ B5 = empty

�7 := B5 = sol70C ^ (B6 = empty _ B6 = water28C _ B6 = water28H)

�8 := B5 = sol42H ^ (B7 = empty _ B7 = sol42C _ B7 = sol42H)

�9 := B7 = sol42H _ B7 = sol84H

�10 := B6 = water28H _ B6 = water56H

�11 := (B7 = sol42C _ B7 = sol84C) ^ (B1 = empty _ B1 = sol42C)

�12 := (B6 = water28C _ B6 = water56C) ^ (B2 = empty _ B2 = water28C)

Fig. 4. The tank �lling conditions

	1 := �1 ^ : P2.X ^ : P4.X ^ : P5.X ^ : P11.X

	2 := �2 ^ : P1.X ^ : P3.X ^ : P5. X ^ : P12.X

	3 := �3 ^ : P2.X ^ : P4.X ^ : P5.X ^ : P11.X

	4 := �4 ^ : P1.X ^ : P3.X ^ : P5. X ^ : P12.X

	5 := �5 ^ : P1.X ^ : P2.X ^ : P3.X ^ : P4.X ^ : P6.X

	6 := �6 ^ : P5.X ^ : P7.X ^ : P8.X

	7 := �7 ^ : P6.X ^ : P8.X ^ : P10.X ^ : P12.X

	8 := �8 ^ : P6.X ^ : P7.X ^ : P9.X ^ : P11.X

	9 := �9 ^ : P8.X ^ : P11.X

	10 := �10 ^ : P7.X ^ : P12.X

	11 := �11 ^ : P1.X ^ : P3.X ^ : P8.X ^ : P9.X

	12 := �12 ^ : P2.X ^ : P4.X ^ : P7.X ^ : P10.X

Fig. 5. A process may not start if a con
icting process is active

�1 := 	1 ^ : 	5

�2 := 	2 ^ : 	1 ^ : 	3 ^ : 	5

�3 := 	3 ^ : 	5

�4 := 	4 ^ : 	1 ^ : 	3 ^ : 	5

�5 := 	5 ^ : 	6

�6 := 	6 ^ : 	7 ^ : 	8

�7 := 	7

�8 := 	8 ^ : 	7

�9 := 	9 ^ : 	8

�10 := 	10 ^ : 	7

�11 := 	11 ^ : 	1 ^ : 	3 ^ : 	8 ^ : 	9

�12 := 	12 ^ : 	2 ^ : 	4 ^ : 	7 ^ : 	10

Fig. 6. Of two con
icting processes only the one with priority may get active

3 Veri�cation and optimization with Spin

This section describes our approach to the veri�cation of the PLC program of

Figure 2 and its subsequent optimisation. For the veri�cation we constructed

a model of the control program and the plant in Promela, while completely

abstracting away from time. We used the model checker Spin to check that all

execution sequences of the combined model satisfy the property that \always

eventually batches are produced". This implies that under ideal circumstances,

in which no material is lost through leakage or evaporation, control is such that

new batches will always be produced. The details of the veri�cation procedure

are given in section 3.1; the technical conclusions are given in section 4.

To obtain also optimal schedules for the plant, in the sense that the average

production time of a batch is minimal, we re�ned the Promela model by including

light-weight real-time features. These su�ced �nd optimal scheduling sequences

as counter-examples to properties stating suboptimal behaviour (cf. [4, 14]). This

approach is described in more detail in section 3.2, with conclusions in section 4.

3.1 Correctness of the PLC program

Both the plant as described in section 2.1, and the informal control program

description of section 2.3 can be translated into Promela in a straighforward

way, the crucial part of the modelling exercise being the real-time properties of

the plant in combination with the PLC execution mechanism given in section

2.2. In this case there are two basic principles that allow us to deal with the

entire system by essentially abstracting away from time (see also [11] for a more

general account in the context of PLCs):

1. The control program works independently of the time that the production

steps take. Therefore, in the model each of the production steps P1, : : : ,

P12 may take some unspeci�ed time: if activated (e.g. by opening a valve)

it goes to an unde�ned state that it eventually will leave to reach the �nal

state where the result property holds. By this way of modeling every timing

behaviour of the plant is subsumed, including the real one. If we can prove

correctness for this general case, then correctness of the special case follows.

2. The excution speed of the control program is much faster than the toler-

ance of the plant processes, as was already mentioned above. This has two

important implications:

{ we can abstract away from the scan cycle time and assume that scan

cycles are executed instantaneously.

{ we can assume that the plant is continuously scanned so that state

changes are detected without (signi�cant) delay.

In our Promela model of the control program scan cycles are made instantaneous

using the atomic construct. The model of the combined behaviour of the plant

and the control program is obtained by putting the models of the control process

and all the plant processes in parallel. Doing this, we must make sure that the

continuous execution of the control program does not cause a starvation of the

plant processes. This is taken care of by allowing only fair executions in Spin of

our Promela model: in each execution no active process may be ignored inde�-

nitely. We must be careful, however, not to lose the other important property,

viz. that each state change of the plant is detected \immediately". Our model

takes care of this by forcing a control program execution after each potential

state change of the plant.

The Promela model of this case study is too big to be part of this paper. The

full version can be retrieved from [2]. Here we present two excerpts, one of

the plant model and one of the control program model, to illustrate its main

features. Figure 7 contains the Promela process that models the transportation of

solutions from container B1 to B3. It models the combined behaviour underlying

steps S1 and S3.

The model consists of a do-loop that continuously tries to start the transfer of

a unit of salt solution from B1 to B3 (corresponding to steps S1 and S3 of the

speci�cation). If the right conditions are ful�lled control will enter the body of

the loop, and will mark the beginning of the transfer step by instantaneously

(using the Promela atomic construct) changing the contents of both contain-

ers to unde�ned transitional states. At some later moment it will execute the

second part of the body, instantaneously changing the transitional states to the

corresponding terminal states, corresponding to the end of the transfer. Here,

we have also added an assert statement between these two atomic statements,

expressing an invariant that must always hold between the beginning and end

of the tranfer step. As this may create a lot of extra states in the veri�cation

model this assertion can be removed to improve the performance when checking

other properties.

Other observations that may help to understand this Promela model are:

{ The cycle variable is a global
ag that forces the excution of a scan cycle

after the execution of each atomic step in the plant (
ag is raised at the end

of each such atomic step). After the execution of a scan cycle (also modelled

as an atomic process, see below) the
ag is lowered. Each atomic step in the

plant is guarded by the test cycle==0.

{ The Promela model combines steps in the plant that involve the same set of

containers into one process. This reduces the number of processes that must

be scheduled fairly.

{ The Promela model of the plant models the transportation steps from a

\physical" attitude and imposes fewer conditions for a transportation to

take place that the formal plant speci�cation in the corresponding steps.

E.g. for transportation from B1 to B3 to take place it is only required that

B1 is not empty and valve V8 is open.

{ To compensate for this all illegal and unwanted states of the plant are ex-

plicitly modelled as error states (error is de�ned as assert(false)) whose

proctype B1toB3()

f do

:: atomicf (cycle==0 && B1!=cempty && v8) ->

if

:: (B1==sol42C) -> B1=undef1

:: (B1==sol84C) -> B1=undef2

:: else -> error

fi ;

if

:: (B3==cempty) -> B3=undef1

:: (B3==water28C && mix) -> B3=undef2

:: else -> error

fi ;

cycle=1

g ;

assert(v8 && (B3!=undef2 || mix)) ;

atomicf (cycle==0 && v8) ->

if

:: (B1==undef1) -> B1=cempty

:: (B1==undef2) -> B1=sol42C

:: else -> error

fi ;

if

:: (B3==undef1) -> B3=sol42C

:: (B3==undef2 && mix) -> B3=sol70C

:: else -> error

fi ;

cycle=1

g
od

g

Fig. 7. The Promela model of transfer between B1 and B3

proctype Control()

f int i,j ;

do

:: atomicf i=1 ; j=1 ;

do

:: (i<15) ->

if

:: (theta(i,j) && !px[procnr(i)]) -> PB1(i)

:: (result(i,j) && px[procnr(i)]) -> PB0(i)

:: else -> skip

fi ;

if

:: (j==1) -> j=2

:: (j==2) -> j=1 ; i=i+1

fi

:: (i==15) -> goto endcycle

od ;

endcycle: cycle=0

g
od

g

Fig. 8. The Promela model of the control process

reachability can be checked. This approach gives us more information about

the robustness of our controller.

The Promela process that models the control program is listed in Figure 8. This

is a straightforward translation of the PLC program of Figure 3.

The do loop of Control repeatedly executes an atomic scan cycle, in which

the processes P1,: : : ,P12 are scheduled sequentially. To deal with the symmetric

subcases of each step (i.e. the disjuncts between brackets in Figure 4) we need

a second loop counter j next to the main counter i (because P11 and P12 in

fact have 4 subcases P11 is covered by i2 f11; 12g and j2 f1; 2g, and P12 by

i2 f13; 14g and j2 f1; 2g). Modulo these small adaptations the theta(i,j)

correspond to the �-predicates of Figure 6, and the result(i,j) correspond to

analoguous formalisation of result conditions of the PLC program (the uninstan-

tiated resulti labels of Figure 2). PB1(i) and PB2(i) correspond to the code of

the P1 part, and the P0 part of the PLC program, respectively. The variables

px[i] correspond to the Pi.X activity predicates of the program mentioned ear-

lier. Note that at the end of each scan cycle the global
ag cycle is lowered, as

required.

Whereas the assertions in the model served to check on our own understanding

the model, the main correctness requirement that \always eventually a new

batch is produced" was veri�ed using the Spin facilities for model checking LTL

formulas. The requirement was formalized as the following LTL property:

� � (B3 == sol70C) ^ � � (B3 == cempty) (1)

expressing that the contents of container B3 (containing the brine solution that

is considered the \production" of the plant) is in�nitely often full and in�nitely

oftem empty (the constant cempty was chosen to be di�erent from the Promela

reserved word empty). As these two properties must interleave in each linear

execution sequence they are equivalent to the desired requirement.

It turned out to be feasible to run the model checker sequentially on our model

initialised with material for 0 up to 8 batches (including the intermediate di�er-

ent possibilities for half batches; 30 runs in total). In order to avoid the explosion

of the more than 8100 possible initial con�gurations that are in principle possi-

ble, we considered only con�gurations �lling the plant \from the top", i.e. �lling

tanks in the order B1,: : : ,B7. The other initializations are reachable from these

by normal operation of the plant. As satisfaction of the property that we checked

(see below) for our initial con�gurations implies its satisfaction for all reachable

con�gurations this is su�cient. Using simulations of our model we satis�ed our-

selves that our model did include the required normal operation steps (here,

model checking would run into the same combinatorial explosion).

After initial simulations and model checking runs had been used to remove

small (mainly syntactic) mistakes from our model, the model was systematically

checked for property (1) for the 30 initializations with di�erent batch volumes

described above. No errors were reported, except for initializations with batch

volumes 0, 0.5, 7.5 and 8, as should be the case. The model checking was done

using Spin version 3.3.7 on a SUN Enterprise E3500-server (6 SPARC cpus with

3.0 GB main memory). The model checking was run in exhaustive state space

search mode with fair scheduling. The error states reported unreachable in all

runs. The shortest runs were completed in the order of seconds and consumed in

the order of 20MB memory; the longest run required in the order of 40 minutes

and 100MB.

3.2 Deriving optimal schedules

The control schedule of Figure 2 that we have shown to be correct by the pro-

cedure sketched in the previous subsection, follows an essentially crude strategy.

After each scan cycle it enables all non-con
icting processes in the plant whose

preconditions it has evaluated to hold true. It is not a priori clear that this strat-

egy would also lead to a plant operation that is optimal in the sense that the

average time to produce a batch is minimal.

To determine optimal schedules for the various batch loads of the plant we have

re�ned the models of the previous section as follows:

1. We added a notion of time to the model. To avoid an unnecessary blow-

up of the state space due to irrelevant points in time, i.e. times at which

nothing interesting can happen, we have borrowed an idea from discrete

event simulation, viz. that of variable time advance procedures [15].
2. We re�ned the plant model using the information from Table 1, such that

each process in the plant will take precisely the amount of time speci�ed.
3. We re�ned the model of the control program such that after each scan cycle

any non-empty subset of the maximal set of allowed non-con
icting processes

determined by the original control program could be enabled.

The search for optimal schedules was then conducted by �nding counterexamples

for the claim:

�(batches < N) (2)

where batches is a global variable that counts the number of times that a brine

solution is transferred from B3 to B4. This property is checked for increasing

values of N in the context of a given maximal clock value maxtime. The assump-

tion is that for maxtime large enough such counterexamples will display regular

scheduling patterns. Below, we elaborate on each of the above points and the

search procedure.

A variable time advance procedure In real-time discrete event systems

events have associated clocks that can be set by the occurrence of other events.

An event occurs when its clock expires. Such systems can be simulated by cal-

culating at each event occurrence the point in time at which the next event will

occur, and then jumping to that point in time. This is known as variable time

advance.

We wish to apply this idea to our model because it will not litter the global

state space with states whose time component is uninteresting, in the sense that

there is no process in the plant that begins or ends. As we can only calculate

when plant processes will end once they have started, we can only use this

time advance procedure if we assume that processes will always be started when

others end (or at time 0). It is not di�cult to see, however, that we will not lose

schedules this way that are strictly faster than what we can obtain using this

policy. The informal argument is as follows: assume that a derived scheduling

policy can be strictly improved by postponing a given event e by some time t .

Because we are optimising w.r.t. time (and not energy or resource utilisation or

the like), the more optimal schedule must exploit this time to start a con
icting

process (ending a con
icting process would have prevented e in the original

schedule; any event associated with a non-con
icting process can be executed

anyway). Because this process is con
icting it must also �nish before e occurs.

We may therefore assume that in any optimal schedule e is excuted when the

last preceding con
icting process ends.

The variable time advance procedure is implemented by the Promela process

Advance given in Figure 9. The basic idea of Advance is quite simple: when it

becomes active it will calculate the next point in time when a plant process will

terminate. To do so it uses the global array ptime(i) containing the termination

times of the processes i, whose values are calculated as part of the Promela pro-

cesses modelling the plant, and the global time variable time, which is controlled

by Advance. maxstep is a global constant corresponding to the longest possible

time step in the model, i.e. the duration of the heating process. All variables

related to time are of type short, a unit corresponding to 10 seconds in Table 1

as al its entries are multiples of 10 seconds. Advance will be activated only when

the predicate promptcondition holds. This predicate is true if and only if all

processses that have been enabled by the control program have indeed become

active and none has terminated.

The re�ned plant model The re�ned model of the plant di�ers from the

original model in the folowing respects:

{ The (atomic) start event of each plant process is used to calculate the ter-

mination time of that process.
{ The termination event of each plant process is guarded with the additional

condition that the global time time must equal the calculated termination

time.
{ The start and termination events include printf statements to record acti-

vation and termination times to enable the analysis of simulated executions

(of the counterexample trails).

proctype Advance()

f int i ; short minstep ;

do

:: atomicf(promptcondition) ->

minstep=maxstep ; i=1 ;

do

:: (i<13) ->

if

:: (px[i] && ((ptime(i)-time)<minstep)) ->

minstep=(ptime(i)-time)

:: else -> skip

fi ;

i=i+1

:: (i==13) -> goto step

od ;

step: time=time+minstep

g
od

g

Fig. 9. The Promela model of the time advance process

The re�ned control model To allow the new model of the control program

to enable any nonempty subset of the permissable plant process start events, we

have split the loop of the original model of Figure 8, resulting in Figure 10. The

�rst of the two loops scans only for termination conditions of plant processes and

executes the corresponding control fragments PB0(i). The second loop subse-

quently scans the valid preconditions of the plant processes. The corresponding

control fragments PB1(i) may or may not be executed. If not, the process num-

ber is stored in the local variable last, possibly overwriting a previous value. If

the second loop is exited without any processes being active (act is false), then

the process with number last is activated.

The idea to retrospectively activate the last plant process that could have been

activated to prevent the plant from becoming inactive, cannot be implemented

in the original, single control loop. There, plant process terminations occuring

after the evaluation of the precondition corresponding to last could invalidate

the precondition, rendering subsequent activation impossible.

Both loops of the new version are contained in a new outer loop that monitors

the progress of time and will stop control if time exceeds maxtime. This will

cause the combined plant and control model to terminate.

Finding optimal schedules Finding optimal schedules we restricted ourselves

to the interesting cases involving initial plant loads of 1 through 7 batches. For

our initial experiments we �xed maxtime to be 5000 time units (50,000 s). For

each initial load we needed two or three runs to determine the maximal number

of batches for which counterexamples could be produced in a very short time (in

the order of seconds real time). It turned out that all counterexamples produced

contained schedules that rapidly (i.e. within 300 time units) converged to a

repeating pattern with a �xed duration.

The initial measurements are collected in Table 2. The interpretation of the

columns is as follows:

{ load: indicates the number of batches with with the plant is initialised,

{ simtime: indicates the the duration (in simulated time units) of the coun-

terexample traces,

{ batches: the number of batches produced in that trace,

{ states: the number of states visited to produce the trace,

{ transitions: the number of transitions visited to produce the trace,

{ convergence: the convergence time until periodic behaviour,

{ period: period time of periodic behaviour.

A �rst analysis of Table 2 shows the state space that needs to be searched to

produce the counterexamples is very small, and could make one suspicious of the

quality of the results that are obtained. Surprisingly enough, �ve of the measured

periods turn out to be optimal schedules! For loads with 1 and 7 batches this can

be readily checked by hand by moving a single batch through the plant, or the

empty space for a batch (the total volume of the plant is 8 batches), respectively,

and measuring the total duration of the critical branches of the path.

Initially, we thought that we had made a mistake when we measured the same

period of 173 units for loads 2, 3 and 4. Closer analysis of the schedules, however,

revealed that this is the result of the fact that the plant has one process that

clearly dominates the time consumption during the production of batches, viz.

the heating of container B5 (110 time units). Since �lling B5, heating it, and

emptying B5 must be part of every production cycle, the average production

time of a batch must be greater or equal then 35+110+28=173 time units. This

makes the schedules underlying the period of 173 for loads 2, 3 and 4 optimal

schedules as well.

load simtime batches states transitions convergence period

1 4767 17 1185 1510 56 294

2 4682 28 1916 2450 56 173

3 4972 31 2063 2639 294 173

4 4886 30 2031 2598 208 173

5 3761 20 1449 1866 208 197

6 3885 20 1567 2072 173 195

7 4340 17 1202 1532 173 260

Table 2. Initial schedule measurements

The previous observation made us think that schedules for loads 5 and 6 could

be improved upon, as they are in some sense dual to the cases for loads 2 and

3 (moving empty batch space upwards through the plant instead of batches

downwards). In fact, inspection of the counterexample for load 6 clearly showed

proctype Control()

f int i,j,last ; bool precon, postcon ;

do

:: (time<maxtime) ->

atomicfi=1 ; j=1 ;

do

:: (i<15) ->

postcon=(result(i,j) && px[procnr(i)]) ;

if

:: postcon -> PB0(i)

:: else -> skip

fi ;

if

:: (j==1) -> j=2

:: (j==2) -> j=1 ; i=i+1

fi

:: (i==15) -> goto loop2

od ;

loop2:

i=1 ; j=1 ; last=1 ;

do

:: (i<15) ->

precon=(theta(i,j) && !px[procnr(i)]) ;

if

:: precon -> PB1(i)

:: precon -> last=i

:: else -> skip

fi ;

if

:: (j==1) -> j=2

:: (j==2) -> j=1 ; i=i+1

fi

:: (i==15) -> goto finish

od ;

finish:

if

:: (!act) -> PB1(last)

:: else -> skip

fi ;

cycle=0

g
:: (time>=maxtime) -> goto endtime

od ;

endtime: skip

g

Fig. 10. The re�ned model of the control process

that it could be improved. As increasing the number of batches immediately led

to a dramatic increase of the response time for producing counterexamples, we

looked for cheaper ways to get feedback more quickly. There are two dimensions

that determine the state space to be explored, viz. the depth of the search tree

and its branching degree. The �rst can be made smaller by reducing the value

of maxtime, the second by exploring fewer scheduling alternatives in the control

program.

For the second option we had the original control schedule of Figure 8 at our

disposal. This process does not lead to a completely deterministic scheduling,

because it may make a di�erence whether the scan cycle is executed once or more

often between plant events. This is because the termination of some processes

later in the scan cycle may enable the beginning of other plant processes earlier

in the (next) scan cycle. The result therefore stabilises after two scan cycles.

Using this much leaner search tree we did in fact �nd optimal schedules for

loads 5 and 6, again with period 173, in a matter of seconds, see Table 3.

load simtime batches states transitions convergence period

5 3329 20 1380 1761 35 173

6 3467 20 1415 1806 173 173

Table 3. Measurements for loads 5 and 6 with the original control program

Also the �rst option, reducing the search tree by reducing maxtime, can be

used with success. Reducing the simulated time to 519 time units, we could

�nd an optimal schedule for a system load of 6 producing 3 batches. This option

required a more extensive search, however, involving more than 4.5 million states,

showing that the optimal schedule here is contained in a part of the tree explored

much later than in the previous examples. We did not systematically apply this

approach to the other loads.

It must be concluded that the plant can be scheduled in the overall optimal

time of 1730 seconds for all loads, except for the extreme loads of 1 and 7.

Because of our analysis above, these are not only time optimal but also resource

optimal schedules, in the sense that the (expensive) destillation container B5 is

in continuous use. From the energy perspective, probably the schedule for load

2 is optimal, as this involves the circulation, heating and cooling of the smallest

volume.

4 Conclusions

In this paper we have shown how the Promela/Spin environment can be used

to verify and optimize control schedules for a small-size PLC controlled batch

plant. The approach in this paper relies quite heavily on the structured design

of an initial control program that can be found in [12] and the analysis of formal

approaches to PLCs in [11].

It is interesting to see that we succeeded in dealing with this real-time embedded

system using standard Promela/Spin. For the veri�cation of the initial control

program this was due to a property of the plant, viz. that we could assume

instantaneous and immediate scanning of all state changes of the plant. This as

a consequence of the tolerance of the plant processes for much slower reaction

times than those realised by the PLC control. This makes us conclude that this

abstraction can be used for checking non-timed correctness criteria in all process

control problems that have this property.

The original task we set ourselves was just to check the correctness of the plant

control in the sense that the designed program would in principle always be ca-

pable of producing more batches for any reasonable initial load. Having achieved

that task we wondered how the model might be used to also look at the optimal-

ity of the schedules. As we wanted to treat this in terms of small modi�cations

of the model only, we added time in the form of an explicit time advancing pro-

cess. This is very close in spirit to the real-time Promela/Spin extension DTSpin

[1]. Given the particular properties of the plant, however, viz. that without loss

of optimality plant processes can be assumed to start when others terminate,

we could do this by only generating those points in time in which plant events

could take place. From the schedules that we obtained we can conclude that in

this case study this variable time advance procedure reduced the generated state

space by approximately a factor of 20.

On the basis of our modi�ed model we could �nd optimal schedules surprisingly

quickly. This is certainly due to the particular characteristics of the given plant,

with its very critical heating process. Also, we have been lucky in the sense

that the optimal schedules often were found in those parts of the search tree

that were explored earlier. Counterexamples were produced so quickly, in fact,

that the gain of the factor of 20 by using the time advance procedure seemed

immaterial. There is one exception, however, viz. searching the optimal schedule

for load 6 using the re�ned (nondeterministic) Control process. By drastically

reducing maxtimewe obtained an optimal schedule while storing some 4.5 million

states. Given the 132 byte state vector, in this case the reduction factor of 20

appears very useful. Although more experiments are certainly needed, we believe

that variable time advance procedures can be useful for this kind of application.

One way to think of them is as an explicitly programmed analogon of the notion

of time regions as in timed automata [3]. Taking advantage of speci�c properties

of systems such as ours an explicit approach can sometimes yield better results.

To apply our technique for �nding optimal schedules, viz. by generating coun-

terexamples for claims of suboptimal behaviour, in more general cases, it would

be useful to be able to in
uence the search strategy of the model checker more

directly and guide the search �rst into those parts of the search trees where

counterexamples are likely to be found. [5] discusses how branch and bound al-

gorithms could be used for such purposes, especially in the context of model

checking for timed automata (UPPAAL [10]). Our results indicate that it can

be wortwhile to investigate such guided search methods also for non-real time

model checkers like Spin.

Another study of the optimal scheduling for the VHS case study 1 is reported

in [13]. Here the problem is analysed using the tools OpenKronos and SMI. It

is di�cult to compare the results of this approach directly with ours, as they

include also the production of the initial loads into their schedules, which we

just assume to be present. The more general �ndings seem to be consistent

with ours, however. OpenKronos could be used succesfully to produce optimal

schedules for loads of up to 3 batches before falling victim to the state explosion

problem. The symbolic model checker SMI produced results 6 batches and more,

with a computation time of approximately 17 minutes per batch.

References

1. Dtspin homepage. http://www.win.tue.nl/~dragan/DTSpin.html.

2. VHS: Case study 1 sources. http://www.cs.kun.nl/~mader/vhs/cs1.html.

3. R. Alur and D.L. Dill. A theory of timed automata. Th. Computer Science,

(138):183{335, 1994.

4. A. Fehnker. Scheduling a steel plant with timed automata. In Sixth International

Conference on Real-Time Computing Systems and Applications (RTCSA'99).

IEEE Computer Society Press, 1999.

5. A. Fehnker. Bounding and heuristics in forward reachability algorithms. Technical

Report CSI-R0002, University of Nijmegen, Netherlands, February 2000.

6. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: a model checker for hybrid

systems. Software Tools for Technology Transfer, (1):110{123, 1997.

7. G.J. Holzmann. The model cheker spin. IEEE Trans. on Software Eng., 23(5):279{

295, May 1997.

8. International Electrotechnical Commission. IEC International Standard 1131-3,

Programmable Controllers, Part 3, Programming Languages, 1993.

9. S. Kowalewski. Description of case study cs1 "experimental batch plant".

http://www-verimag. imag.fr/VHS/main.html, July 1998.

10. K.G. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for

Technology Transfer, (1):134{153, 1997.

11. A. Mader. A classi�cation of PLC models and applications. submitted to WODES,

2000.

12. A. Mader, E. Brinksma, H. Wupper, and N. Bauer. Design of a plc con-

trol program for a batch plant - vhs case study 1. submitted for publication,

http://www.cs.kun.nl/~ mader/papers.html, 2000.

13. Peter Niebert and Sergio Yovine. Computing optimal operation schemes

for multi batch operation of chemical plants. VHS deliverable, May 1999.

http://www-verimag.imag.fr/VHS/main.html.

14. Th. Ruys and E. Brinksma. Experience with literate programming in the modelling

and validation of systems. In B. Ste�en, editor, Tools and Algorithms for the

Construction and Analysis of Systems, volume 1384 of Lecture Notes in Computer

Science, pages 393{408. Springer-Verlag, 1998.

15. G.S. Shedler. Regenerative Stochastic Simulation. Academic Press, 1993.

16. F.W. Vaandrager and J.H. van Schuppen. Hybrid Systems: Computation and Con-

trol, volume 1569 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

17. S. Yovine. Kronos: a veri�cation tool for real-time systems. Software Tools for

Technology Transfer, (1):123{134, 1997.

